首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 106 毫秒
1.
Indicators for sustainable energy development: Brazil's case study   总被引:3,自引:0,他引:3  
This article summarizes the results of the project on indicators for sustainable energy development (ISED) in Brazil. The project's aim was to present energy related economic, social and environmental data to policy makers in a coherent and consistent form, showing interlinkages, time‐series and cross‐sectoral analyses and assess energy policy. Two priority areas assessed by these indicators, regarding the country's energy supply and demand, helped in the identification of a number of energy policy options that focused on specific aspects of the country's energy sector. On the supply side, these options include the development and stimulation of renewable energy, such as small‐scale hydroelectric, wind, solar photovoltaic power and bagasse cogeneration; stimulation of programmes for ethanol use as automotive fuel and sugarcane bagasse cogeneration; and implementation of natural gas‐fired, combined heat and power (CHP) plants. On the demand side, policy options include: the full implementation of the law on efficiency standards for appliances; expansion of utility investment in end‐use energy efficiency; adoption of targets and protocols to reduce energy intensity in the industrial sector; improvement of passenger transport efficiency; and the creation of a fund to improve energy affordability for the poor.  相似文献   

2.
A waste product generated in the sugar industry in India has been converted into a cheap potential adsorbent. This has been characterised and utilized for the removal of chromium (VI) from synthetic and actual wastewater. The sorption efficiency decreases with increase in pH. Adsorption of Cr (VI) on bagasse fly ash follows the Freundlich and Langmuir isotherms and these have been used to obtain the thermodynamic parameters of the process. The sorption capacity of this adsorbent for chromium removal is found to be comparable to other low cost adsorbents.  相似文献   

3.
Hydrogen-fed proton exchange membrane fuel cell (PEMFC) has to overcome high installation and operation cost before being adopted as a distributed power candidate. Cogeneration of power and heat is a good approach to increase hydrogen energy utilization rate. A PEMFC-based power and heat cogeneration system is proposed and established in the current study to investigate system’s technological and economical feasibility. This cogeneration of heat and power (CHP) system composes of a 2.5-kW fuel cell stack, hydrogen supply system, air supply system, water and heat management system, and heat recovery system. The control strategies to automate the system operation are realized by a programmable automation controller (PAC) system. Detailed measurement of the system is also constructed along with a web-based human–machine interface (HMI) platform to facilitate experiments and demonstration. Preliminary testing of the CHP system shows good performance of heat and power outputs. System’s electrical power conversion efficiency and thermal efficiency of the CHP system are measured at 38% and 35%, respectively. System combined efficiency therefore reached about 73%.  相似文献   

4.
5.
Emerging attention has been given to the use of biomass in local areas for its contribution to reducing fossil fuel dependence and mitigating global warming. The objective of the present study is to develop a method that quantitatively assesses the effects of local biomass projects on fossil fuel consumption and greenhouse gas (GHG) emission. A practical method based on a life cycle approach is proposed and applied to a case of bioethanol project in Miyako Islands of Japan. The project is aiming to produce bioethanol from molasses within the islands, and to replace the entire gasoline consumed in the islands to E3 fuel (i.e., a mixture of 3% ethanol and 97% gasoline by volume). The assessment using the developed method revealed that, first, the complete shift from gasoline to E3 fuel allows for decreases in fossil fuel consumption and GHG emission. Second, the performance of the project is improved by the integration of the ethanol plant and the sugar factory. Moreover, the assessment found that, in small-scale bioethanol projects, the contribution of capital goods to life cycle fuel consumption and GHG emission is not negligible.  相似文献   

6.
Due to the existing huge biogas resource in the rural area of China, biogas is widely used for production and living. Cogeneration system provides an opportunity to realize the balanced utilization of the renewable energy such as biogas and solar energy. This article presented a numerical investigation of a hybrid energy-driven organic Rankine cycle (ORC) cogeneration system, involving a solar ORC and a biogas boiler. The biogas boiler with a module of solar parabolic trough collectors (PTCs) is employed to provide heat source to the ORC via two distinct intermediate pressurized circuits. The cogeneration supplied the power to the air-condition in summer condition and hot water, which is heated in the condenser, in winter condition. The system performance under the subcritical pressures has been assessed according to the energy–exergy and economic analysis with the organic working fluid R123. The effects of various parameters such as the evaporation and condensation temperatures on system performance were investigated. The net power generation efficiency of the cogeneration system is 11.17%, which is 25.8% higher than that of the base system at an evaporation temperature 110°C. The exergy efficiency of ORC system increases from 35.2% to 38.2%. Moreover, an economic analysis of the system is carried out. The results demonstrate that the profits generated from the reduction of biogas fuel and electricity consumption can lead to a significant saving, resulting in an approximate annual saving from $1,700 to $3,000. Finally, a case study based on the consideration of typical rural residence was performed, which needs a payback period of 7.8 years under the best case.  相似文献   

