首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Much research has focused on changes in solubility and mobility of trace metals in soils under incubation. In this experiment, changes in solubility and mobility of trace metals (Pb, Cu and As) and Fe in two contaminated soils from Tampa, Florida and Montreal, Canada were examined. Soils of 30 g were packed in columns and were incubated for 3-80 days under water-flooding incubation. Following incubation, metal concentrations in pore water (water soluble) and in 0.01 M CaCl2 leachates (exchangeable+water soluble) were determined. While both soils were contaminated with Pb (1600-2500 mg kg(-1)), Tampa soil was also contaminated with As (230 mg kg(-1)). Contrast to the low pH (3.8) of Tampa soil, Montreal soil had an alkaline pH of 7.7 and high Ca of 1.6%. Concentrations of Fe(II) increased with incubation time in the Tampa soil mainly due to reductive Fe dissolution, but decreased in the Montreal soil possibly due to formation of FeCO3. The inverse relationship between concentrations of Pb and Fe(II) in pore water coupled with the fact that Fe(II) concentrations were much greater than those of Pb in pore water may suggest the importance of Fe(II) in controlling Pb solubility in soils. However, changes in concentrations of Fe(II), Pb, Cu and As in pore water with incubation time were similar to those in leachate, i.e. water soluble metals were positively related to exchangeable metals in the two contaminated soils. This research suggests the importance of Fe in controlling metal solubility and mobility in soils under water-flooded incubation.  相似文献   

2.
Complexing agents are frequently used in treatment technologies to remediate soils, sediments and wastes contaminated with toxic metals. The present study reports results that indicate that the rate and extent of soil organic matter (SOM) as represented by dissolved natural organic carbon (DNOC) and polycyclic aromatic hydrocarbon (PAH) desorption from a contaminated soil from a manufactured gas plant (MGP) site can be significantly enhanced with the aid of complexing agents. Desorption of DNOC and PAH compounds was pH dependent, with minimal release occurring at pH 2-3 and maximal release at pH 7-8. At pH-6, chelate solutions were shown to dissolve large amounts of humic substances from the soil compared to controls. The complexing agents mobilized polyvalent metal ions, particularly Fe and Al from the soil. Metal ion chelation may disrupt humic (metal ion)-mineral linkages, resulting in mobilization of SOM and accompanying PAH molecules into the aqueous phase; and/or reduce the degree of cross-linking in the soil organic matter phase, which could accelerate PAH diffusion.  相似文献   

3.
The heavy metal content of pine forest soil was studied near the boundary between Russia and Estonia, an area characterized by large amounts of acidic and basic air pollutants, mainly sulfur dioxide and calcium. Alkalization dominates the processes in soil, since sulfur is adsorbed only in small quantities, and calcium is much better adsorbed. In addition to Ca, great amounts of Al, Fe, K, and Mg are accumulated in the humus layer due to air pollution. The heavy metal content has increased. The exchangeable content of heavy metals was in many cases much higher in polluted alkaline soils than in non-polluted acidic soils, even the ratio of exchangeable to total metal content being higher in alkaline plots. To avoid a dangerous increase in soluble heavy metal content, it is important to decrease not only the large sulfur emissions of local pollutant sources, but also the alkaline pollutants. A similar concern must be taken into account when liming of acidic forest soils is planned.  相似文献   

4.
Lo IM  Tsang DC  Yip TC  Wang F  Zhang W 《Chemosphere》2011,83(1):7-13
Chelating agents have been widely studied for extracting heavy metals from contaminated soils, and the effectiveness of EDDS ([S,S]-ethylene-diamine-disuccinic acid) has aroused extensive attention because of its biodegradability in the natural environment. However, in the course of EDDS-flushing, metal exchange of newly extracted metal-EDDS complexes with other sorbed metals and mineral cations may result in metal re-adsorption on the soil surfaces. Therefore, this study investigated the relative significance of metal exchange under different travel distances of chelant complexes, characteristics of soil contamination, and solution pH in the column experiments. As a result of metal exchange, the elution of Zn and Pb was retarded and the cumulative extraction was lower than those of Ni and Cu, especially over a longer travel distance. Compared with the field-contaminated soils, the effects of metal exchange were even more substantial in the artificially contaminated soil because of a greater amount of extractable metals and a larger proportion of weakly bound fractions. By contrast, metal exchange was insignificant at pH 8, probably due to less adsorption of metal-EDDS complexes. These findings highlight the conditions under which metal exchange of metal-EDDS complexes and the resulting impacts are more significant during EDDS-flushing.  相似文献   

