首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Natural adsorbent (Cinnamomum camphora sawdust) modified by organic acid (oxalic acid, citric acid, and tartaric acid) was investigated as a potential adsorbent for the removal of hazardous malachite green (MG) dye in aqueous media in a batch process. The extent of MG adsorption onto modified sawdust increased with increasing organic acid concentrations, pH, contact time, and temperature but decreased with increasing adsorbent dosage and ionic strength. Kinetic study indicated that the pseudo-second-order kinetic model could best describe the adsorption kinetics of MG. Equilibrium data were found to fit well with the Langmuir model, and the maximum adsorption capacity of the three kinds of organic acid-modified sawdust was 280.3, 222.8, and 157.5 mg/g, respectively. Thermodynamic parameters suggested that the sorption of MG was an endothermic process. The adsorption mechanism, the application of adsorbents in practical wastewater, the prediction of single-stage batch adsorption system, and the disposal of depleted adsorbents were also discussed.  相似文献   

2.
Activated carbons (ACs) were developed from bio-waste materials like rice husk and peanut shell (PS) by various physicochemical activation methods. PS char digested in nitric acid followed by treatment at 673 K resulted in high surface area up to ~585 m2/g. The novelty of the present study is the identification of oxygen functional groups formed on the surface of activated carbons by infrared and X-ray photoelectron spectroscopy and quantification by using temperature programmed decomposition (TPD). Typical TPD data indicated that each activation method may lead to varying amounts of acidic and basic functional groups on the surface of the adsorbent, which may be a crucial factor in determining the adsorption capacity. It was shown that ACs developed during the present study are good adsorbents, especially for the removal of a model textile dye methylene blue (MB) from aqueous solution. As MB is a basic dye, H2O2-treated rice husk showed the best adsorption capacity, which is in agreement with the acidic groups present on the surface. Removal of the dye followed Langmuir isotherm model, whereas MB adsorption on ACs followed pseudo-second-order kinetics.  相似文献   

3.
In the present study, an activated charcoal (AC) plate was prepared by physical activation method. Its surface was coated with TiO2 nanoparticles by electrophoretic deposition (EPD) method. The average crystallite size of TiO2 nanoparticles was determined approximately 28 nm. The nature of prepared electrode was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) surface area measurement before and after immobilization. The electrosorption and photocatalytic one-stage combined process was investigated in degradation of Lanasol Red 5B (LR5B), and the effect of dye concentration, electrolyte concentration, pH, voltage, and contact time was optimized and modeled using response surface methodology (RSM) approach. The dye concentration of 30 mg L?1, Na2SO4 concentration of 4.38 g L?1, pH of 4, voltage of 250 mV, and contact time of 120 min were determined as optimum conditions. Decolorization efficiency increased in combined process to 85.65 % at optimum conditions compared to 66.03 % in TiO2/AC photocatalytic, 20.09 % in TiO2/AC electrosorption, and 1.91 % in AC photocatalytic processes.  相似文献   

4.
The presence of dyes in water is undesirable due to the toxicological impact of their entrance into the food chain. Owing to the recalcitrant nature of dyes to biological oxidation, a tertiary treatment like adsorption is required. In the present study, unsaturated polyester resin (UPR) has been used as a sorbent in the treatment of dye-contaminated water. Different concentrations of Tropaeoline 000 containing water were treated with UPR. The preliminary investigations were carried out by batch adsorption to examine the effects of pH, adsorbate concentration, adsorbent dosage, contact time, and temperature. A plausible mechanism for the ongoing adsorption process and thermodynamic parameters have also been obtained from Langmuir and Freundlich adsorption isotherm models. Thermodynamic parameter showed that the sorption process of Tropaeoline 000 onto activated carbon (AC) and UPR were feasible, spontaneous, and endothermic under studied conditions. The estimated values for (ΔG) are ?10.48?×?103 and ?6.098?×?103 kJ mol?1 over AC and UPR at 303 K (30 °C), indicating towards a spontaneous process. The adsorption process followed pseudo-first-order model. The mass transfer property of the sorption process was studied using Lagergren pseudo-first-order kinetic models. The values of % removal and k ad for dye systems were calculated at different temperatures (303–323 K). The mechanism of the adsorption process was determined from the intraparticle diffusion model.  相似文献   