7.
The production of biodiesel using oleaginous microorganisms is investigated as promising alternative to produce a truly sustainable and renewable transportation fuel. While the feasibility of this approach has been shown on the laboratory scale, a commercial scale implementation is to date inhibited due to economic restraints. In order to evaluate the current cost situation and to develop suggestions to reduce production related costs, a simple cost analysis of the proposed microbial oil production process has been carried out. For closed fermentation in large-scale fermenters a break-even price of 2,350 US$ t–1 for microbial oil was calculated. In the context of a sensitivity analysis it was shown that especially alterations in capital cost can lead to overall cost reductions. Accordingly, an open pond cultivation approach was designed, cutting the cost for equipment almost in half and decreasing the break-even price to 1,723 US$ t–1. However, these reductions are only feasible when stable biomass and lipid yields can be ensured in open-pond systems, because the sensitivity analysis identified these yield parameters as leading factors influencing the break-even price. Even under very optimistic assumptions, it was not possible to reduce the break-even price below that of conventional plant oils as competitive products. Therefore, economic feasibility of the process will probably only occur if on one hand considerable technical development and efficiency improvements of the production process are made while on the other hand plant and crude oil prices are continuously increasing.  相似文献   

8.
In regions characterized by water scarcity, such as coastal Southern California, groundwater containing chromophoric dissolved organic matter is a viable source of water supply. In the coastal aquifer of Orange County in California, seawater intrusion driven by coastal groundwater pumping increased the concentration of bromide in extracted groundwater from 0.4 mg l?1 in 2000 to over 0.8 mg l?1 in 2004. Bromide, a precursor to bromate formation is regulated by USEPA and the California Department of Health as a potential carcinogen and therefore must be reduced to a level below 10 μg l?1. This paper compares two processes for treatment of highly coloured groundwater: nanofiltration and ozone injection coupled with biologically activated carbon. The requirement for bromate removal decreased the water production in the ozonation process to compensate for increased maintenance requirements, and required the adoption of catalytic carbon with associated increase in capital and operating costs per unit volume. However, due to the absence of oxidant addition in nanofiltration processes, this process is not affected by bromide. We performed a process analysis and a comparative economic analysis of capital and operating costs for both technologies. Our results show that for the case studied in coastal Southern California, nanofiltration has higher throughput and lower specific capital and operating cost, when compared to ozone injection with biologically activate carbon. Ozone injection with biologically activated carbon, compared to nanofiltration, has 14% higher capital cost and 12% higher operating costs per unit water produced while operating at the initial throughput. Due to reduced ozone concentration required to accommodate for bromate reduction, the ozonation process throughput is reduced and the actual cost increase (per unit water produced) is 68% higher for capital cost and 30% higher for operations.  相似文献   

9.
This study explores electricity pricing as a demand-side management (DSM) strategy, looking to the developed country experience for insights into the types of approaches currently used, their effects, and the direction in which electricity pricing is headed. The discussion should be especially useful for electric utilities in developing countries that are exploring alternatives to capacity expansion to meet current and future electric power demand. For these electric utilities, demand-side options are especially important under today's conditions in which the capital cost of new generating capacity is increasing rapidly, international funds for expanding power sectors are not expected to be sufficient for meeting projected capacity needs and environmental concerns over fossil fuel emissions have raised new questions about constructing thermal power plants.  相似文献   

10.
In this paper Molten Carbonate Fuel Cells (MCFCs) are considered for their potential application in carbon dioxide separation when integrated into natural gas fired combined cycles. The MCFC performs on the anode side an electrochemical oxidation of natural gas by means of CO32? ions which, as far as carbon capture is concerned, results in a twofold advantage: the cell removes CO2 fed at the cathode to promote carbonate ion transport across the electrolyte and any dilution of the oxidized products is avoided.The MCFC can be “retrofitted” into a combined cycle, giving the opportunity to remove most of the CO2 contained in the gas turbine exhaust gases before they enter the heat recovery steam generator (HRSG), and allowing to exploit the heat recovery steam cycle in an efficient “hybrid” fuel cell + steam turbine configuration. The carbon dioxide can be easily recovered from the cell anode exhaust after combustion with pure oxygen (supplied by an air separation unit) of the residual fuel, cooling of the combustion products in the HRSG and water separation. The resulting power cycle has the potential to keep the overall cycle electrical efficiency approximately unchanged with respect to the original combined cycle, while separating 80% of the CO2 otherwise vented and limiting the size of the fuel cell, which contributes to about 17% of the total power output so that most of the power capacity relies on conventional low cost turbo-machinery. The calculated specific energy for CO2 avoided is about 4 times lower than average values for conventional post-combustion capture technology. A sensitivity analysis shows that positive results hold also changing significantly a number of MCFC and plant design parameters.  相似文献   