5.
Sequential extraction procedures are widely used to estimate the quantity of trace metals bound to different solid fractions in contaminated soils. However, reliability of speciation of trace metals by these procedures remains largely unexamined. In the present study, the selectivity of each extraction step was tested by observing the effect of reversing the extraction order in the procedure. Two different sequential extraction methods and their reversed modes were used for metal fractionation in sewage sludge-amended soils. Significantly increased amounts of extractable metals (Cd, Cu, Pb and Zn) were evident in the sludge-amended soils compared to control soil by all extraction schemes; however, the amounts of metals extracted by each step were strongly dependent on the order of extraction, the type of reagents and the nature of the individual metals. Caution is advised in deducing the forms of soil metals from sequential extraction results from metal-contaminated soils.  相似文献   

6.
Recycling EDTA solutions used to remediate metal-polluted soils   总被引:7,自引:0,他引:7  
The objective of this research was to investigate the recycling of ethylenediamine-tetraacetic acid (EDTA) used for the removal of trace metals from contaminated soils. We successfully used Na2S combined with Ca(OH)2 to precipitate the trace metals allowing us to recycle the EDTA. The results of batch and column leaching experiments show that both Ca-EDTA and Na-EDTA are powerful chelating agents with a similar soil remediation potential. The major advantage of Ca-EDTA is the preservation of soil organic matter. We found that Na2S was capable of separating the metals Cd, Cu and Pb from EDTA; however, the precipitation of Zn required the addition of Ca(OH)2. After reusing the reclaimed EDTA seven times, over a 14-day period, EDTA reagent losses ranged from 19.5% to 23.5%. Successive washing cycles enhanced the removal of trace metals from contaminated soils. The metal sulfide precipitates contain high concentrations of metals and could potentially be recycled.  相似文献   

7.
Our work was conducted to investigate the heavy metal toxicity of tailings and soils collected from five metal mines located in the south of Morocco. We used the MetPAD biotest Kit which detects the toxicity specifically due to the heavy metals in environmental samples. This biotest initially developed to assess the toxicity of aquatic samples was adapted to the heterogeneous physico-chemical conditions of anthropogenic soils. Contrasted industrial soils were collected from four abandoned mines (A, B, C and E) and one mine (D) still active. The toxicity test was run concurrently with chemical analyses on the aqueous extracts of tailings materials and soils in order to assess the potential availability of heavy metals. Soil pH was variable, ranging from very acidic (pH 2.6) to alkaline values (pH 8.0-8.8). The tailings from polymetallic mines (B and D) contained very high concentrations of Zn (38,000-108,000 mg kg(-1)), Pb (20,412-30,100 mg kg(-1)), Cu (2,019-8,635 mg kg(-1)) and Cd (148-228 mg kg(-1)). Water-extractable metal concentrations (i.e., soil extracts) were much lower but were highly toxic as shown by the MetPAD test, except for soils from mines A, E and site C3 from mine C. The soil extracts from mine D were the most toxic amongst all the soils tested. On this site, the toxicity of soil water extracts was mainly due to high concentrations of Zn (785-1,753 mg l(-1)), Cu (1.8-82 mg l(-1)) and Cd (2.0-2.7 mg l(-1)). The general trend observed was an increase in metal toxicity measured by the biotest with increasing available metal contents in tailings materials and soils. Therefore, the MetPAD test can be used as a rapid and sensitive predictive tool to assess the heavy metal availability in soils highly contaminated by mining activities.  相似文献   

