首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
煤与瓦斯突出过程中煤体瓦斯的作用研究   总被引:4,自引:1,他引:3  
为了研究煤与瓦斯突出过程中煤体瓦斯的作用,采用煤体中瓦斯总量守恒的原理研究瓦斯含量与瓦斯积聚内能的基本方程和影响因素;分析煤与瓦斯突出产生的力学条件和机理,建立了煤与瓦斯突出危险程度的矩阵图。结果表明:瓦斯含量是煤体瓦斯内能最直接的反应,其值大小决定瓦斯内能的大小;瓦斯压力梯度、煤体的断裂韧性及煤体内的裂隙发育程度决定着瓦斯突出的危险性,低渗透性构造煤对瓦斯运移阻力较大,容易形成较大的瓦斯压力梯度,从而更容易发生煤与瓦斯突出。煤层中的瓦斯含量、瓦斯压力、地应力越大,煤体的强度、渗透率越小,越容易发生突出。煤层瓦斯情况、力学性能、地质构造和煤层的应力状态是决定煤与瓦斯突出的主要因素。  相似文献   

2.
为了更好地认识和防治煤与瓦斯突出,利用扫描电子显微镜和静态液氮吸附仪研究一种构造软煤的微孔结构特征,同时利用自主搭建的大型石门揭煤相似模拟试验系统,研究石门揭露构造软煤过程中瓦斯压力的变化规律。在试验研究的基础上,分析构造软煤的微孔特性对瓦斯赋存的影响,以及瓦斯在石门揭露构造软煤诱发煤与瓦斯突出中的作用。通过试验得出:构造软煤的结构破坏严重,微孔发育并且为特殊瓶颈的不透气孔,为瓦斯的赋存提供了极为有利的条件;瓦斯在突出的启动和发展过程中起重要作用,即在瓦斯压力突然降低、释放膨胀潜能时,瓦斯压力作为动力来源,加速了煤体向采掘空间抛出的过程。  相似文献   

3.
瓦斯赋存规律认识不清,是导致煤矿瓦斯突出灾害频发的根本原因。应用瓦斯赋存地质构造逐级控制理论,结合辽宁省煤矿瓦斯地质图编制资料,分析了全省瓦斯赋存构造控制规律,进行了瓦斯分带划分。研究结果表明:印支运动(主幕),在形成一系列EW向、NE向和NW向断裂褶皱带过程中,煤体破坏,形成构造煤。燕山运动,形成了一系列NNE向、NE向的褶皱和逆冲推覆构造,与EW向构造相叠加,构造应力集中,有利于瓦斯突出;同时,岩浆侵入煤系地层使煤变质程度增高,生烃能力增强。喜马拉雅运动时期,挤压作用逐步被拉张取代,拉张裂隙作用有利于瓦斯部分释放。将辽宁省煤矿瓦斯赋存分布划分4个高突瓦斯带,即阜新-铁岭高突瓦斯带、抚顺-沈北高突瓦斯带、北票-南票高突瓦斯带和红阳-本溪高突瓦斯带。  相似文献   

4.
瓦斯赋存规律认识不清,是导致煤矿瓦斯突出灾害频发的根本原因。应用瓦斯赋存地质构造逐级控制理论,结合云南省煤矿瓦斯地质图编制资料,探讨了云南省煤矿瓦斯赋存构造控制规律,进行了瓦斯分带划分及瓦斯带特征分析。研究结果表明:印支期,NW向构造发生右行活动,形成压扭性构造,破碎煤体、形成构造煤。燕山期,滇东和滇东北形成了一系列NE-NNE向平缓褶皱,煤系地层保存较完整;而滇东南断裂活动发育,煤系地层遭受了严重的破坏。喜山运动第Ⅰ幕,云贵高原抬升,侏罗纪、白垩纪地层风化剥蚀殆尽,瓦斯大量释放;喜山运动第Ⅱ幕,NE向构造带强烈挤压、冲断、推覆,破碎煤体、形成构造煤,有利于瓦斯保存。新构造运动时期,滇东NNE、NE向构造带应力集中,易引发瓦斯突出;滇中高瓦斯区NW、NNW向构造带应力集中,易引起瓦斯突出事故。将云南省煤矿瓦斯赋存分布划分了两个高突瓦斯带和两个瓦斯带,即滇东高突瓦斯带、华坪祥云一平浪高突瓦斯带、滇中瓦斯带和滇西滇南瓦斯带。  相似文献   