5.
The modification of MCM-41 was performed with 3-aminopropropyltrimethoxysilane. The structural order and textural properties of the synthesized materials were studied by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetry/differential thermogravimetry, nitrogen adsorption, and desorption analysis. The adsorption capacity of NH2-MCM-41 was studied with Remazol Red dye. The following parameters were studied in the adsorption process: pH, temperature, adsorbent dosage, and initial concentration. The desorption process was studied in different concentrations of NaOH solutions. The Freundlich isotherm model was found to be fit with the equilibrium isotherm data. Kinetics of adsorption follows the modified Avrami rate equation. The maximum adsorption capacity was estimated to be 45.9 mg?g?1, with removal of the dye of 99.1 %. The NH2-MCM-41 material exhibited high desorption capacity with 98.1 %.  相似文献   

6.
Utilization of agrowaste materials for the production of activated carbon, as an excellent adsorbent with large surface area, is well established industrially, for dephenolation of wastewater. In the present work, dried pods of Prosopis cineraria—a novel and low-cost agrowaste material—were used to prepare activated carbons by zinc chloride activation. Batch adsorption experiments were carried out to study the effects of various physicochemical parameters such as initial phenol concentration, adsorbent dose, initial solution pH, and temperature. Pseudo-first-order second-order and diffusion kinetic models were used to identify the possible mechanisms of such adsorption process. The Langmuir and Freundlich equations were used to analyze the adsorption equilibrium. Maximum removal efficiency of 86 % was obtained with 25 mg?L?1 of initial phenol concentration. The favorable pH for maximum phenol adsorption was 4.0. Freundlich equation represented the adsorption equilibrium data more ideally than the Langmuir. The maximum adsorption capacity obtained was 78.32 mg?g?1 at a temperature of 30 °C and 25 mg?L?1 initial phenol concentration. The adsorption was spontaneous and endothermic. The pseudo-second-order model, an indication of chemisorption mechanism, fitted the experimental data better than the pseudo-first-order Lagergren model. Regeneration of spent activated carbon was carried out using Pseudomonas putida MTCC 2252 as the phenol-degrading microorganism. Maximum regeneration up to 57.5 % was recorded, when loaded phenol concentration was 25 mg?L?1. The data obtained in this study would be useful in designing and fabricating an efficient treatment plant for phenol-rich effluents.  相似文献   

7.
ABSTRACT

Activated carbonaceous were prepared from high-carbon, abandoned straw biomass. With hydrogen sulfide gas as the target pollutant, single factor experiments were employed to assess the effects of activator type, activation temperature, activation time, and liquid-material ratio on the adsorption performance of the prepared carbonaceous adsorbent. The materials were characterized using elemental analysis, SEM, FTIR, and BET. The results showed -OH, -CH-, and -C = O groups exist on the surface of the prepared adsorbent, specific surface area can reach 1104.84 m2?g?1, total pore volume can reach 0.261 cm3?g?1 and, where the pore volume is greater than 80%, well-developed pore structures were present that facilitated adsorption. The experimental results showed the adsorption time could reach 198 min with optimal ZnCl2 activator concentration (30%), carbonization temperature (550°C), and liquid-to-material ratio (3:1). Compared with the existing activated carbon adsorbents, the adsorption effects and preparation cost of this absorbent are advantageous, and the absorbent has prospects for broad market application.  相似文献   

