首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently, the concept of pollution-safe cultivars (PSCs) was proposed to minimize the influx of pollutants to the human food chain. Variations in lead (Pb) uptake and translocation among Chinese cabbage (Brassica pekinensis L.) cultivars were investigated in a pot-culture experiment and a field-culture experiment to screen out Pb-PSCs for food safety. The results of the pot-culture experiment showed that shoot Pb concentrations under two Pb treatments (500 and 1500 mg kg?1) varied significantly (p < 0.05) between cultivars, with average values of 3.01 and 6.87 mg kg?1, respectively. Enrichment factors (EFs) and translocation factors (TFs) in cultivars were less than 0.50 and varied significantly (p < 0.05) between cultivars. Shoot Pb concentrations in 12 cultivars under treatment T1 (500 mg kg?1) were lower than 2.0 mg kg?1. The field-culture experiment further confirmed Qiuao, Shiboqiukang and Fuxing 80 as Pb-PSCs, which were suitable to be cultivated in low-Pb (<382.25 mg kg?1) contaminated soils and harmless to human health as foods.  相似文献   

2.
This investigation deals with the characterization carried out in zones around two pipeline pumping stations and one pipeline right-of-way in the north of Mexico. In particular those areas where contamination was evaluated: (a) south area of the separation ditch in the Avalos station, (b) the area between the separation ditch at the Avalos station, (c) km 194 + 420 of the Moctuzma station, and (d) km 286 + 900 in the Candelaria station. Results of this investigation showed that only four samples showed TPH values higher than the Mexican limit for 2004: AVA 1B, with 21,191 mg kg?1; AVA 1C, with 9348 mg kg?1; AVA 2B, with 13,970 mg kg?1; and MOC 2A, with 4108 mg kg?1.None of the sampled points showed the presence of PAHs at values higher than those found in the Mexican or American legislations. PAH were detected in the range of 0.0004 and 13.05 mg kg?1.It is suggested to implement surfactant soil washing as a remediation technique for the approximately 600 m3 that need to be treated.  相似文献   

3.
Grassland vegetation can provide visual cover for terrestrial vertebrates. The most commonly used method to assess visual cover is the Robel pole. We test the use of digital photography as a more accurate and repeatable method. We assessed the digital photography method on four forage grassland species (Pseudoroegneria spicata, Festuca campestris, Poa pratensis, Achnatherum richardsonii). Digital photos of 2-dimensional cutout silhouettes of three bird species sharp-tailed grouse, western meadowlark and savannah sparrow were used to model the impact of clipping (i.e., grazing) on visual cover. In addition, photos of artificial voles were used to model litter on cover available to small mammals. Nine sites were sampled and data were analyzed by the dominant grass species in each study plot. Regression analysis showed that digital photos (r2 = 0.62) were a better predictor than the Robel pole (r2 = 0.26) for assessment of cover. Clipping heights showed that clipping at less than 15 cm left the silhouettes 50% exposed. Digital photo analysis revealed that visual cover was affected by the type of grass species, with F. campestris > P. pratensis > A. richardsonii > P. spicata. Biomass and litter were both positively related to cover for small mammals.  相似文献   

4.
Landfill leachate contains high concentrations of organic matter, color, heavy metals and toxic substances. This study presents the feasibility of a commercial nanofiltration membrane (NF-300) in the removal of pollutants from a landfill leachate generated from the Treatment Stabilization and Disposal Facility in Gujarat state of India. Two different leachate samples (Leachates A and B) were collected from the downstream side of closed landfill cells A and B. The average quality of the leachate was 67 719 mg/L COD, 217 mg/L ammonical nitrogen, 22 418 mg/L BOD, 3847 mg/L chlorides and 909 mg/L sulphate. The operating variables studied were applied pressure (4–20 atm), feed flowrate (5–15 L/min) and pH (2, 4, 5.5 and 6.7). It was observed that the solute rejection (RO) increased with increase in feed pressure and decreased with increase in feed concentration at constant feed flowrate. In the present study, the rejection of cations followed the sequence: RO (Cr3+) > RO (Ni2+) > RO (Zn2+) > RO (Cu2+) > RO (Cd2+) for leachates A and B. The order of solute rejection sequence is inversely proportional to the diffusion coefficients. The rejection of sulphate ions by the NF-300 membrane was 83 and 85%, while the rejection of chlorides was 62 and 65% for leachates A and B, respectively. The NF-300 membrane was characterized by using the combined-film theory-Spiegler–Kedem (CFSK) model based on irreversible thermodynamics and the ion transport model based on the extended Nernst–Planck equation. The membrane transport parameters were estimated using the Levenberg–Marquadt method. The estimated parameters were used to predict the membrane performance and the predicted values are in good agreement with the experimental results.  相似文献   

