首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The main objective of the present study was to determine the optimum C/N ratio for converting waste paper and chicken manure to nutrient-rich manure with minimum toxicity. Six treatments of C/N ratio 20, 30, 40, 50, 60, and 70 (T1, T2, T3, T4, T5, and T6, respectively) achieved by mixing chicken manure with shredded paper were used. The study involved a composting stage for 20 days followed by vermicomposting with Eisenia fetida for 7 weeks. The results revealed that 20 days of composting considerably degraded the organic waste mixtures from all treatments and a further 7 weeks of vermiculture significantly improved the bioconversion and nutrient value of all treatments. The C/N ratio of 40 (T3) resulted in the best quality vermicompost compared to the other treatments. Earthworm biomass was highest at T3 and T4 possibly due to a greater reduction of toxic substances in these waste mixtures. The total N, total P, and total K concentrations increased with time while total carbon, C/N ratio, electrical conductivity (EC), and heavy metal content gradually decreased with time during the vermicomposting process. Scanning electron microscopy (SEM) revealed the intrastructural degradation of the chicken manure and shredded paper matrix which confirmed the extent of biodegradation of treatment mixtures as result of the composting and vermicomposting processes. Phytotoxicity evaluation of final vermicomposts using tomato (Lycopersicon esculentum), radish (Raphanus sativus), carrot (Daucus carota), and onion (Allium cepa) as test crops showed the non-phytotoxicity of the vermicomposts to be in the order T3 > T4 > T2 > T1 > T5 > T6. Generally, the results indicated that the combination of composting and vermicomposting processes is a good strategy for the management of chicken manure/paper waste mixtures and that the ideal C/N ratio of the waste mixture is 40 (T3).  相似文献   

2.
磷酸铵镁沉淀法预处理垃圾渗滤液   总被引:1,自引:0,他引:1  
探讨了用磷酸铵镁沉淀法预处理垃圾渗滤液时,沉淀剂种类、pH值、物质摩尔配比和反应时间等因素对氨氮去除效果的影响。得出了处理氨氮浓度为2 677.34 mg/L的垃圾渗滤液时,在兼顾所用镁盐量尽量低和处理出水氨氮或磷酸盐的残留量都比较低的较佳实验条件为:沉淀剂种类为:MgSO4.7H2O和Na2HPO4.12H2O,反应时间为20 min,pH=9.5,n(Mg)∶n(P)∶n(N)=1.3∶1.15∶1.0。在较佳实验条件下,垃圾渗滤液的NH3-N去除率为97.05%,处理出水PO34--P含量为8.35 mg/L,NH3-N含量为75.86 mg/L。对所得沉淀物进行了成分分析和X-衍射光谱、扫描电镜表征,表明大部分沉淀物为磷酸铵镁物质。  相似文献   

3.
黄姜纤维素渣固态发酵生产蛋白饲料   总被引:1,自引:0,他引:1  
利用酵母菌和黑曲霉对黄姜纤维素渣进行固态发酵生产蛋白饲料。研究了接种量、温度、固液比、发酵时间和通风量对发酵的影响。同时在单菌种发酵的基础上,对酵母菌和黑曲霉的混合发酵进行了初步探索,研究结果表明,混菌发酵的实验效果比单菌发酵的效果好。当条件为:黄姜纤维素渣25 g,加入脲0.53 g,KH2PO40.05 g,K2HPO40.05 g,Mg-SO40.05 g,NaCl 0.05 g,CaCl20.01 g,接种量为14%,温度30℃,固液比2∶1,发酵产物的蛋白质量分数可达到13.98%。  相似文献   

4.
有机固体废物堆肥化处理的微生物学机理研究   总被引:9,自引:0,他引:9  
由于符合持续发展的理念 ,利用微生物技术处理有机固体废物越来越受到人们的重视 ,其核心问题则是木质纤维素的生物降解。随着园林废物等高木质纤维素含量的城市生活垃圾的不断增加 ,以及对农业固体废物和食品工业废物再利用的需要 ,这一领域的研究取得了很大的进展。在研究中 ,针对好氧堆肥和厌氧发酵 2项主要的微生物处理技术 ,对其优势微生物菌群、不同降解底物和微生物降解动力学方面的最新研究进展进行了回顾和总结 ,并对环境微生物制剂的应用以及有机固体废物的微生物处理技术的发展做了合理的展望。  相似文献   

