首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
基于顺层抽采钻孔固气耦合模型,采用COMSOL对钻孔直径、煤层物性参数及抽采参数三类因素进行了模拟分析,并运用灰关联分析方法确定了顺层钻孔瓦斯抽采有效半径的主控因素。研究表明:煤层初始瓦斯压力与煤体初始渗透率为有效半径的主控因素,抽采时间次之,钻孔直径与有效抽采负压的变化对有效半径的影响甚微;提高瓦斯抽采有效半径的首要任务是通过技术手段卸压、增透,其次要把握合理的预抽时间。  相似文献   

2.
为研究水渗流作用对顺层钻孔抽采的影响,为抽采工艺参数优化提供理论依据,建立了考虑水渗流场的气水两相流固耦合方程,并利用COMSOL Multiphysics软件对赵庄矿1309工作面顺层钻孔的抽采负压与钻孔间距进行参数优化。研究结果表明:随着抽采时间增加,煤层水压与水相相对渗透率均快速下降后趋于稳定不变,气相相对渗透率先升高后不变,煤层瓦斯压力在抽采过程中逐步降低;抽采负压改变对煤层相对渗透率几乎无影响;在相同预抽时间里,抽采影响半径与抽采负压呈指数函数关系,抽采负压由15 kPa提高到27 kPa,可降低煤层瓦斯压力,有效影响半径扩散明显,超过27 kPa变化不再明显;钻孔间距设置为4.5 m可在预抽期内满足抽采要求且节约施工成本。  相似文献   

3.
为揭示低渗透性煤层瓦斯抽采渗流机制,在综合考虑Klinkenberg效应、有效应力和解吸收缩对瓦斯渗流及煤体变形影响的基础上,建立描述瓦斯渗流及煤骨架可变形的流固耦合模型。运用该模型,优化某矿29031工作面本煤层顺层钻孔的抽采负压和钻孔间距。结果表明,在抽采钻孔附近,模型考虑Klinkenberg效应比未考虑Klinbenberg效应时瓦斯压力下降更快,距离抽采钻孔越远,Klinkenberg效应的影响越小;在抽采时间一定的前提下,抽采负压对煤层瓦斯压力的下降影响不明显,有效抽采半径与抽采负压之间满足幂函数关系;考虑现场的复杂性和不均衡性,需要增加30%的安全余量,29031工作面本煤层顺层钻孔间距为6 m时,瓦斯压力下降幅度及范围最大,同时可以有效地避免"空白带"和抽采的无效叠加,抽采效果比较理想。  相似文献   

4.
为使瓦斯抽采效果在技术、经济方面达到最佳,研究了瓦斯抽采过程中煤层瓦斯的运移规律和钻孔的合理布孔间距。将煤层视为双孔隙双渗透率弹性介质,推导了煤基质、裂隙渗透率演化方程,综合考虑了瓦斯吸附/解吸特性、煤岩变形等因素的影响,建立了煤层双重介质流固耦合模型,并进行了钻孔瓦斯抽采模拟,分析了钻孔间距对瓦斯抽采的影响。结果表明:不同钻孔间距的瓦斯压力随抽采时间的增加先快速下降再趋于平缓,且钻孔间距越小,瓦斯压力下降越快;随着钻孔间距的增大,O点消突时间逐渐增加,与钻孔间距呈二次方关系;现场试验与模拟结果基本吻合,钻孔间距5 m时瓦斯抽采效果最佳。  相似文献   

5.
颜爱华 《安全》2014,35(9):4-7
利用煤岩体变形理论以及煤层瓦斯流动,建立了符合鹤煤十矿的顺层钻孔抽采气固耦合模型,并利用Comsol Multiphysics数值仿真软件模拟了瓦斯在煤体内部运移规律,通过对模拟结果和实测结果对比分析,得出该煤层顺层瓦斯抽采钻孔的合理钻孔长度为70m,为以后瓦斯抽采工作提供了重要依据。  相似文献   

6.
穿层钻孔水力压裂强化抽采瓦斯消突技术应用研究   总被引:4,自引:0,他引:4  
高瓦斯突出煤层预抽瓦斯消突是突出矿井煤巷掘进前的主要技术措施.由于我国煤矿煤层透气性低,原始煤层预抽瓦斯效果差,抽放时间长.为提高低透气性高瓦斯突出煤层的抽采瓦斯消突效果,在潘三煤矿1271(3)运顺进行了底板穿层钻孔水力压裂强化抽采瓦斯消突试验.介绍了穿层钻孔水力压裂抽采钻孔的布孔设计、压裂工艺及压裂增透抽采瓦斯消突效果.结果表明,水力压裂技术有效扩大了钻孔抽采瓦斯半径,提高了抽采瓦斯消突效果,解决了高突煤层煤巷掘进的突出威胁,提高了煤巷掘进速度.  相似文献   