11.
Over the next two decades, our nation will need to add a substantial amount of new power generation capacity. The possibility of more stringent environmental regulations for greenhouse gas emissions in the utility sector has provided a window of opportunity for integrated gasification combined cycles (IGCCs) equipped with carbon capture and sequestration (CCS) to participate significantly in this expansion. This paper analyzes several advanced technologies under development in the Department of Energy (DOE) research and development (R&D) portfolio that have the potential to improve process efficiency, reduce capital and operating expense, and increase plant availability resulting in a significant reduction in the cost of electricity for plants that capture carbon.  相似文献   

12.
Biomass energy and carbon capture and storage (BECCS) can lead to a net removal of atmospheric CO2. This paper investigates environmental and economic performances of CCS retrofit applied to two mid-sized refineries producing ethanol from sugar beets. Located in the Region Centre France, each refinery has two major CO2 sources: fermentation and cogeneration units. “carbon and energy footprint” (CEF) and “discounted cash flow” (DCF) analyses show that such a project could be a good opportunity for CCS early deployment. CCS retrofit on fermentation only with natural gas fired cogeneration improves CEF of ethanol production and consumption by 60% without increasing much the non renewable energy consumption. CCS retrofit on fermentation and natural gas fired cogeneration is even more appealing by decreasing of 115% CO2 emissions, while increasing non renewable energy consumption by 40%. DCF shows that significant project rates of return can be achieved for such small sources if both a stringent carbon policy and direct subsidies corresponding to 25% of necessary investment are assumed. We also underlined that transport and storage cost dilution can be realistically achieved by clustering emissions from various plants located in the same area. On a single plant basis, increasing ethanol production can also produce strong economies of scale.  相似文献   

13.
Municipal solid waste (MSW) disposal and management is one of the most significant challenges faced by urban communities around the world. Municipal solid waste management (MSWM) over the years has utilized many sophisticated technologies and smart strategies. Municipalities worldwide have pursued numerous initiatives to reduce the environmental burden of the MSW treatment strategies. One of the most beneficial MSWM strategies is the thermal treatment or energy recovery to obtain cleaner renewable energy from waste. Among many waste-to-energy strategies, refuse-derived fuel (RDF) is a solid recovered fuel that can be used as a substitute for conventional fossil fuel. The scope of this study is to investigate the feasibility of RDF production with MSW generated in Metro Vancouver, for co-processing in two cement kilns in the region. This study investigates environmental impacts and benefits and economic costs and profits of RDF production. In addition, RDF utilization as an alternative fuel in cement kilns has been assessed. Cement manufacturing has been selected as one of the most environmentally challenged industries and as a potential destination for RDF to replace a portion of conventional fossil fuels with less energy-intensive fuel. A comprehensive environmental assessment is conducted using a life cycle assessment (LCA) approach. In addition, cost–benefit analysis (CBA) has been carried out to study the economic factors. This research confirmed that RDF production and use in cement kilns can be environmentally and economically viable solution for Metro Vancouver.  相似文献   

14.
为确定生物质能发电环境方面的可行性,分析了生物质能发电的工艺流程,相比于火电的优缺点,并进行了生物质能热电联厂的大气环境影响评价研究。结果表明:预测评价的烟尘、SO2和NO2排放浓度分别为11,63mg/m^3、200.3mg/m^3和378.7mg/m^3,均远低于火力发电的排放值;在不同条件下、不同地点SO2和NO2的1小时、日均浓度也均远低于火力发电的浓度值。说明了生物质能发电在环境友好性方面具有明显的优势。  相似文献   

15.
We propose a new method of cost-benefit analysis to investigate whether the new air pollution control equipment-electrocyclone vis-a-vis cyclone has the potential for practical use. When the flow rate of waste gas is 1000 m3/min, the cost of cyclone is then compared with that of electrocyclone provided that the benefit side is being fixed. The results show that the capital cost of electrocyclone is higher than that of cyclone, but the operating cost of electrocyclone is much lower than that of cyclone. Straight-line depreciation method is used to calculate the depreciation of capital cost per year. The total cost of electrocyclone is NT$ 160 290 per year which is cheaper than that of cyclone NT$ 225 356.  相似文献   