5.
Three blends formed by: (i) food processing waste (CP(FP)), (ii) waste water sewage sludge (CP(WW)), and (iii) their mixture (CP(FP+WW)), blended with tree pruning as bulking agent, were composted over 3 months. During composting the blends were monitored for the main physical-chemical characteristics: temperature, oxygen saturation level (O(2)%), pH, total and volatile solids, total organic carbon, and organic nitrogen (N(org)). In addition to the main parameters, the dissolved organic carbon (DOC), the inorganic nitrogen and the Oxygen Uptake Rate (OUR) were monitored. All the mixtures easily reached a peak temperature around 70°C, related to the lowest O(2)%. After 90 d, CP(FP), CP(FP+WW), and CP(WW) showed an organic matter mineralization of 43%, 35% and 33%, respectively; CP(FP) fitted an exponential model while both CP(FP+WW), and CP(WW) fitted a logistic model. During composting an OUR reduction of 79%, 78% and 73% was registered in CP(FP), CP(FP+WW), and CP(WW), respectively; the OUR successfully fitted the adopted exponential model and well reflected the stabilization process in time. The N(org) recovery at the end of the process was positive only in CP(WW) (11.6%). The DOC significantly decreased during the composting process but did not successfully fit any model. The mineral nitrogen did not follow the typical pattern with NH(4)(+) disappearance and NO(3)(-) accumulation. Strong NO(3)(-) losses were evident in all blends, while NH(4)(+) accumulations were detectable only in CP(FP), and CP(FP+WW). The NH(4)(+)/NO(3)(-) ratio did not satisfactorily reflect the composting process over time. The comparison of the first order (exponential) and logistic (sigmoidal) models applied to the OUR and OM course highlights the role of mineral nitrogen as limiting factor during composting of the more stabilized sludge.  相似文献   

6.
Leachate samples with a high strength of ammonium-nitrogen (NH4+-N) were collected from a local landfill site in Hong Kong. Two experiments were carried out to study (1) the inhibition of microbial activity of activated sludge by NH4+-N and (2) the chemical precipitation of NH4+-N from leachate as a preliminary treatment prior to the activated sludge process. The experimental results demonstrated that the efficiency of COD removal decreased from 97.7% to 78.1%, and the dehydrogenase activity of activated sludge decreased from 9.29 to 4.93 microg TF/mg MLSS, respectively, when the NH4+-N concentration increased from 53 to 800 mg/l. The experiment also demonstrated that the NH4+-N in the leachate can be quickly precipitated as MgNH4PO4 x 6H2O after addition of MgCl2 x 6H2O + Na2HPO4 x 12H2O. The NH4+-N concentration was reduced from 5618 to 112 mg/l within 15 min when a molar ratio of Mg2+:NH+:PO4(3-) = 1:1:1 was used. The optimum pH to reach the minimum solubility of MgNH4PO4 x 6H2O was found to be in the range of 8.5-9.0. Attention should be given to the high salinity formed in the treated leachate by using MgCl2 x 6H2O + Na2HPO4 x 12H2O, which may affect microbial activity in the following biological treatment processes. Using two other combinations of chemicals [MgO + 85%H3PO4 and Ca(H2PO4)2 x H2O + MgSO4 x 7H2O] could minimise salinity generation after precipitation, while they were less efficient for NH4+-N removal.  相似文献   

7.
Fate of nitrogen during composting of chicken litter   总被引:25,自引:0,他引:25  
Chicken litter (a mixture of chicken manure, wood shavings, waste feed, and feathers) was composted in forced-aeration piles to understand the changes and losses of nitrogen (N) during composting. During the composting process, the chemical [different N fractions, organic matter (OM), organic carbon (C), and C:N ratio], physical, and microbial properties of the chicken litter were examined. Cumulative losses and mass balances of N and organic matter were also quantified to determine actual losses during composting. The changes in total N concentration of the chicken litter piles were essentially equal to those of the organic N. The inorganic N concentrations were low, and that organic N was the major nitrogenous constituent. The ammonium (NH(4)(+))-N concentration decreased dramatically during first 35 days of composting. However, the rapid decrease in NH(4)(+)-N during composting did not coincide with a rapid increase in (NO(3)(-)+NO(2)(-))-N concentration. The concentration of (NO(3)(-)+NO(2)(-))-N was very low (<0.5 g kg(-1)) at day 0, and this level remained unchanged during the first 35 days of composting suggesting that N was lost during composting. Losses of N in this composting process were governed mainly by volatilization of ammonia (NH(3)) as the pile temperatures were high and the pH values were above 7. The narrow C:N ratio (<20:1) have also contributed to losses of N in the chicken litter. The OM and total organic C mass decreased with composting time. About 42 kg of the organic C was converted to CO(2). On the other hand, 18 kg was lost during composting. This loss was more than half (59%) of the initial N mass of the piles. Such a finding demonstrates that composting reduced the value of the chicken litter as N fertilizer. However, the composted chicken contained a more humified (stabilized) OM compared with the uncomposted chicken litter, which would enhance its value as a soil conditioner.  相似文献   