5.
The formulation and scale-up of batch processes is one of the major challenges in the development of pharmaceutical dosage forms and at the same time a significant resource demanding process which is generally overlooked in environmental sustainability assessments. First, this paper proposes general trends in the experience curve of cumulative resource consumption of pharmaceutical tablet manufacturing of PREZISTA® 800 mg through wet granulation (WG) at four consecutive scales in both R&D and manufacturing environments (resp. WG1 = 1 kg/h, WG5 = 5 kg/h, WG30 = 30 kg/h and WG240 = 240 kg/h). Second, the authors aim at evaluating the environmental impact from a life cycle perspective of a daily consumption of PREZISTA® 2× 400 mg tablets versus the bioequivalent PREZISTA® 800 mg tablet which was launched to enhance patient compliance. Environmental sustainability assessment was conducted at three different system boundaries, which enables identification, localization and eventually reduction of burdens, in this case natural resource extraction. Exergy Analysis (EA) was used at process level (α) and plant level (β) while a cradle-to-gate Exergetic Life Cycle Assessment (ELCA) was conducted at the overall industrial level (γ) by means of the CEENE method (Cumulative Exergy Extraction from the Natural Environment). Life cycle stages taken into account are Active Pharmaceutical Ingredient (API) production, Drug Product (DP) production and Packaging. At process level (α), the total resource extraction for the manufacturing of one daily dose of PREZISTA® (800 mg tablet) amounted up to 0.44 MJex at the smallest scale (WG1) while this amount proved to be reduced by 58%, 79% and 83% at WG5, WG30 and WG240 respectively. Expanding the boundaries to the overall industrial level (γ) reveals that the main resource demand is at the production of the Active Pharmaceutical Ingredient (API), excipients, packaging materials and cleaning media used in DP production. At the largest scale (WG240) the use of cleaning media during DP production contributes considerably less to the total resource extraction. Overall, the effect of scale-up and learning on resource consumption during DP production showed to possess a power-law experience curve y = 2.40 * x−0.57 when shifting from WG1 (smallest lab scale) to WG240 (industrial manufacturing). Tablet dosage (2× 400 mg versus 1× 800 mg) did not significantly affect the absolute environmental burden. However, the relative contribution of resource categories did change due to the different production technology. It could be concluded that in meeting social and economic demands by launching the PREZISTA® 800 mg tablet, no trade-off in environmental burden occurred. On the long term, future research should strive to take into account R&D processes and all services related to pipeline activities taking place prior to market launch and eventually to allocate impacts to the final product.  相似文献   

6.
Treatment of a basic dye, methylene blue, by electrochemical oxidation, fly ash adsorption, and combined electrochemical oxidation-fly ash adsorption was compared. Methylene blue at 100 mg L?1 was used in this study. The toxicity was also monitored by the Vibrio fischeri light inhibition test.When electrochemical oxidation was used, 99% color and 84% COD were removed from the methylene blue solution in 20 min at a current density of 428 A m?2, NaCl of 1000 mg L?1, and pH0 of 7. However, the decolorized solution showed high toxicity (100% light inhibition).For fly ash adsorption, a high dose of fly ash (>20,000 mg L?1) was needed to remove methylene blue, and the Freundlich isotherm described the adsorption behavior well.In the combined electrochemical oxidation-fly ash adsorption treatment, the addition of 4000 mg L?1 fly ash effectively reduced intermediate toxicity and decreased the COD of the electrochemical oxidation-treated methylene blue solution. The results indicated that the combined process effectively removed color, COD, and intermediate toxicity of the methylene blue solution.  相似文献   