7.
为揭示渗透率各向异性对钻孔瓦斯抽采的影响,假设煤层是一种孔隙-裂隙结构的弹性连续介质,构建各向异性渗透率方程;基于多物理场耦合理论,建立考虑气-水两相流的煤层流固耦合模型,结合试验测得的煤层不同方向上的渗透率,模拟确定煤层瓦斯抽采的合理钻孔间距和钻孔布置方向。结果表明:由于渗透率各向异性,在钻孔附近形成椭圆形的压降区域,该区域向煤层边界扩展,逐渐变为鼓形;在模拟工况下,抽采120天内达标的合理钻孔间距应为2.346~2.598 m;钻孔与最大渗透率方向的夹角越大,瓦斯抽采量越大,钻孔布置方向与煤层最大渗透率方向应保持较大夹角。  相似文献   

8.
为了提高瓦斯抽采效果,以西沟煤矿5315工作面注气瓦斯抽采方案为工程背景,开展注CO2促抽煤层瓦斯模拟研究。通过对注CO2驱替煤层瓦斯机理研究,结合注气瓦斯抽采过程中的气体运移场和煤体变形场的耦合关系,建立了注CO2促抽瓦斯固气耦合模型;利用COMSOL Multiphysics软件模拟了工作面注气瓦斯抽采,对比分析了注气瓦斯抽采与本煤层顺层钻孔抽采的瓦斯抽采效果,论证了煤层注CO2促抽煤层瓦斯工艺的可行性与有效性。研究结果表明:在工作面瓦斯抽采90 d后注入CO2,对瓦斯抽采的促抽效果明显,煤层瓦斯压力降至0.46~0.49 MPa,瓦斯含量降低至4.22 m3/t;在90 d后注入CO2促抽煤层瓦斯,在瓦斯抽采至第180 d时,抽采效果较钻孔瓦斯抽采明显提高,煤层瓦斯压力降低了7.84%~9.26%,残余瓦斯含量减少了18.63%。通过工程实测可知,5315工作面在注入CO2促抽煤层瓦斯抽采后的瓦斯压力与瓦斯含量分别降低至0.48 MPa和4.76 m3/t,有效降低了煤与瓦斯突出的危险性。  相似文献   

9.
为探究钻孔有效抽采半径的关键影响因素及各因素间交互作用,构建应力应变-瓦斯吸附解吸耦合渗透率变化模型,采用COMSOL软件进行数值模拟,分析单一因素变化对钻孔有效抽采半径的影响,并通过Design-Expert软件设计响应曲面试验,分析多因素交互作用对钻孔有效抽采半径变化的影响机制,获得有效抽采半径对多因素交互影响的响应曲面模型。研究结果表明:不同因素对钻孔有效抽采半径影响的显著性顺序为:煤层初始渗透率、原始瓦斯压力、抽采时间,煤层初始渗透率和抽采时间与有效抽采半径呈正相关关系,原始瓦斯压力与有效抽采半径呈负相关。1个影响因素的变化会影响其他因素对有效抽采半径的影响,煤层初始渗透率能够放大其他因素对有效抽采半径的影响,而原始瓦斯压力则会降低其他因素对有效抽采半径的影响。  相似文献   

10.
针对定量确定合理钻孔间距困难问题,基于损伤力学和多场耦合理论,建立了水力压裂和瓦斯抽采的煤层流固耦合模型,包括和水运移场、应力场以及孔隙度、渗透率演化方程,并采用Comsol联合Matlab求解,研究了不同钻孔间距时压裂和抽采过程中煤层弹模、损伤值、渗透率、瓦斯压力、抽采量和压裂贯通时间的变化规律。结果表明:耦合模型可较准确地模拟煤层水力压裂和瓦斯抽采过程;压裂贯通时间与钻孔间距呈指数增长关系;在马堡煤矿,当钻孔间距为4~8 m时,压裂损伤区在抽采孔贯通,渗透率呈“n”型曲线,瓦斯抽采后,瓦斯压力迅速下降,抽采有效区随间距的增加而增大;当钻孔间距为9~12 m时,压裂损伤区未贯通,煤层渗透率呈“m”型曲线,抽采有效区随间距的增加而减小,与间距4~8 m相比,瓦斯抽采量较小。  相似文献   