8.
In this study, we have examined the effects of synthetic medium ingredients and culture incubation conditions on growth and tributyltin chloride (TBT) degradation activity of the fungus Cunninghamella elegans. The best efficiency of TBT conversion to less toxic derivatives: dibutyltin and monobutyltin was noticed on media which contained glucose, NH(4)Cl, K(2)HPO(4) and MgSO(4). Next, the constructed M3 medium (with the above components) ensured vigorous growth of C. elegans and allowed the reduction of 80% of the initial TBT content (10 mg l(-1)), after 3d of biodegradation. The further acceleration of the biocide utilization by C. elegans was achieved by additional oxygen supply (pO(2) >or = 20%) to the growing fungus (89% after 2d of incubation in the BioFlo II bioreactor). The efficient xenobiotic biodegradation was related to the intensity of fungal growth. The obtained results suggest a cometabolic nature of TBT utilization by C. elegans.  相似文献   

9.
The main objectives of this study were to investigate the compostability of wastewater treatment sludge (WTS) containing different bulking agents (BAs) and to determine the most efficient BA. Four different compost trials consisting of mixtures of wheat straw (WS), plane leaf (PL), corncob (CC) and sunflower stalk (SS) with WTS were performed in laboratory reactors. In all experiments, a mixture of 60% WTS and 40% BA (wet basis) was used. The temperature, dry matter (DM), organic matter (OM), pH, electrical conductivity (EC) and C/N ratio were monitored during the composting process. Evaluation of the operational parameters showed that the highest organic matter degradation (i.e. 37.6%), loss of dry matter (i.e. 29.6%) and temperature (i.e. 64 °C) were achieved for the WTS-CC mixtures. Results also showed that the WTS-SS mixture was also successful in terms of these operational parameters. Use of bulking agents for the treatment of wastewater treatment sludge in composting process is an important issue with regards to process efficiency, economy and disposal of agricultural waste. Corncob and sunflower stalk that were previously not used for the composting of WTS from food industry were shown to be highly successful BA materials in this study.

Implications: The compostability of wastewater treatment sludge from the food industry with different bulking agents was studied. Wheat straw, plane leaf, corncob, and sunflower stalk were used as bulking agents. The required microbial stabilization and degree of mineralization were achieved with corncobs and sunflower stalks.  相似文献   


10.
添加氮损失抑制剂对蓝藻泥堆肥质量的影响   总被引:1,自引:0,他引:1  
对脱水蓝藻进行大型生产性堆肥实验。研究堆肥过程中,氮损失抑制剂过磷酸钙的添加对堆肥物料各类理化性质的影响。研究结果表明,过磷酸钙加入的处理组与未加过磷酸钙的对照组堆制37 d后堆肥物料均可腐熟,且堆肥肥效均符合NY525-2002的相关要求。添加过磷酸钙处理组有机质含量为490 g/kg,全N、全P和全K含量分别为20.75、10.02和11.32 g/kg,总养分含量达到9.77%,堆肥品质明显优于对照处理。同时,在微生物的作用下,对照组中微囊藻毒素MC-RR与微囊藻毒素MC-LR去除率分别达到89.8%与78.3%。值得一提的是,添加过磷酸钙后,MC-RR和MC-LR的去除率得到进一步提高,分别达到了92.96%和100%,较好地保证了蓝藻堆肥农用的安全性,为脱水蓝藻好氧堆肥化提供了可行性依据。  相似文献   

11.
A lab-scale composting experiment was carried out using vegetable and flower stalks waste to study the effectiveness of ligno-cellulolytic microorganisms (LCMs) obtained from the previous isolation on composting process, especially on enhancement of biodegradation rate of these organic materials. The addition of LCMs to compost showed promised to be a valuable asset by rendering timely benefits in efficiency, maturity, and quality of the composting. This was evidenced by a significant increase of temperature, O2 consumption and CO2 emission, and population density of LCMs in compost mass compared with that of biotic (addition of culture of horse feces) and abiotic (1% molasses amendment) treatments, as well as control trial. The phytotoxicity assay showed that the substrate became mature after 60 days' composting. The LCMs inoculation enhanced the biodegradation of the composting materials as evidenced by an increasing screening ratio (1.2 cm sieve pore) of 34.5% in the treated trail, compared with that of control, which elucidated that big advantage of adding selected inoculants over other treatment, and screening ratio is a reasonable index to compare the quality of different compost. However, the inoculation seemed to have no significant effect on the moisture content, pH, and the final organic carbon of the composting materials.  相似文献   