8.
In this study, a natural adsorbent (activated dry flowers (ADF)) was prepared from plant-derived waste biomass by chemical activation and employed for chromium (VI) removal from aqueous medium using experimental batch technique. Experiments were carried out as function of adsorbent dosage, pH, and contact time. The maximum chromium (Vl) removal was observed at initial pH 3 (~94 % removal). The equilibrium data was fitted well to Langmuir isotherm. The adsorption capacity of ADF was found to be 4.40 (mg chromium (Vl)/g) which was comparable to the adsorption capacity of some other adsorbents documented. Among various kinetic models applied, pseudo second-order model was found to explain the kinetics of chromium (VI) adsorption most effectively (R 2 >0.99). Thermodynamic parameters such as ΔG, ΔS, and ΔH shows that adsorption process was spontaneous and endothermic at all the concentration ranges studied. Desorption of chromium (Vl) with 2 N NaOH was effective (~71 %) and, hence, there exists the possibility of recycling the ADF. The major advantages of using ADF as an adsorbent are due to its effectiveness in reducing the concentration of chromium (Vl) to very low levels. It requires little processing and is reversible as well as eco-friendly in contrast to traditional methods.  相似文献   

9.
黑曲霉死菌与活性炭对直接耐晒翠蓝FBL的吸附性能   总被引:1,自引:0,他引:1  
采用批式实验,系统考察了黑曲霉死菌和活性炭的粉剂投加量,染料初始浓度,pH和反应时间对酞菁染料FBL脱色效果的影响;并采用扫描电镜图像,分析吸附剂的结构变化。结果表明,对于FBL染料的吸附处理,黑曲霉死菌粉剂与活性炭粉剂适宜的吸附条件为:酸性至弱碱性pH下,投加量为8 g/L;黑曲霉死菌粉剂比活性炭粉剂的吸附速度快、脱色性能高、抗染料浓度负荷冲击能力强。扫描电镜图像分析显示,黑曲霉死菌粉剂所具有的多层纤维结构为吸附染料分子提供较大的比表面。  相似文献   

10.
The removal of triphenyltin chloride from contaminated simulated seawater with adsorption method was discussed. The adsorbents used are fly ash, nSiO2, and nSiO2/fly ash composite. The results showed that the adsorption of the adsorbents increases with increase in the adsorbent dose, contact time, pH, stirring speed, initial TPT concentration, and decreased with increase in temperature. The adsorption fitted well with the Freundlich isotherm, showing that the adsorbent and TPT combined with function groups and the adsorption kinetics followed the pseudo-second-order kinetic model. The thermodynamic parameters were also evaluated. Optimal conditions for the adsorption of TPT from simulated seawater were applied to TPT removal from natural seawater. A higher removal efficiency of TPT (>99 %) was obtained for the nSiO2/fly ash composite but not for fly ash and nSiO2.  相似文献   

11.
ABSTRACT

The overall objective of this pilot-scale study is to investigate the technical feasibility of the removal and destruction of organic contaminants in water using adsorption and photocatalytic oxidation. The process consists of two consecutive operational steps: (1) removal of organic contaminants using fixed-bed adsorption; and (2) regeneration of spent adsorbent using photocatalysis or steam, followed by decontamination of steam condensate using photocatalysis. The pilot-scale study was conducted to evaluate these options at a water treatment plant in Wausau (Wisconsin) for treatment of groundwater contaminated with tetrachloroethene (PCE), trichloroethene (TCE), cis-dichloroethene (cis-DCE), toluene, ethylbenzene (EB), and xylenes. The adsorbents used were F-400 GAC and Ambersorb 563.

In the first treatment strategy, the adsorbents were impregnated with photocatalyst and used for the removal of aqueous organics. The spent adsorbents were then exposed to ultraviolet light to achieve photocatalytic regeneration. Regeneration of adsorbents using photocatalysis was observed to be not effective, probably because the impregnated photocatalyst was fouled by background organic matter present in the groundwater matrix.