8.
As a result of processing of metal ores, trace metals have contaminated large areas of northern France. Metal migration from the soil to groundwater presents an environmental risk that depends on the physico-chemical properties of each contaminated soil. Soil water samples were obtained over the course of 1 year with zero-tension lysimeters from an acidic, loamy, metal contaminated soil. The average trace metal concentrations in the soil water were high (e.g. for Zn 11 mg l-1 under the surface horizon), but they varied during the sampling period. Zn concentrations were not correlated with pH or total organic carbon in the solutions but were correlated with Cd concentrations. On average, 95% of the Zn and Cd but only 50% of Pb was present in a dissolved form. Analytical transmission electron microscopy was used to identify the Zn or Pb carriers. Colloids containing Pb and Zn were biocolloids, whereas colloids containing only Zn were smectites.  相似文献   

9.
Gu HH  Qiu H  Tian T  Zhan SS  Deng TH  Chaney RL  Wang SZ  Tang YT  Morel JL  Qiu RL 《Chemosphere》2011,83(9):1234-1240
The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and 40 g kg−1) and steel slag (3 and 6 g kg−1) increased soil pH from 4.0 to 5.0-6.4, decreased the phytoavailability of heavy metals by at least 60%, and further suppressed metal uptake by rice. Diffusion gradient in thin-film measurement showed the heavy metal diffusion fluxes from soil to solution decreased by greater than 84% after remediation. X-ray diffraction analysis indicated the mobile metals were mainly deposited as their silicates, phosphates and hydroxides in amended treatments. Moreover, it was found metal translocation from stem to leaf was dramatically restrained by adding amendments, which might be due to the increase of silicon concentration and co-precipitation with heavy metals in stem. Finally, a field experiment showed the trace element concentrations in polished rice treated with amendments complied with the food safety standards of China. These results demonstrated fly ash and steel slag could be effective in mitigating heavy metal accumulation in rice grown on multi-metal contaminated acidic soils.  相似文献   

10.
Phosphorus-bearing materials have been widely applied in immobilization of heavy metals in contaminated soils. However, the study on the stability of the initially P-induced immobilized metals in the contaminated soils is far limited. This work was conducted to evaluate the mobility of Pb, Cu, and Zn in two contrasting contaminated soils amended with phosphate rock tailing (PR) and triple superphosphate fertilizer (TSP), and their combination (P?+?T) under simulated landfill and rainfall conditions. The main objective was to determine the stability of heavy metals in the P-treated contaminated soils in response to the changing environment conditions. The soils were amended with the P-bearing materials at a 2:1 molar ratio of P to metals. After equilibrated for 2 weeks, the soils were evaluated with the leaching procedures. The batch-based toxicity characteristic leaching procedure (TCLP) was conducted to determine the leachability of heavy metals from both untreated and P-treated soils under simulated landfill condition. The column-based synthetic precipitation leaching procedure (SPLP) were undertaken to measure the downward migration of metals from untreated and P-treated soils under simulated rainfall condition. Leachability of Pb, Cu, and Zn in the TCLP extract followed the order of Zn?>?Cu?>?Pb in both soils, with the organic-C- and clay-poor soil showing higher metal leachability than the organic-C- and clay-rich soil. All three P treatments reduced leachability of Pb, Cu, and Zn by up to 89.2, 24.4, and 34.3 %, respectively, compared to the untreated soil, and TSP revealed more effectiveness followed by P?+?T and then PR. The column experiments showed that Zn had the highest downward migration upon 10 pore volumes of SPLP leaching, followed by Pb and then Cu in both soils. However, migration of Pb and Zn to subsoil and leachate were inhibited in the P-treated soil, while Cu in the leachate was enhanced by P treatment in the organic-C-rich soil. More than 73 % P in the amendments remained in the upper 0–10 cm soil layers. However, leaching of P from soluble TSP was significant with 24.3 % of P migrated in the leachate in the organic-C-poor soil. The mobility of heavy metals in the P-treated soil varies with nature of P sources, heavy metals, and soils. Caution should be taken on the multi-metal stabilization since the P amendment may immobilize some metals while promoting others’ mobility. Also, attention should be paid to the high leaching of P from soluble P amendments since it may pose the risk of excessive P-induced eutrophication.  相似文献   