12.
In this work the carbon biodegradation of exhausted grape marc (EGM) combined with other organic wastes using the turned pile composting system was studied. Four different piles were made of EGM in Pile 1, EGM mixed with cow manure and straw (CMS) in Pile 2, EGM mixed with municipal solid waste (MSW) in Pile 3 and EGM mixed with grape stalks (GS) in Pile 4. The results obtained were modelled to determine the main kinetic and stoichiometric parameters. Regarding to the rate constants of the composting processes they were increased from 0.033d(-1), the value obtained when EGM was composted alone, to 0.040 and 0.044d(-1) when MSW and GS were added, respectively as co-substrates. However, the addition of CMS reduced the rate constant. About the biodegradable carbon fractions, it was observed that the co-composting reduced significantly the remanent carbon concentration after composting in all the piles whilst increased the readily biodegradable carbon fractions from 35, the value obtained when EGM was composted alone, to 50 and 60%, respectively when MSW or GS were added. As regards the temperature profiles, only Piles 1 and 4 achieved thermal hygienization values and about the nitrogen losses, the lowest percentage of nitrogen loss took place when GS were added, because of its optimum pH and C/N initial ratio. Thus, though any of these wastes could be used for co-composting with EGM, the use of GS as co-substrate and bulking agent for the co-composting process of EGM was recommended.  相似文献   

13.
Abstract

A lab-scale composting experiment was carried out using vegetable and flower stalks waste to study the effectiveness of ligno-cellulolytic microorganisms (LCMs) obtained from the previous isolation on composting process, especially on enhancement of biodegradation rate of these organic materials. The addition of LCMs to compost showed promised to be a valuable asset by rendering timely benefits in efficiency, maturity, and quality of the composting. This was evidenced by a significant increase of temperature, O2 consumption and CO2 emission, and population density of LCMs in compost mass compared with that of biotic (addition of culture of horse feces) and abiotic (1% molasses amendment) treatments, as well as control trial. The phytotoxicity assay showed that the substrate became mature after 60 days’ composting. The LCMs inoculation enhanced the biodegradation of the composting materials as evidenced by an increasing screening ratio (1.2 cm sieve pore) of 34.5% in the treated trail, compared with that of control, which elucidated that big advantage of adding selected inoculants over other treatment, and screening ratio is a reasonable index to compare the quality of different compost. However, the inoculation seemed to have no significant effect on the moisture content, pH, and the final organic carbon of the composting materials.  相似文献   

14.
通过在高温好氧堆肥中分别添加VT菌剂和有机物料腐熟剂,研究接种3%o的VT菌剂和有机物料腐熟剂促进堆肥的作用效果。结果表明,接种VT菌剂的处理与空白和接种有机物料腐熟剂的处理相比,堆肥初期升温更快;高温期更长;堆肥结束时,C/N降低的多,NO3-N增加的多,NH4-N挥发的少,接种VT菌剂和VT有机物料腐熟剂都可促进有机质的充分降解,缩短堆肥时间,加快堆肥腐熟,提高堆肥肥力。  相似文献   

15.
A laboratory method is presented for investigating the biodegradation of an organic test material in an aerobic composting system based on the evolution of carbon dioxide. In addition to carbon conversion, biodegradation can also be monitored through weight loss and physical disintegration. The test method is different from other biodegradation tests, especially aquatic tests, because of the elevated temperature representative for real composting conditions and also because of enhanced fungal degradation activities. A ring test was run using paper and poly-β-hydroxybutyrate/valerate as test materials and cellulose powder as a reference material. The test results and the experience gained by the participants showed that the method is suitable and practicable. Experience with real technical-scale composting facilities confirms that the method provides test results of high predictive value. The test is designed to become a European Standard in connection with determining the compostability of packagings and packaging materials.  相似文献   