In the second treatment strategy, the spent adsorbents were regenerated using steam, followed by cleanup of steam condensate using photocatalysis. Four cycles of adsorption and three cycles of steam regeneration were performed. Ambersorb 563 adsorbent was successfully regenerated using saturated steam at 160 °C within 20 hours. The steam condensate was treated using fixed-bed photo-catalysis using 1% Pt-TiO2 photocatalyst supported on silica gel. After 35 minutes of empty bed contact time, more than 95% removal of TCE, cis-DCE, toluene, EB, and xylenes was achieved, and more than 75% removal of PCE was observed.

In the case of activated carbon adsorbent, steam regeneration was not effective, and a significant loss in adsorbent capacity was observed.  相似文献   

12.
It is well known that adsorption is an efficient method of removal of various pollutants from wastewater. The present study examines the phenol removal from water by adsorption on a new material, based on zeolitic volcanic tuff. This compound contains zeolitic tuff and cellulose, another known adsorbent, in a mass ratio of 4 to 1. The performances of the new adsorbent composite were compared with those of a widely used adsorbent material, zeolitic volcanic tuff. The adsorbent properties were tested on batch synthetic solutions containing 1–10 mg L?1 (1–10 ppm) phenol, at room temperature without pH adjustment. The influence of the adsorbent dose, pH and contact time on the removal degree of phenol from water was investigated. The experimental data were modeled using the Langmuir, Freundlich, and Temkin adsorption isotherms. The Langmuir model was found to best represent our data revealing a monolayer adsorption with a maximum adsorption capacity between 0.12 and 0.53 mg g?1 at 25 °C, for 2.00 g of adsorbent, depending on the initial phenol concentration. The adsorption kinetic study was performed using a pseudo-first- and pseudo-second-order kinetic models illustrating that phenol adsorption on zeolite composite is well described by pseudo-first kinetic equations. Our results indicated that phenol adsorption on the new adsorbent composite is superior to that on the classic zeolite.  相似文献   

13.
Nethaji S  Sivasamy A 《Chemosphere》2011,82(10):1367-1372
Chemically prepared activated carbon material derived from palm flower was used as adsorbent for removal of Amido Black dye in aqueous solution. Batch adsorption studies were performed for the removal of Amido Black 10B (AB10B), a di-azo acid dye from aqueous solutions by varying the parameters like initial solution pH, adsorbent dosage, initial dye concentration and temperature with three different particle sizes such as 100 μm, 600 μm and 1000 μm. The zero point charge was pH 2.5 and the maximum adsorption occurred at the pH 2.3. Experimental data were analyzed by model equations such as Langmuir, Freundlich and Temkin isotherms and it was found that the Freundlich isotherm model best fitted the adsorption data and the Freundlich constants varied from (KF) 1.214, 1.077 and 0.884 for the three mesh sizes. Thermodynamic parameters such as ΔG, ΔH and ΔS were also calculated for the adsorption processes and found that the adsorption process is feasible and it was the endothermic reaction. Adsorption kinetics was determined using pseudo first-order, pseudo second-order rate equations and also Elovich model and intraparticle diffusion models. The results clearly showed that the adsorption of AB10B onto lignocellulosic waste biomass from palm flower (LCBPF) followed pseudo second-order model, and the pseudo second-order rate constants varied from 0.059 to 0.006 (g mg−1 min) by varying initial adsorbate concentration from 25 mg L−1 to 100 mg L−1. Analysis of the adsorption data confirmed that the adsorption process not only followed intraparticle diffusion but also by the film diffusion mechanism.  相似文献   