7.
In this study the biosorption of Yellow RL, a metal-complex anionic dye, by dried Rhizopus arrhizus, a filamentous fungus, was investigated as a function of initial solution pH, initial dye concentration and initial salt (sodium chloride) concentration. The fungus exhibited the maximal dye uptake at pH 2 in the absence and in the presence of salt. Dye uptake increased with the dye concentration up to 1000 mg l?1 and diminished considerably in the presence of increasing concentrations of salt up to 50 g l?1. The fungus biosorbed 85.4 mg dye g?1of dried biomass at 100 mg l?1 initial dye concentration in the absence of salt. When 50 g l?1 salt was added to the biosorption medium, this value dropped to 60.8 mg g?1 resulting in 28.8% reduction in biosorption capacity. The Redlich–Peterson and Langmuir–Freundlich were the most suitable adsorption models for describing the biosorption equilibrium data of the dye both individually and in salt containing medium. The pseudo-second-order and saturation type kinetic models depicted the biosorption kinetics accurately for all cases studied. Equilibrium and kinetic constants varied with the level of salt were expressed as a function of salt concentration.  相似文献   

8.
This article examines the characteristics of and reasons for Norwegian farmers’ ceasing or planning to cease certified organic production. We gathered cross-sectional survey data in late 2007 from organic farmers deregistering between January 2004 and September 2007 (n = 220), and similar data from a random sample of farmers with certified organic management in 2006 (n = 407). Of the respondents deregistering by November 2007, 17% had quit farming altogether, 61% now farmed conventionally, and 21% were still farming by organic principles, but without certification. Nearly one in four organic farmers in 2007 indicated that they planned to cease certification within the next 5–10 years. From the two survey samples, we categorised farmers who expect to be deregistered in 5–10 years into three groups: conventional practices (n = 139), continuing to farm using organic principles (uncertified organic deregistrants, n = 105), and stopped farming (n = 33). Of the numerous differences among these groups, two were most striking: the superior sales of uncertified organic deregistrants through consumer-direct marketing and the lowest shares of organic land among conventional deregistrants. We summarised a large number of reasons for deregistering into five factors through factor analysis: economics, regulations, knowledge-exchange, production, and market access. Items relating to economics and regulations were the primary reasons offered for opting out. The regression analysis showed that the various factors were associated with several explanatory variables. Regulations, for example, figured more highly among livestock farmers than crop farmers. The economic factor strongly reflected just a few years of organic management. Policy recommendations for reducing the number of dropouts are to focus on economics, environmental attitudes, and the regulatory issues surrounding certified organic production.  相似文献   

9.
Studies of the kinetics of sulfur dioxide (SO2)- and oxygen (O2)-induced degradation of aqueous monoethanolamine (MEA) during the absorption of carbon dioxide (CO2) from flue gases derived from coal- or natural gas-fired power plants were conducted as a function of temperature and the liquid phase concentrations of MEA, O2, SO2 and CO2. The kinetic data were based on the initial rate which shows the propensity for amine degradation and obtained under a range of conditions typical of the CO2 absorption process (3–7 kmol/m3 MEA, 6% O2, 0–196 ppm SO2, 0–0.55 CO2 loading, and 328–393 K temperature). The results showed that an increase in temperature and the concentrations of MEA, O2 and SO2 resulted in a higher MEA degradation rate. An increase in CO2 concentration gave the opposite effect. A semi-empirical model based on the initial rate, ?rMEA = {6.74 × 109 e?(29,403/RT)[MEA]0.02([O]2.91 + [SO2]3.52)}/{1 + 1.18[CO2]0.18} was developed to fit the experimental data. With the higher order of reaction, SO2 has a higher propensity to cause MEA to degrade than O2. Unlike previous models, this model shows an improvement in that any of the parameters (i.e. O2, SO2, and CO2) can be removed without affecting the usability of the model.  相似文献   