11.
针对顺层瓦斯抽采过程中,因钻孔形变较大、封孔长度不足及封孔方法不合理等因素造成抽采钻孔及其周围煤体漏风严重、抽采瓦斯浓度偏低、流量衰减速度较快及稳定性差等技术难题,基于多孔介质渗流理论、流体平衡理论、"固封液-液封气"钻孔密封技术原理,研究了承压密封液在煤层钻孔内的径向渗流规律,建立了不可压缩流体径向驱气稳定渗流物理模型、密封液径向渗流运动数学方程及相关参数计算公式,进而提出了固液耦合壁式密封顺层瓦斯抽采技术。结果表明,采用固液耦合壁式密封技术可对抽采钻孔及周围煤体裂隙实施动态密封,使得瓦斯抽采过程浓度稳定,单孔平均浓度提高4~5倍,平均抽采瓦斯体积分数达到89%以上,显著提高了本煤层瓦斯的抽采效率。  相似文献   

12.
钻孔的有效抽采半径是在矿井瓦斯抽采设计中的一个关键性参数。准确测定钻孔的有效抽采半径,有利于合理布置瓦斯的抽采钻孔,实现最佳设计、最小工程量和最优抽采效果。根据实际煤层的存在条件,首先采用压降法对矿井试验区内穿层抽采钻孔有效抽采半径和水力冲孔抽采钻孔有效抽采半径进行实测。然后通过Comsol Multiphysics数值模拟软件建立穿层钻孔瓦斯抽采的数值计算模型,所得模拟结果与现场实测数据基本一致。这证明了现场实测结果的正确性和方法的可靠性。该钻孔的有效抽采半径的测定结果可为金牛建业煤矿技改井二1煤层预抽煤层瓦斯的钻孔设计提供参考。  相似文献   

13.
为研究穿层钻孔倾角与煤层气抽采效果的关系,基于钻孔围岩应力分布规律及瓦斯流动规律的相关研究,分别从孔卸压效果、钻孔瓦斯流动情况及钻孔抽采长度三方面探讨了钻孔倾角如何影响煤层气抽采效果,并给出了钻孔倾角对煤层气抽采影响的数学模型。经理论分析及现场试验对比,结果表明:钻孔围岩应力和钻孔倾角间存在三角函数关系,围岩应力分布的不同导致钻孔周围煤层透气性的改变;随钻孔倾角的减小,煤层段钻孔长度增加,钻孔暴露煤体增大,有助于煤体瓦斯的解析。且钻孔与煤层割理交集变大,瓦斯流通通道增加;钻孔倾角对煤层气抽采效果有着不可忽视的作用。  相似文献   

14.
为探究顺层钻孔内花眼护孔管对瓦斯抽采的作用程度,建立基于裂隙-孔隙双重介质的煤岩瓦斯气-固耦合数学模型,分别对顺层钻孔内花眼护孔管不同长度的布置方式进行瓦斯抽采数值模拟;此外,在潘三煤矿11-2煤层开展现场试验,对比分析钻孔内布置与不布置花眼护孔管的实际抽采效果。结果表明:当顺层钻孔全程使用花眼管护孔时,模拟得到的钻孔周围残余瓦斯压力和含量最低;使用花眼护孔管的钻孔周围瓦斯含量明显下降,并且随着抽采时间的增加,花眼护孔管对瓦斯抽采的促进效果更加显著。  相似文献   

15.
在煤层瓦斯抽采工艺中,抽采钻孔周围煤层瓦斯压力分布状况决定了最佳抽采时间和抽采半径。为研究抽采钻孔周围煤层瓦斯压力分布情况,通过理论分析和数值模拟,构建抽采钻孔周围煤层瓦斯流量表达式;应用达西渗流定律,推导出抽采钻孔周围煤层瓦斯压力解析表达式;采用瓦斯抽采半径随抽采时间的变化速率作为确定瓦斯抽采最佳时间的依据,给出临界值,并进行工程应用。结果表明:随着测定点与钻孔中心距离的增加,煤层瓦斯压力逐步上升,最终趋于原始值;随着抽采时间延长,瓦斯压力大致呈指数规律下降;瓦斯抽采半径随抽采时间的变化速率临界值可暂定为0.47。  相似文献   