14.
A comparative study using native garlic peel and mercerized garlic peel as adsorbents for the removal of Pb2+ has been proposed. Under the optimized pH, contact time, and adsorbent dosage, the adsorption capacity of garlic peel after mercerization was increased 2.1 times and up to 109.05 mg g?1. The equilibrium sorption data for both garlic peels fitted well with Langmuir adsorption isotherm, and the adsorbent–adsorbate kinetics followed pseudo-second-order model. These both garlic peels were characterized by elemental analysis, Fourier transform infrared spectrometry (FT-IR), and scanning electron microscopy, and the results indicated that mercerized garlic peel offers more little pores acted as adsorption sites than native garlic peel and has lower polymerization and crystalline and more accessible functional hydroxyl groups, which resulted in higher adsorption capacity than native garlic peel. The FT-IR and X-ray photoelectron spectroscopy analyses of both garlic peels before and after loaded with Pb2+ further illustrated that lead was adsorbed on the through chelation between Pb2+ and O atom existed on the surface of garlic peels. These results described above showed that garlic peel after mercerization can be a more attractive adsorbent due to its faster sorption uptake and higher capacity.  相似文献   

15.
This work presents the structural and adsorption properties of the CaCO3 ?-rich Corbicula fluminea shell as a natural and economic adsorbent to remove Cd ions from aqueous solutions under batch studies. Experiments were conducted with different contact times, various initial concentrations, initial solution pH and serial biosorbent dosage to examine the dynamic characterization of the adsorption and its influence on Cd uptake capacity. The characterization of the C. fluminea shell using SEM/EDX revealed that the adsorbent surface is mostly impregnated by small particles of potentially calcium salts. The dominant Cd adsorption mechanism is strongly pH and concentration dependent. A maximum Cd removal efficiency of 96.20 % was obtained at pH 7 while the optimum adsorbent dosage was observed as 5 g/L. The Langmuir isotherm was discovered to be more suitable to represent the experimental equilibrium isotherm results with higher correlation coefficients (R 2?>?0.98) than Freundlich (R 2?<?0.97).The correlation coefficient values (p?<?0.01) indicated the superiority of the Langmuir isotherm over the Freundlich isotherm.  相似文献   

16.

Introduction

The removal of heavy metals by natural adsorbent has become one of the most attractive solutions for environmental remediation. Natural clay collected from the Late Cretaceous Aleg formation, Tunisia was used as a natural adsorbent for the removal of Hg(II) in aqueous system.

Methods

Physicochemical characterization of the adsorbent was carried out with the aid of various techniques, including chemical analysis, X-ray diffraction, Fourier transform infrared and scanning electron micrograph. Batch sorption technique was selected as an appropriate technique in the current study. Method parameters, including pH, temperature, initial metal concentration and contact time, were varied in order to quantitatively evaluate their effects on Hg(II) adsorption onto the original and pillared clay samples. Adsorption kinetic was studied by fitting the experimental results to the pseudo-first-order and pseudo-second-order kinetic models. The adsorption data were also simulated with Langmuir, Freundlich and Temkin isotherms.

Results

Results showed that the natural clay samples are mainly composed of silica, alumina, iron, calcium and magnesium oxides. The sorbents are mainly mesoporous materials with specific surface area of <250 m2 g?1. From the adsorption of Hg(II) studies, experimental data demonstrated a high degree of fitness to the pseudo-second-order kinetics with an equilibration time of 240 min. The equilibrium data showed the best model fit to Langmuir model with the maximum adsorption capacities of 9.70 and 49.75 mg g?1 for the original and aluminium pillared clays, respectively. The maximum adsorption of Hg(II) on the aluminium pillared clay was observed to occur at pH 3.2. The calculated thermodynamic parameters (?G°, ?H° and ?S°) showed an exothermic adsorption process. The entropy values varied between 60.77 and 117.59 J?mol?1 K?1, and those of enthalpy ranged from 16.31 to 30.77 kJ mol?1. The equilibrium parameter (R L) indicated that the adsorption of Hg(II) on Tunisian smectitic clays was favourable under the experimental conditions of this study.