11.
Copper and zinc retention by an organically amended soil   总被引:3,自引:0,他引:3  
This paper describes changes in retention of Cu and Zn in laboratory experiments by a sandy soil that had been amended in the field with different composted wastes. The amounts of the metals retained increased as a result of the amendments, especially after two years. Desorption of the sorbed metals was always negligible, regardless of the treatment. The proportion of Cu retained was considerably higher than that of Zn, suggesting a higher affinity of the soil for the former. The greater sorption in the amended soils indicates a build-up of fresh sites for metal retention.The use of 'log(activity) vs. pH' plots showed that the nature of the surfaces retaining metals on the untreated and amended soils is different. At comparable pH values, the amended soils gave higher solution metal concentrations. Some of the possible environmental consequences of the use of these amendments for remediation purposes are discussed.  相似文献   

12.
Phytoremediation of metal-polluted soils can be promoted by the proper use of soil amendments and agricultural practices. A 4-year phytoremediation programme was applied to a site affected by the toxic spill of pyrite residue at Aznalcóllar (Spain) in 1998, contaminated with heavy metals (Zn, Cu, Pb, Cd) and arsenic. This consisted of active phytoremediation, using organic amendments (cow manure and compost) and lime and growing two successive crops of Brassica juncea (L.) Czern., followed by natural attenuation without further intervention. Changes in soil pH, extractable metal and As concentrations, organic carbon content and microbial biomass was evaluated. The initial oxidation of metal sulphides from pyrite residues released soluble metals and reduced soil pH to extremely acidic values (mean 4.1, range 2.0-7.0). The addition of lime (up to 64 t ha(-1)) increased soil pH to adequate values for plant growth, resulting in a significant decrease in DTPA-extractable metal concentrations in all plots. The natural attenuation phase showed also a decrease in extractable metals. Organic treatments increased the soil total organic carbon, which led to higher values of microbial biomass (11.6, 15.2 and 14.9 g kg(-1) TOC and 123, 170 and 275 microg g(-1) biomass-C in control, compost and manure plots, respectively). Active phytoremediation followed by natural attenuation, was effective for remediation of this pyrite-polluted soil.  相似文献   

13.
In a lysimeter experiment, topsoils were polluted with filter dust from a non-ferrous metal smelter and then planted with trees. Sequential extractions were used to follow the changes in metal fractionation of Cu, Zn, Cd, and Pb over 42 months. Plant-free and uncontaminated soils served as reference. In the contaminated and planted soils, the largest changes in speciation occurred within the first 6 months. The relative amounts of certain metal fractions were linearly related to each other, indicating systematic redistribution between fractions. The results indicate that under natural conditions with high heterogeneity in total metal contents spatial differences are more important than temporal variations in determining the fractionation and solubility of metals in contaminated soils. In the absence of plants soils exhibited a completely different fractionation 30 months after pollution, with much higher proportions in the more refractory phases. This suggests that plant activity kept the metals in a more soluble form.  相似文献   