5.
煤和瓦斯突出过程中瓦斯作用机理的研究   总被引:4,自引:0,他引:4  
阐述了瓦斯在煤和瓦斯突出过程中所起的作用 ;指出煤层中瓦斯的存在改变了煤岩体的物理力学性质及响应特性 ,使之成为非稳定介质 ;特别强调在瓦斯突出发生时 ,瓦斯膨胀能起了至关重要的作用 ;由于瓦斯的存在 ,加剧了煤体失稳破坏的过程。  相似文献   

6.
根据鹤壁矿区实测煤层瓦斯含量和瓦斯压力结果,从力能角度分析了地应力、瓦斯、煤体结构对煤与瓦斯突出的影响,确定了地应力为鹤壁矿区煤与瓦斯突出的主控因素。受区域地质构造的控制,南部矿井构造应力大,瓦斯含量高,煤岩体弹性潜能、瓦斯膨胀能大;且构造煤普遍发育,煤体破碎功小。基于力能角度分析,南部矿井在埋藏较浅处,突出动力能量即大于突出阻力能量,是其始突深度较浅的主要原因,鹤壁矿区始突深度呈现南浅北深的特点。在地应力控制作用的基础上,结合三矿实测瓦斯压力、瓦斯突出能量分析,确定三矿在煤层底板标高-510 m以深为突出危险区。  相似文献   

7.
为研究煤与瓦斯突出的力学机理和能量来源,根据理想气体状态方程,推导了采场围岩瓦斯突出过程中的瓦斯压力、瓦斯含量与对外做功的关系,基于弹塑性力学,阐明了岩体弹塑性状态转化前后应变能释放机理。研究结果表明:煤与瓦斯突出是瓦斯势能与煤岩体弹性能共同作用并转化为煤岩体动能的结果;瓦斯势能释放值与释放路径无关,而与瓦斯压力和瓦斯含量相关,与煤壁前方塑性区扩展规模相关;将其应用至1次特大型煤与瓦斯突出事故中,核算的突出煤量、瓦斯含量和煤体抛出速度基本吻合于实际结果;基于理论分析提出了煤与瓦斯突出的3项防治措施,一是通过钻孔卸压或瓦斯抽放减小瓦斯压力,二是增加极限平衡区距离或减小截深,三是避免高瓦斯巷道或工作面出现蝶形塑性破坏。  相似文献   

8.
为研究应力对深井煤与瓦斯突出工作面的影响,采用力学模型分析了平行六面微元体各个面的受力情况,结合煤体强度理论和矿山压力理论,从煤体所受瓦斯压力、地应力和煤体破坏条件等方面入手,研究了三轴应力态下煤体力平衡问题.探讨了瓦斯压力、地应力、煤壁支撑力等参数和煤与瓦斯突出之间的关系.结果表明,煤与瓦斯突出的瓦斯压力临界值由采场内的应力、煤壁支撑力和煤的力学参数等确定,综合考虑上述因素后,对煤与瓦斯突出预测时瓦斯压力临界值进行了理论推导和关键参数修正,建立了包含应力、采场条件和煤的力学参数的推算瓦斯压力临界值的理论模型,并对理论模型的可靠性进行了分析.突出实例的反演表明在深部开采时,如果不考虑应力对煤与瓦斯突出的影响,会出现预测结果偏差而影响安全生产.建立的理论模型可对这种偏差进行分析和校正.  相似文献   

9.
为查明地质构造区域煤与瓦斯突出的致灾原因,利用自主研制的煤与瓦斯突出模拟试验装置,研究逆断层和褶曲复合构造带的应力分布,分析应力对复合构造带瓦斯赋存和聚集的影响,从地质角度阐述复合构造带煤与瓦斯突出发生的力学作用机制。试验发现:复合构造带应力分布较为复杂,沿逆断层的断面转折部位在其附近空间应力分布最为集中,构造集中应力可达原岩应力的1.3~1.7倍。复合构造形成的过程中煤体结构遭到严重破坏,构造煤非常发育,应力集中促使瓦斯向裂隙发育区运移和聚集,使其成为高压瓦斯的富集区;构造煤发育和大量承压状态的瓦斯为煤与瓦斯突出的发生提供了必要的条件。  相似文献   