Conclusion

The clay of the Aleg formation, Tunisia was found to be an efficient adsorbent for Hg(II) removal in aqueous systems.  相似文献   

17.
This study was undertaken to investigate the adsorption capacity of carbaryl on four Indian soils with different physiochemical properties. A batch adsorption study was carried out in order to evaluate the maximum adsorption capacity of carbaryl using a Response Surface Methodology (RSM). The effects of operating parameter such as initial carbaryl concentration (1–20 mgL?1), adsorbent dosage (0.5–6 g) and contact time (10–180 min) were examined. The proposed quadratic model for Box-Behnken design fits very well to the experimental data because it may be used to navigate design space according to ANOVA results. The regression co-efficient (R2) of the models developed and the results of validation experiments conducted at optimal conditions strongly suggests that the predicted values are in good agreement with experimental results. Contour and response surface plots are used to determine the interactions effects of main factors and optimal conditions of the process. The experiment can be utilized as a guideline for better understanding of carbaryl adsorption onto soil under different operating conditions. The results show that the forest soil is most efficient in binding carbaryl (Sevin) than the other types of soil tested.  相似文献   

18.
The present work investigates the potential use of metal hydroxides sludge (MHS) generated from hot dipping galvanizing plant for adsorption of Congo Red and Naphthol Green B dyes from aqueous solutions. Characterization of MHS included infrared and X-ray fluorescence analysis. The effect of shaking time, initial dye concentration, temperature, adsorbent dosage and pH has been investigated. The results of adsorption experiments indicate that the maximum capacity of Congo Red and Naphthol Green B dyes at equilibrium (q e) and percentage of removal at pH 6 are 40 mg/g, 93 %, and 10 mg/g, 52 %, respectively. Some kinetic models were used to illustrate the adsorption process of Congo Red and Naphthol Green B dyes using MHS waste. Thermodynamic parameters such as (ΔG, ΔS, and ΔH) were also determined.  相似文献   

19.
The work highlights the utilization of an agricultural waste mustard plant ash (MPA) as a soil additive and an adsorbent. MPA was characterized by X-ray fluorescence (XRF), energy-dispersive X-ray spectroscopy (EDX), proximate analysis, CHNS analysis, Brunauer–Emmett–Teller (BET) surface area analysis, zeta potential measurements, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRF analysis confirmed the presence of CaO (31.35 %), K2O (18.55 %), and P2O5 (6.99 %), all of which act as micronutrients to plants. EDX also confirms high amount of elemental O, Ca, K, and P. The adsorptive ability of MPA was investigated using a commonly used herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), as a representative chemical. Batch adsorption experiments were conducted to study the effect of different operational parameters such as adsorbent dose, initial 2,4-D concentration, contact time, and temperature on the adsorption process. Data from experiments were fitted to various kinetic and isothermal models. The pseudo-second-order kinetic model was found to show the best fit (R 2?>?0.99), with the highest k 2 value of the order 105. Based on the study results, dosage of MPA/hectare for different crops has been recommended for effective removal of 2,4-D. To our knowledge, this is the first study in which MPA has been characterized in detail and investigated for dual applications (as an adsorbent and as a soil additive).  相似文献   

20.
Sewage sludge (SS) with corn stalk (CS) was used to prepare SS-based activated carbon (SAC) by pyrolysis with ZnCl2. The effects of mixing ratio on surface area and pore size distribution, elemental composition, surface chemistry, and morphology were investigated. The results demonstrated that the addition of CS into SS samples improved the surface area (from 92 to 902 m2/g) and the microporosity (from 1.2 to 4.1 %) of the adsorbents and, therefore, enhancing the adsorption performance. The removal of leachate chemical oxygen demand (COD) was also determined. It was found that the COD removal rate reached 85 % at pH 4 with the SAC (90 wt% CS) dosage of 2 % (g/mL) and an adsorption time of 40 min. The adsorption experimental data were fitted by both Langmuir and Freundlich adsorption isotherms. Long-chain alkanes and refractory organics were found in raw leachate, but could be removed by SAC largely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号