10.
Fenton oxidation pretreatment was investigated for enhancement of biodegradability of wastewater sludge (WWS) which was subsequently used as substrate for the production of value- added products. The Response surface method with fractional factorial and central composite designs was applied to determine the effects of Fenton parameters on solubilization and biodegradability of sludge and the optimization of the Fenton process. Maximum solubilization and biodegradability were obtained as 70% and 74%, respectively at the optimal conditions: 0.01 ml H2O2/g SS, 150 [H2O2]0/[Fe2+]0, 25 g/L TS, at 25 °C and 60 min duration. Further, these optimal conditions were tested for the production of a value added product, Bacillus thuringiensis (Bt) which is being used as a biopesticide in the agriculture and forestry sector. It was observed that Bt growth using Fenton oxidized sludge as a substrate was improved with a maximum total cell count of 1.63 × 109 CFU ml?1 and 96% sporulation after 48 h of fermentation. The results were also tested against ultrasonication treatment and the total cell count was found to be 4.08 × 108 CFU ml?1 with a sporulation of 90%. Hence, classic Fenton oxidation was demonstrated to be a rather more promising chemical pre-treatment for Bt - based biopesticide production using WWS when compared to ultrasonication as a physical pre-treatment.  相似文献   

11.
Using a combination of experimental (petrophysical and mineralogical) methods, the effects of high-pressure CO2 exposure on fluid transport properties and mineralogical composition of two pelitic caprocks, a limestone and a clay-rich marl lithotype have been studied. Single and multiphase permeability tests, gas breakthrough and diffusion experiments were conducted under in situ p/T conditions on cylindrical plugs (28.5 mm diameter, 10–20 mm thickness).The capillary CO2 sealing efficiency of the initially water-saturated sample plugs was found to decrease in repetitive gas breakthrough experiments on the same sample from 0.74 to 0.41 MPa for the limestone and from 0.64 to 0.43 MPa for the marl. Helium breakthrough experiments before and after the CO2 tests showed a decrease in capillary threshold (snap-off) pressure from 1.81 to 0.62 MPa for the limestone.Repetitive CO2 diffusion experiments on the marlstone revealed an increase in the effective diffusion coefficient from 7.8 × 10?11 to 1.2 × 10?10 m2.Single-phase (water) permeability coefficients derived from steady-state permeability tests ranged between 7 and 56 nano-Darcy and showed a consistent increase after each CO2 test cycle. Effective gas permeabilities were generally one order of magnitude lower than water permeabilities and exhibit the same trend. XRD measurements performed before and after exposure to CO2 did not reveal any distinct change in the mineral composition for both samples. Similarly, no significant changes were observed in specific surface areas (determined by BET) and pore-size distributions (determined by mercury injection porosimetry). High-pressure CO2 sorption experiments on powdered samples revealed significant CO2 sorption capacities of 0.27 and 0.14 mmol/g for the marlstone and the limestone, respectively.The changes in transport parameters in the absence of detectable mineral alterations may be explained by carbonate dissolution and further precipitation along a pH profile across the sample plug which would not be subject to quantitative mineral alteration.  相似文献   

12.
Research on biofuel production pathways from algae continues because among other potential advantages they avoid key consequential effects of terrestrial oil crops, such as competition for cropland. However, the economics, energetic balance, and climate change emissions from algal biofuels pathways do not always show great potential, due in part to high fertilizer demand. Nutrient recycling from algal biomass residue is likely to be essential for reducing the environmental impacts and cost associated with algae-derived fuels. After a review of available technologies, anaerobic digestion (AD) and hydrothermal liquefaction (HTL) were selected and compared on their nutrient recycling and energy recovery potential for lipid-extracted algal biomass using the microalgae strain Scenedesmus dimorphus. For 1 kg (dry weight) of algae cultivated in an open raceway pond, 40.7 g N and 3.8 g P can be recycled through AD, while 26.0 g N and 6.8 g P can be recycled through HTL. In terms of energy production, 2.49 MJ heat and 2.61 MJ electricity are generated from AD biogas combustion to meet production system demands, while 3.30 MJ heat and 0.95 MJ electricity from HTL products are generated and used within the production system.Assuming recycled nutrient products from AD or HTL technologies displace demand for synthetic fertilizers, and energy products displace natural gas and electricity, the life cycle greenhouse gas reduction achieved by adding AD to the simulated algal oil production system is between 622 and 808 g carbon dioxide equivalent (CO2e)/kg biomass depending on substitution assumptions, while the life cycle GHG reduction achieved by HTL is between 513 and 535 g CO2e/kg biomass depending on substitution assumptions. Based on the effectiveness of nutrient recycling and energy recovery, as well as technology maturity, AD appears to perform better than HTL as a nutrient and energy recycling technology in algae oil production systems.  相似文献   