10.
为深入认识地质构造带煤与瓦斯突出事故的发生机制,以芦岭矿为例,运用瓦斯地质理论,论述矿区的构造特征和瓦斯地质特征,分析压扭性断层形成过程中构造运动对煤体结构和瓦斯赋存的影响。研究发现,芦岭矿位于逆冲断裂地质构造带上盘,构造松软煤层发育,压扭性断层和层滑构造对矿区影响明显;在挤压应力作用下,压扭性封闭性逆断层区域煤体裂隙发育,应力控制着瓦斯向裂隙发育区运移和聚集,使其成为高压瓦斯富集区;受采掘等作业影响,在煤层暴露的瞬间,压扭性逆断层构造带附近区域煤体内储存的大量承压状态瓦斯和构造松软煤岩混合物被疾速抛出,从而形成煤与瓦斯突出。  相似文献   

11.
张大伟  郭立稳  杜通 《安全》2008,29(10):8-10
本文将煤体温度变化、电磁辐射、声发射以及煤的破坏类型和煤层的地质构造综合起来考虑,应用灰色系统理论中的多维灰色评估方法,对煤与瓦斯突出灾害进行预测,以提高瓦斯突出预测预报的准确性。并编制了煤与瓦斯突出预测预报系统软件,为煤与瓦斯突出预测提供一种新思路和新方法。  相似文献   

12.
为了探究煤与瓦斯突出过程中煤体层裂演化特征,利用自主研制的煤与瓦斯突出实验模拟系统,研究突出过程中煤体层裂结构特征、煤体裂隙厚度演化特征和煤体质点运动演化特征。研究结果表明:在轴向应力0.9 MPa、瓦斯压力0.4 MPa时,煤体层裂发展时间持续85 ms,煤体共计出现11处裂隙。层裂从煤体后方的弱构面出现并向前方发展,其位置大多集中于突出腔体中后部,煤体层裂形式均为纵向贯通,在第9处出现最大纵向断裂裂隙。煤体裂隙总厚度约为75.6 mm、单处裂隙平均厚度约为8.4 mm,二者均呈现随时间递增的趋势。层裂过程中煤体单处裂隙厚度并不都是沿程递增的,部分煤体中部裂隙厚度呈现先增大后减小的特征。煤体的运动表现为靠近突出口端的运动速度更快、运动距离也更长。研究结果可为揭示煤与瓦斯突出层裂机制提供参考。  相似文献   

13.
Fisher判别法在煤与瓦斯突出危险程度预测中的应用   总被引:1,自引:0,他引:1  
为了提高煤与瓦斯突出的预测精度,根据煤与瓦斯突出的综合作用假说,选取开采深度、瓦斯压力、瓦斯放散初速度、煤的普氏系数以及煤体破坏类型作为判别指标。利用国内典型突出矿井20个实测数据作为训练样本,建立煤与瓦斯突出危险程度预测的Fisher判别分析模型,并应用于其他待判样本的预测。结果表明:Fisher判别分析模型能够反映多因素对煤与瓦斯突出的影响,分类性能良好,误判率低,借助SPSS软件实现,具有计算简单的特点,是煤与瓦斯突出预测的一种有效方法。  相似文献   

14.
为认清鸡西煤田瓦斯赋存规律,根除导致煤矿瓦斯突出灾害频发的根本原因,运用瓦斯赋存地质构造逐级控制理论,在研究鸡西煤田构造演化的基础上,结合鸡西煤田瓦斯地质图编制资料,分析了煤田地质构造、构造煤形成过程和岩浆作用及其对瓦斯赋存的影响,并结合典型矿井探讨了现代应力场对瓦斯突出危险的控制作用.结果表明,鸡西盆地地质构造复杂,主要表现为规模不等的褶皱、断裂.盆地东南缘受控于敦密断裂,盆地中部的基底突出向东倾伏,发育了平-麻逆冲断裂及一个向东倾伏的基底隆起(恒山隆起),使煤田从东至西成斜卧的"人"字形展部,划分煤田为南北两含煤带,岩浆岩作用的程度控制着煤层的煤化程度,也控制着煤层瓦斯赋存;近EW向、NE向、NNE向构造,尤其是NNE向构造受到强烈挤压、压扭作用,致使煤层受到强烈挤压剪切破坏而发育构造煤,有利于瓦斯赋存;现代构造应力场主应力为NEE向,NNW-NW向构造表现为挤压和压扭作用,成为动力灾害多发地带;NE、NNE向构造的拉张有利于瓦斯释放,动力灾害程度相对较低;NNW-NW向和NE、NNE向复合部位应力集中,动力灾害更容易发生.  相似文献   