16.
针对潘三矿17181(1)运输顺槽面临的煤与瓦斯突出问题,结合11-2煤层透气性系数低、裂隙水发育等特点,为提高穿层钻孔条带预抽效率,运用掏穴增透和深孔松动爆破进行增透的同时,通过采用钻场注浆防水,钻孔自动排水等措施,降低水对穿层钻孔条带预抽煤巷瓦斯的影响。通过效果考察对比,结果表明:抽采69天后,累计抽采瓦斯14.91万立方,抽采率达到51.5%,平均抽采浓度35%,百孔抽采纯量1.2m3/min,能够达到条带预抽瓦斯消突的目的。  相似文献   

17.
为研究近距离薄煤层群上保护层开采期间邻近层卸压瓦斯对回采工作面瓦斯涌出的影响,进而有效杜绝保护层开采过程中工作面瓦斯积聚或超限等事故,结合煤岩体破碎前“应力-裂隙-渗透率”间关系,建立卸压瓦斯三维渗流模型。采用Flac3D软件,以新维煤矿煤层条件为工程背景,研究保护层开采过程采场渗透率沿纵向分布规律,确立下保护层C3煤层处于三维增渗区、C7与C8号煤层处于水平增渗区。基于此,提出“近场定向钻孔全覆盖抽采与远场穿层钻孔层间卸压抽采结合”的瓦斯治理技术模式,并开展现场试验,结果表明:试验工作面回风瓦斯浓度降低44.4%,绝对瓦斯涌出量降低52.3%,该模式可显著提高卸压瓦斯的治理效果,为类似工况下的保护层开采提出1种新的瓦斯抽采模式,具有一定的指导及借鉴意义。  相似文献   

18.
煤层瓦斯抽放半径及其影响因素的数值模拟   总被引:2,自引:0,他引:2  
煤层瓦斯抽放半径是进行抽放方法选择,确定钻孔布置参数以及评价抽放效果的重要依据。为了确定有效抽放半径并找出其影响因素,采用数值模拟的方法,应用计算流体力学软件Fluent建立了钻孔抽放瓦斯模型。采用气体渗流理论模拟瓦斯抽放过程中的流动规律,确定了有效抽放半径,分析了钻孔直径、煤层渗透率和抽放负压对其影响的规律。结果表明:煤层瓦斯抽放有效半径为1.8 m左右,钻孔直径和煤层渗透率对抽放半径影响较大,抽放负压的影响不大。  相似文献   

19.
为了提高钻孔抽采瓦斯量,基于煤层瓦斯流动和层次分析法等理论,研究了钻孔抽采瓦斯量的影响因素及各影响因素重要度,同时现场考察了透气性系数变化对钻孔瓦斯抽采量的影响。结果表明:钻孔抽采瓦斯量影响因素有煤层透气性系数、煤层原始瓦斯压力、煤层厚度、抽采钻孔孔径和抽采时间等,其中煤层透气性系数是对其起决定影响作用的参数;重要度上煤层透气性系数对钻孔瓦斯抽采量的影响是抽采负压和钻孔半径的7.1倍;被保护层的透气性系数增大可大幅度提高了钻孔抽采瓦斯量。  相似文献   

20.
基于斌郎煤矿401采区瓦斯地质情况,参照相关规范计算并预测了采区瓦斯储量和瓦斯涌出量,预测值分别为15.08 Mm3和7.84 m3/min,以此为依据初步分析确定了该采区抽采瓦斯的必要性与可行性。为进一步掌握煤层预抽瓦斯的可行性,在401采区北端沿内连煤层掘进1条长度为309 m的瓦斯专用巷道。通过在±0西北大巷实施穿层钻孔和在采区内连煤层掘煤巷道实施顺层钻孔2种钻采方式,进行了采区瓦斯预抽试验。试验共实施了6个穿层孔和6个顺层孔,临孔间距分别为6 m和5 m,测得12个孔的平均单孔瓦斯流量和平均瓦斯体积分数分别为0.091 m3/min和47%,获得了较好的瓦斯预抽效果。综合分析采区瓦斯主要参数的预测结果和瓦斯预抽试验数据,提出了"以首先开采外连煤层并同时抽采内连煤层的卸压瓦斯为主,必要时预先抽采煤层瓦斯和围岩裂隙中瓦斯"的采区瓦斯治理方案和将U型通风变更为Y型通风的建议。参考相似矿井的瓦斯利用经验对瓦斯发电的投入及产出进行了预算和评估,将发电机功率初步确定为500 kW。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号