16.
This paper presents an economic study of a novel thermal fry-drying technology which transforms sewage sludge and recycled cooking oil (RCO) into a solid fuel. The process is shown to have significant potential advantage in terms of capital costs (by factors of several times) and comparable operating costs. Three potential variants of the process have been simulated and costed in terms of both capital and operating requirements for a commercial scale of operation. The differences are in the energy recovery systems, which include a simple condensation of the evaporated water and two different heat pump configurations. Simple condensation provides the simplest process, but the energy efficiency gain of an open heat pump offset this, making it economically somewhat more attractive. In terms of operating costs, current sludge dryers are dominated by maintenance and energy requirements, while for fry-drying these are comparatively small. Fry-drying running costs are dominated by provision of makeup waste oil. Cost reduction could focus on cheaper waste oil, e.g. from grease trap waste.  相似文献   

17.
Given restrictions on sulfur dioxide emissions, a feasible long-run response could involve either an investment in improving boiler fuel-efficiency or a shift to a production process that is effective in removing sulfur dioxide. To allow for the possibility of substitution between sulfur and productive capital, we measure the shadow price of sulfur dioxide as the opportunity cost of lowering sulfur emissions in terms of forgone capital. The input distance function is estimated with data from 51 coal-fired US power units operating between 1977 and 1986. The indirect Morishima elasticities of substitution indicate that the substitutability of capital for sulfur is relatively high. The overall weighted average estimate of the shadow price of sulfur is -0.076 dollars per pound in constant 1976 dollars.  相似文献   

18.
This paper presents a study of cement replacement by sugar cane bagasse ash (SCBA) in industrial scale aiming to reduce the CO2 emissions into the atmosphere. SCBA is a by-product of the sugar/ethanol agro-industry abundantly available in some regions of the world and has cementitious properties indicating that it can be used together with cement. Recent comprehensive research developed at the Federal University of Rio de Janeiro/Brazil has demonstrated that SCBA maintains, or even improves, the mechanical and durability properties of cement-based materials such as mortars and concretes. Brazil is the world’s largest sugar cane producer and being a developing country can claim carbon credits. A simulation was carried out to estimate the potential of CO2 emission reductions and the viability to issue certified emission reduction (CER) credits. The simulation was developed within the framework of the methodology established by the United Nations Framework Convention on Climate Change (UNFCCC) for the Clean Development Mechanism (CDM). The State of São Paulo (Brazil) was chosen for this case study because it concentrates about 60% of the national sugar cane and ash production together with an important concentration of cement factories. Since one of the key variables to estimate the CO2 emissions is the average distance between sugar cane/ethanol factories and the cement plants, a genetic algorithm was developed to solve this optimization problem. The results indicated that SCBA blended cement reduces CO2 emissions, which qualifies this product for CDM projects.  相似文献   

19.
Abstract

This article summarizes the results of a study for a 100 kWe DC electrical power PEM fuel cell system. The system consists of a pre-steam reformer, a steam reformer, high and low temperature shift reactors, a preferential oxidation reactor, a PEM fuel cell, a combustor, and an expander. Acceptable net electrical efficiency levels can be achieved via intensive heat integration within the PEM fuel cell system. The calculations take into account the auxiliary equipment such as pumps, com pressors, heaters, coolers, heat exchangers and pipes. The process simulation package “Aspen-HYSYS 3.1’’ has been used. The operation parameters of the reactors have been determined considering all the technical limitations involved. A gasoline type hydrocarbon fuel has been studied as hydrogen rich gas source. Thermal efficiencies have been calculated for all of the major system components for selected operation conditions. The fuel cell stack efficiency has been calculated as a function of cell numbers (500, 750, 1000, and 1250 cells). Efficiencies of all of the major system components along with auxiliary unit efficiencies determine the net electrical efficiency of the PEM fuel cell system. The obtained net electrical efficiency levels are between 34 (500 cells) to 41% (1250 cells).  相似文献   

20.
A computerized water-energy-management system (WEMS) can be used by center pivot operators to reduce pumping fuel costs and monitoring expenses. Irrigation costs are lowered primarily because the system used climatic data and plant growth models to derive water schedules that considerably lowers the use of water compared with conventional irrigation practices. A capital budget analysis of a hypothetical, but representative farm growing corn, shows that cost savings are from three sources: 61 percent from pumping less water, 28 percent from labor savings, and 11 percent from savings on truck fuel, maintenance, and oiL The analysis illustrates that only a 4 percent water savings from irrigation scheduling over a 10-year period is required for the investment to be profitable for many central High Plains’ irrigators. The water savings required are relatively small compared with the potentials shown by irrigation scheduling research. WEMS is cost effective and can extend the life of the ground water source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号