13.
An understanding of flood impact in terms of sustainability is vital for long-term disaster risk reduction. This paper utilizes two important concepts: conventional insurance related flood risk for short-term damage by specific flood events, and long-term flood impact on sustainability. The Insurance Related Flood Risk index, IRFR, is defined as the product of the Flood Hazard Index (FHI) and Vulnerability. The Long-term Flood Impact on Sustainability index, LFIS, is the ratio of the flood hazard index to the Sustainable Development Index (SDI). Using a rapid assessment approach, quantitative assessments of IRFR and LFIS are carried out for 2339 counties and cities in mainland China. Each index is graded from ‘very low’ to ‘very high’ according to the eigenvalue magnitude of cluster centroids. By combining grades of FHI and SDI, mainland China is then classified into four zones in order to identify regional variations in the potential linkage between flood hazard and sustainability. Zone I regions, where FHI is graded ‘very low’ or ‘low’ and SDI is ‘medium’ to ‘very high’, are mainly located in western China. Zone II regions, where FHI and SDI are ‘medium’ or ‘high’, occur in the rapidly developing areas of central and eastern China. Zone III regions, where FHI and SDI are ‘very low’ or ‘low’, correspond to the resource-based areas of western and north-central China. Zone IV regions, where FHI is ‘medium’ to ‘very high’ and SDI is ‘very low’ to ‘low’, occur in ecologically fragile areas of south-western China. The paper also examines the distributions of IRFR and LFIS throughout mainland China. Although 57% of the counties and cities have low IRFR values, 64% have high LFIS values. The modal values of LFIS are ordered as Zone I < Zone II ≈ Zone III < Zone IV; whereas the modal values of IRFR are ordered as Zone I < Zone III < Zone IV < Zone II. It is recommended that present flood risk policies be altered towards a more sustainable flood risk management strategy in areas where LFIS and IRFR vary significantly, with particular attention focused on Zone IV regions, which presently experience poverty and a deteriorating eco-system.  相似文献   

14.
The destruction of antibiotic-resistant microorganisms at the source of contamination is necessary due to their adverse effects and to their increasingly widespread occurrence in the environment. To address this problem, Fenton and ozone oxidation processes were applied to synthetically contaminated cow manure to remove the tetM gene and its host, Escherichia coli HB101. The efficiency of the processes was evaluated by enumeration of E. coli HB101 and by PCR amplification of the tetM gene. The results of this study show that 56.60% bacterial inactivation (corresponding to a 0.36 log reduction) was achieved by a Fenton reagent dose of 50 mM H2O2 and 5 mM Fe2+ without acidifying the manure. Despite the high organic content of cow manure, 98.50% bacterial inactivation (corresponding to a 1.83 log reduction) was obtained by the ozonation process with an applied dose of 3.125 mg ozone/g manure slurry. The PCR study revealed that the band intensity of the tetM gene gradually decreased by increasing the Fenton reagent and the applied ozone dose. However, significantly high doses of oxidants would be required to completely eliminate bacterial pollution in manure.  相似文献   

15.
Use of anionic polyacrylamide (PAM) to control phosphorus (P) losses from a Chinese purple soil was studied in both a laboratory soil column experiment and a field plot experiment on a steep slope (27%). Treatments in the column study were a control, and PAM mixed uniformly into the soil at rates of 0.02, 0.05, 0.08, 0.10, and 0.20%. We found that PAM had an important inhibitory effect on vertical P transport in the soil columns, with the 0.20% PAM treatment having the greatest significant reduction in leachate soluble P concentrations and losses resulting from nine leaching periods. Field experiments were conducted on 5 m wide by 21 m long natural rainfall plots, that allowed collection of both surface runoff and subsurface drainage water. Wheat was planted and grown on all plots with typical fertilizer applied. Treatments included a control, dry PAM at 3.9 kg ha?1, dry PAM at 3.9 kg ha?1 applied together with lime (CaCO3 at 4.9 t ha?1), and dry PAM at 3.9 kg ha?1 applied together with gypsum (CaSO4·2H2O at 4 t ha?1). Results from the field plot experiment in which 5 rainfall events resulted in measurable runoff and leachate showed that all PAM treatments significantly reduced runoff volume and total P losses in surface runoff compared to the control. The PAM treatments also all significantly reduced water volume leached to the tile drain. However, total P losses in the leachate water were not significantly different due to the treatments, perhaps due to the low PAM soil surface application rate and/or high experimental variability. The PAM alone treatment resulted in the greatest wheat growth as indicated by the plant growth indexes of wheat plant height, leaf length, leaf width, grain number per head, and dried grain mass. Growth indexes of the PAM with Calcium treatments were significantly lesser. These results indicate that the selection and use of soil amendments need to be carefully determined based upon the most important management goal at a particular site (runoff/nutrient loss control, enhanced plant growth, or a combination).  相似文献   