16.
Xi BD  He XS  Wei ZM  Jiang YH  Li MX  Li D  Li Y  Dang QL 《Chemosphere》2012,88(6):744-750
Four types of inoculation methods were studied during the composting of municipal solid wastes and dry grass (MSWG). The methods included a control group as well as initial-stage, two-stage, and multi-stage inoculations. Fulvic acids were extracted from the composting materials and characterized by spectroscopic techniques. The results showed that inoculation of microbes in MSWG enhanced the biodegradation of aliphatics, proteins, and polysaccharides. The inoculation also increased the molecular weight, humic- and fulvic-like compound content, as well as humification degree of the composting products. The inoculation of microbes in MSWG significantly improved composting process and efficiency. The improvement efficiency was in the order of initial-stage < two-stage < multi-stage inoculations. Inoculation of microbes based on composting organic matter composition and temperature enhanced composting efficiency.  相似文献   

17.
18.
The purpose of this research was to shorten the composting period by speeding up the composting process and to obtain good quality compost that can be used in agriculture. In order to accomplish the acceleration of the process, different mixtures of feedstock were loaded to the composting containers to observe the effect of initial composition on the quality of the compost and the rate of composting. The first feedstock prepared was composed of grass, leaves and market waste whereas the second feedstock composed only of leaves and market wastes. Composting process was accomplished by applying different composting methods such as composting without manual stirring, with manual stirring, with aeration by air, with aeration by oxygen, with manual stirring and aeration by air and finally by with manual stirring and aeration by oxygen to achieve the purpose of the research. Aeration was found as a primary requirement for the acceleration of composting because it was observed that when the aeration was not applied the conversion of nutrients was very low. The high conversion efficiency of the nutrients in the feedstock with market and yard wastes-without grass-resulted in higher quality end product. The organic content of the composted yard and market wastes were monitored and the best operational parameters and methods were identified. Parameters such as temperature, moisture, pH and end-product metal contents were also monitored in the study. and the experiments were run in duplicates. Corrected C/N, (C/N)t/(C/N)initial, were used in the calculations which provided objectivity in comparison of the compost quality with respect to nutritional components. The C/N change was found to be higher in the container that was manually stirred and aerated with oxygen but with regard to the economic feasibility of the system aeration with air was preferred. Compost quality that was achieved in the study was compared to the standards of different countries with respect to the amount of metal contents in the end-product. The applicability of the end-product in agriculture depends on the level of contaminants in the compost, especially metals that have to be present only in trace amounts.  相似文献   

19.
Aerobic decomposition and stabilization of organic matter during the composting of waste materials is primarily due to the biochemical transformation of water-soluble compounds in the liquid phase by the microbial biomass. For this reason water-soluble organic matter represents the most active fraction of compost, both biologically and chemically, and thus should directly reflect the biochemical alteration of organic matter. This work aims to elucidate the microbial-mediated processes responsible for the distribution of soluble organic matter between stable and labile pools with composting time. Accordingly, chemical analysis as well as UV absorption, and 1H and 13C-NMR spectroscopy of samples collected during the industrial composting of urban waste revealed microbial induced transformation of water-extractable organic matter over time. The chemical composition changed from labile, hydrophilic, plant-derived organic compounds in the beginning to predominately stable, hydrophobic moieties comprising lignin-derived phenols and microbially-derived carbohydrates at later stages of composting.  相似文献   

20.
To test the possible use of composted food waste and wastewater sludge as biofilters to treat gas-phase volatile organic compounds (VOCs), batch experiments were conducted with an isolated strain that could degrade aromatic compounds under aerobic conditions. A benzene and trichloroethylene (TCE) mixture was used as the gas-phase pollutant in experiments with composted food waste, sludge, and soil. Under aerobic conditions, benzene was degraded as a primary substrate and TCE was degraded cometabolically, with water contents varying from 6 to 60% (volume of water added/volume of solid). Optimal water content for VOC removal was 12% for the soil, 36% for the composted food waste, and 48% for the sludge. The extent of VOC sorption and biodegradation at the optimal water content was different for each material. With the same initial VOC concentration, more VOCs were removed by sorption onto the composted food waste and the sludge, while less VOCs were biodegraded in comparison with the results using soil. The reason the biodegradation in the soil was greater may be partly attributed to the fact that, due to less sorption, the aqueous-phase concentration of VOCs, which microorganisms could utilize as a carbon source or cometabolize, was higher. We also speculate that the distribution of microorganisms in each medium affects the rate of biodegradation. A large number of microorganisms were attached to the composted food waste and sludge. Mass transfer of VOCs and oxygen to these microorganisms, which appear to have been heterogeneously distributed in clusters, may have been limited, resulting in hindered biodegradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号