14.
Red mud (RM) is a strongly alkaline residue generated in enormous amounts worldwide from bauxite refining using the Bayer chemical process. RM is composed mainly of Fe, Ti and Al oxides and hydroxides, but it also contains an array of trace metals and metalloids at different concentrations. The purpose of this paper is to assess the potential mobility of metals in RM, with special emphasis on pH effect. The ‘operational’ distribution and leachability of metals within/from RM was studied by applying a sequential extraction procedure (SEP) and several leaching tests (rapid titration, equilibration acidification, batch leaching with acetic acid and also the toxicity characteristics leaching procedure (TCLP) and the DIN 38414-S4 procedures, used as reference methods) carried out at different pH, solid/liquid ratio, extraction period and type of acid (HCl or acetic acid). Chemical analysis showed that, in addition to the major metals Fe, Al and Ti, RM contains several trace metals, some of them (Cr, Cu and Ni) in concentrations exceeding the regulatory limits. SEP showed that a majority of the metals in the RM (between the 32.2?±?8.5 for Cd and 95.3?±?0.4 % for Ni) were found in the residual fraction, suggesting that they are not readily mobile under normal environmental conditions. Leaching tests performed at different pH showed that a significant fraction of the metals is mobilised from RM only under very strong acid conditions (pH?<?2), whereas Al is released in considerable amounts at pH?<?5.3. Among the trace metals, Cr requires special attention because of its relative high concentration in RM and the higher concentrations of this metal mobilised at low pH. The leaching tests using acetic acid showed that the standard TCLP largely underestimates the release of trace metals from RM, and therefore it is not advisable to evaluate the actual potential leaching of trace metals from this residue.  相似文献   

15.
Effect of soil on microbial responses to metal contamination   总被引:9,自引:0,他引:9  
An experiment was conducted to investigate microbial responses to metal inputs in five soils with varying clay and organic contents; one soil had also a higher pH. These soils were treated with a low metal, sewage sludge control or with this sludge contaminated to achieve Cu=112, Ni=58 and Zn=220 mg kg(-1) in medium and Cu=182, Ni=98 and Zn=325 mg kg(-1) in high metal soils. CO(2) evolution rates were measured at 1 week and at 4-5-day intervals thereafter until the end of the incubation (7 weeks). Extractable metals (CaCl(2) and water), biomass C, metabolic quotient, ergosterol, bacterial-fungal phospholipid fatty acid (PLFA-3 weeks only) ratio and mineral N were measured at 3 and 7 weeks. Metal inputs caused a marked increase in metal availability in the slightly acidic sandy loams, a smaller increase in slightly acidic clays and had little effect in the alkaline loam. After an initial increase in CO(2) evolution with metal inputs in all soils, the high metal treatment alone caused a significant decrease at later stages, mainly in sandy loams. Although biomass C and metabolic quotient decreased in all soils with higher metal inputs, the effect was more pronounced in the sandy loams. Metal inputs increased ergosterol and decreased bacterial-fungal PLFA ratios in most soils. Larger mineral N contents were found in all high metal soils at 3 weeks but, after 7 weeks, metals caused a significant decrease in sandy loams. CaCl(2) and water-extractable Cu, Ni and Zn contents were closely correlated with microbial indices in sandy loam but not in clay soils. Overall, the effect of treatments on microbial and extractable metal indices was greater in loams. Within a single series, higher organic soils showed less pronounced responses to metal inputs, although this trend was not always consistent.  相似文献   

16.
Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.  相似文献   

17.
Site-specific hydrological conditions affect the availability of trace metals for vegetation. In a greenhouse experiment, the effect of submersion on the metal uptake by the wetland plant species Salix cinerea and Populus nigra grown on a contaminated dredged sediment-derived soil and on an uncontaminated soil was evaluated. An upland hydrological regime for the polluted sediment caused elevated Cd concentrations in leaves and cuttings for both species. Emergence and soil oxidation after initial submersion of a polluted sediment resulted in comparable foliar Cd and Zn concentrations for S. cinerea as for the constant upland treatment. The foliar Cd and Zn concentrations were clearly higher than for submerged soils after initial upland conditions. These results point at the importance of submergence-emergence sequence for plant metal availability. The addition of foliar-based organic matter or aluminosilicates to the polluted sediment-derived soil in upland conditions did not decrease Cd and Zn uptake by S. cinerea.  相似文献   