16.
A laboratory study was conducted to investigate the efficiency of hydroxyapatite (HAP) towards removal of nitrate from synthetic nitrate solution. In the present research HAP synthesized from egg-shell was characterized using SEM, XRD, FTIR and TGA–DSC. The removal of nitrate was 96% under neutral conditions, using 0.3 g of adsorbent in 100 mL of nitrate solution having an initial concentration of 100 mg/L. An adsorption kinetic study revealed that the adsorption process followed first order kinetics. Adsorption data were fitted to a linearly transformed Langmuir isotherm with correlation coefficient (R2) > 0.98. Thermodynamic parameters were also calculated to study the effect of temperature on the removal process. In order to understand the adsorption type, equilibrium data were tested with the Dubinin–Radushkevich isotherm. The process was rapid and equilibrium was established within the first 40 min.  相似文献   

17.
In order to develop subsurface CO2 storage as a viable engineered mechanism to reduce the emission of CO2 into the atmosphere, any potential leakage of injected supercritical CO2 (SC-CO2) from the deep subsurface to the atmosphere must be reduced. Here, we investigate the utility of biofilms, which are microorganism assemblages firmly attached to a surface, as a means of reducing the permeability of deep subsurface porous geological matrices under high pressure and in the presence of SC-CO2, using a unique high pressure (8.9 MPa), moderate temperature (32 °C) flow reactor containing 40 millidarcy Berea sandstone cores. The flow reactor containing the sandstone core was inoculated with the biofilm forming organism Shewanella fridgidimarina. Electron microscopy of the rock core revealed substantial biofilm growth and accumulation under high-pressure conditions in the rock pore space which caused >95% reduction in core permeability. Permeability increased only slightly in response to SC-CO2 challenges of up to 71 h and starvation for up to 363 h in length. Viable population assays of microorganisms in the effluent indicated survival of the cells following SC-CO2 challenges and starvation, although S. fridgidimarina was succeeded by Bacillus mojavensis and Citrobacter sp. which were native in the core. These observations suggest that engineered biofilm barriers may be used to enhance the geologic sequestration of atmospheric CO2.  相似文献   

18.
Soil organic carbon (SOC) is one of the most important carbon stocks globally and has large potential to affect global climate. Distribution patterns of SOC in Denmark constitute a nation-wide baseline for studies on soil carbon changes (with respect to Kyoto protocol). This paper predicts and maps the geographic distribution of SOC across Denmark using remote sensing (RS), geographic information systems (GISs) and decision-tree modeling (un-pruned and pruned classification trees). Seventeen parameters, i.e. parent material, soil type, landscape type, elevation, slope gradient, slope aspect, mean curvature, plan curvature, profile curvature, flow accumulation, specific catchment area, tangent slope, tangent curvature, steady-state wetness index, Normalized Difference Vegetation Index (NDVI), Normalized Difference Wetness Index (NDWI) and Soil Color Index (SCI) were generated to statistically explain SOC field measurements in the area of interest (Denmark). A large number of tree-based classification models (588) were developed using (i) all of the parameters, (ii) all Digital Elevation Model (DEM) parameters only, (iii) the primary DEM parameters only, (iv), the remote sensing (RS) indices only, (v) selected pairs of parameters, (vi) soil type, parent material and landscape type only, and (vii) the parameters having a high impact on SOC distribution in built pruned trees. The best constructed classification tree models (in the number of three) with the lowest misclassification error (ME) and the lowest number of nodes (N) as well are: (i) the tree (T1) combining all of the parameters (ME = 29.5%; N = 54); (ii) the tree (T2) based on the parent material, soil type and landscape type (ME = 31.5%; N = 14); and (iii) the tree (T3) constructed using parent material, soil type, landscape type, elevation, tangent slope and SCI (ME = 30%; N = 39). The produced SOC maps at 1:50,000 cartographic scale using these trees are highly matching with coincidence values equal to 90.5% (Map T1/Map T2), 95% (Map T1/Map T3) and 91% (Map T2/Map T3). The overall accuracies of these maps once compared with field observations were estimated to be 69.54% (Map T1), 68.87% (Map T2) and 69.41% (Map T3). The proposed tree models are relatively simple, and may be also applied to other areas.  相似文献   