15.
用灰关联分析和神经网络方法预测煤与瓦斯突出   总被引:4,自引:0,他引:4  
本文应用灰色系统理论的灰色关联分析,对煤与瓦斯突出影响因素进行灰关联分析,得出了各影响因素对煤与瓦斯突出影响程度的大小排序,选择灰关联分析的五个优势因子:瓦斯放散初速度、坚固性系数、瓦斯压力、煤体破坏类型和开采深度,作为输入参数,用计算机对神经网络编写程序,建立了煤与瓦斯突出预测的神经网络模型.用我国典型突出矿井的煤与瓦斯突出实例作为学习样本,对网络进行训练学习,并以云南恩洪煤矿的煤与瓦斯突出实例作为预测样本进行验证.  相似文献   

16.
为探究采动应力变化对含瓦斯突出煤力学特性的影响,利用RLW-500G煤岩三轴蠕变-渗流试验系统,对新景矿含瓦斯突出煤进行了不同围压和瓦斯压力下的常规三轴和分段变速加载力学试验。结果表明:煤样在2种应力路径下的全应力应变曲线均可分为压密、线弹性、塑性变形、应力跌落和残余应力5个阶段;随着围压的升高或者瓦斯压力的降低,煤体在2种应力路径下的强度和弹性模量均增大;相较于常规三轴,煤体在分段变速加载路径下的强度普遍增大,峰值轴向应变、峰值环向应变绝对值和峰值体积应变绝对值也普遍增大,失稳破坏瞬间应力跌落和能量释放更加剧烈。Mohr-Coulomb强度准则仍然适用于分段变速加载条件下的含瓦斯突出煤,该研究对于认识煤与瓦斯突出的发生机制具有一定的指导意义。  相似文献   

17.
煤岩变形破裂的电磁辐射规律及其应用研究   总被引:22,自引:3,他引:19  
对受载煤体变形破裂电磁辐射规律进行了研究及分析 ,并对煤岩电磁辐射技术应用于预测预报煤与瓦斯突出进行了试验研究。研究结果表明 ,电磁辐射与煤岩体的载荷、加载速率及变形破裂过程呈正相关。煤岩电磁辐射技术在预测预报煤与瓦斯突出等方面有着非常广阔的应用前景。  相似文献   

18.
为解决新安煤田煤与瓦斯突出影响因素众多和防治难度较大等问题,运用瓦斯地质理论分析了新安煤田煤与瓦斯突出特征及控制因素,并提出了有针对性的煤与瓦斯突出防治措施。研究表明:地质构造是控制新安煤田煤与瓦斯突出分布的主要地质因素;构造应力是控制新安煤田煤与瓦斯突出的主要动力因素;新安煤田煤与瓦斯突出吨煤瓦斯涌出量较大,是增加煤与瓦斯突出发生可能性及危险性的重要因素。基于此,从突出危险性预测、防治突出措施及安全防护措施等三个方面提出了多项煤与瓦斯突出防治措施。  相似文献   

19.
根据煤与瓦斯突出"综合假说"理论,煤的物理力学性质在突出过程中扮演着重要的角色。利用大型煤与瓦斯突出模拟试验台为工具,选用粒径为5-10目、10-40目、40-80目,以及5-10目和10-40目不同粒级配比下的煤粒,在相同实验参数条件下制作成突出煤样,并分别进行煤与瓦斯突出模拟实验。结果表明:煤层吸附瓦斯是放热过程,煤体温度会不断增加,突出过程则正好相反。煤体的破碎程度越大(粒径越小),突出危险性程度就越高、发生突出的强度就越大;但突出强度大并不一定表现为粉碎率高,原因在于煤的破碎程度越高,进一步破碎的难度就越大,要达到相同破碎率所需的能量就越大。  相似文献   

20.
利用自行研制的装置,以氮气模拟瓦斯,以同一压力下压实的不同粒径煤样制作不同煤体结构构造煤;气源以恒定压力向煤体持续注气,使煤体吸附一段时间后,停止注气,打开放气阀,使煤体开始解吸,进行了煤体结构差异对气体运移影响的试验研究。结果表明:构造煤体的气体运移特征有线性渗流和二项式渗流。当组成构造煤体的煤颗粒粒径较大时,在流量达极值前,通过煤体的气体流量随时间的变化成线性关系,此时煤体内气体的运移特征符合线性渗流。当组成构造煤体的煤颗粒粒径较小时,在流量达极值前,通过煤体的气体流量随时间的变化成二项式关系,此时煤体内气体的运移特征符合二项式渗流。试验中大颗粒粒径煤体和小颗粒粒径煤体,在流量达到极值后,通过煤体的气体流量随时间的衰减关系均成二项式关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号