18.
Contaminant desorption constrains the long-term effectiveness of remediation technologies, and is strongly influenced by dynamic non-equilibrium states of environmental and biological media. Information is currently lacking in the influence of biochar and activated carbon amendments on desorption of heavy metal contaminants from soil components. In this study, copper sorption-desorption isotherms were obtained for clay-rich, alkaline San Joaquin soil with significant heavy metal sorption capacity, and eroded, acidic Norfolk sandy loam soil having low capacity to retain copper. Acidic pecan shell-derived activated carbon and basic broiler litter biochar were employed in desorption experiments designed to address both leaching by rainfall and toxicity characteristics. For desorption in synthetic rain water, broiler litter biochar amendment diminished sorption-desorption hysteresis. In acetate buffer (pH 4.9), significant copper leaching was observed, unless acidic activated carbon (pHpzc = 3.07) was present. Trends observed in soluble phosphorus and zinc concentrations for sorption and desorption equilibria suggested acid dissolution of particulate phases that can result in a concurrent release of copper and other sorbed elements. In contrast, sulfur and potassium became depleted as a result of supernatant replacements only when amended carbon (broiler litter biochar) or soil (San Joaquin) contained appreciable amounts. A positive correlation was observed between the equilibrium aluminum concentration and initial copper concentration in soils amended with acidic activated carbon but not basic biochar, suggesting the importance of cation exchange mechanism, while dissolution of aluminum oxides cannot be ruled out.  相似文献   

19.
The amendment of carbonaceous materials such as biochars and activated carbons is a promising in situ remediation strategy for both organic and inorganic contaminants in soils and sediments. Mechanistic understandings in sorption of heavy metals on amended soil are necessary for appropriate selection and application of carbonaceous materials for heavy metal sequestration in specific soil types. In this study, copper sorption isotherms were obtained for soils having distinct characteristics: clay-rich, alkaline San Joaquin soil with significant heavy metal sorption capacity, and eroded, acidic Norfolk sandy loam soil having low capacity to retain copper. The amendment of acidic pecan shell-derived activated carbon and basic broiler litter biochar lead to a greater enhancement of copper sorption in Norfolk soil than in San Joaquin soil. In Norfolk soil, the amendment of acidic activated carbon enhanced copper sorption primarily via cation exchange mechanism, i.e., release of proton, calcium, and aluminum, while acid dissolution of aluminum cannot be ruled out. For San Joaquin soil, enhanced copper retention by biochar amendment likely resulted from the following additional mechanisms: electrostatic interactions between copper and negatively charged soil and biochar surfaces, sorption on mineral (ash) components, complexation of copper by surface functional groups and delocalized π electrons of carbonaceous materials, and precipitation. Influence of biochar on the release of additional elements (e.g., Al, Ca) must be carefully considered when used as a soil amendment to sequester heavy metals.  相似文献   

20.
Zimmerman AR  Kang DH  Ahn MY  Hyun S  Banks MK 《Chemosphere》2008,70(6):1044-1051
Cyanide is commonly found as ferrocyanide [Fe(II)(CN)(6)](-4) and in the more mobile form, ferricyanide [Fe(III)(CN)(6)](-3) in contaminated soils and sediments. Although soil minerals may influence ferrocyanide speciation, and thus mobility, the possible influence of soil enzymes has not been examined. In a series of experiments conducted under a range of soil-like conditions, laccase, a phenoloxidase enzyme derived from the fungi Trametes versicolor, was found to exert a large influence on iron-cyanide speciation and mobility. In the presence of laccase, up to 93% of ferrocyanide (36-362ppm) was oxidized to ferricyanide within 4h. No significant effect of pH (3.6 and 6.2) or initial ferrocyanide concentration on the extent or rate of oxidation was found and ferrocyanide oxidation did not occur in the absence of laccase. Relative to iron-cyanide-mineral systems without laccase, ferrocyanide adsorption to aluminum hydroxide and montmorillonite decreased in the presence of laccase and was similar to or somewhat greater than that of ferricyanide without laccase. Laccase-catalyzed conversion of ferrocyanide to ferricyanide was extensive though up to 33% of the enzyme was mineral-bound. These results demonstrate that soil enzymes can play a major role in ferrocyanide speciation and mobility. Biotic soil components must be considered as highly effective oxidation catalysts that may alter the mobility of metals and metal complexes in soil. Immobilized enzymes should also be considered for use in soil metal remediation efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号