19.
The European Union has set ambitious objectives for the recovery rates of end-of life vehicles (ELVs). The directive 2000/53/CE (DIR, 2000) states that by 1st January 2015 at least 95% of the mass of an ELV must be reused and recovered, of which a maximum of 10% should be in the form of energy.In order to identify the key factors for improving the rate of material reuse, recycling and recovery of ELVs, ACYCLEA (PRAXY group) launched the “OPTIVAL VHU (ELV)” research program in collaboration with INSA Lyon in 2009. Three experimental campaigns were conducted on the industrial site of ACYCLEA to compare different scenarios of deconstruction. The campaigns were done on samples of 90 ELVs. The average mass (MELV) and age were estimated at 989 kg/ELV and 14 years, respectively. This article presents the results concerning the material balances of the successive operations. The contribution of each stage of the treatment (namely (i) depollution, (ii) deconstruction, and (iii) shredding and sorting operations) to the rate of recycling, reuse and recovery was calculated.Results showed firstly that the contribution of the operations of depollution was low (3.6 ± 0.1% of the mass of vehicles). The contribution of the operations of deconstruction was higher and increased logically with the degree of deconstruction. It ranged from 5% of MELV for the minimal level of deconstruction (campaign 1) to almost 10% with the highest level of deconstruction (campaign 3). The specific contribution of the operations of deconstruction to the rate of metal recycling was found to be quite low however, in the range of 2.6–2.8% of MELV, Shredding and post-shredding sorting operations enabled the recovery of the largest amounts of recyclable materials but no significant differences were observed between the overall recovery rates in the three campaigns (results ranged from 67 to 70% of MELV). Differences were observed however, for specific fractions such as the automotive shredder residues whose recovery rate was 16.3 ± 0.7%, 13.0 ± 0.5%, and 12.8 ± 0.2% for campaigns 1, 2 and 3, respectively. A larger production of non-ferromagnetic fraction was also observed in campaign 3, probably due to the extraction of the textiles during the dismantling operations which improved the efficiency of post-shredding sorting operations.The highest overall rate of reuse, recycling and energy recovery obtained in this study with the most rigorous approach was 81.5 ± 0.6% of the average mass of the ELV even with the highest level of deconstruction. It therefore appears that the European regulatory target of 95% would be difficult to achieve in 2015, except with a much greater optimization of the sorting technologies and the development of recycling processes.  相似文献   

20.
Chemical-Looping Combustion (CLC) is an emerging technology for CO2 capture because separation of this gas from the other flue gas components is inherent to the process and thus no energy is expended for the separation. Natural or refinery gas can be used as gaseous fuels and they may contain different amounts of light hydrocarbons. This paper presents the combustion results obtained with a Cu-based oxygen carrier using mixtures of CH4 and light hydrocarbons (LHC) (C2H6 and C3H8) as fuel. The effect on combustion efficiency of the fuel reactor temperature, solid circulation flow rate and gas composition was studied in a continuous CLC plant (500 Wth). Full combustions were reached at 1073 and 1153 K working at oxygen to fuel ratios, ? higher than 1.5 and 1.2 respectively. Unburnt hydrocarbons were never detected at any experimental conditions at the fuel reactor outlet. Carbon formation can be avoided working at 1153 K or at ? values higher than 1.5 at 1073 K. After 30 h of continuous operation, the oxygen carrier exhibited an adequate behavior regarding attrition and agglomeration. It can be concluded that no special measures should be taken in a CLC process with Cu-based OC with respect to the presence of LHC in the fuel gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号