首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We consider a stochastic fire growth model, with the aim of predicting the behaviour of large forest fires. Such a model can describe not only average growth, but also the variability of the growth. Implementing such a model in a computing environment allows one to obtain probability contour plots, burn size distributions, and distributions of time to specified events. Such a model also allows the incorporation of a stochastic spotting mechanism.
Reg J. KulpergerEmail:
  相似文献   

2.
To plan for the habitat needs of forest songbirds of conservation concern, managers need to understand how spatial heterogeneity in forest conditions influences habitat quality. I used difference boundary detection (wombling) and spatially constrained clustering to delineate boundaries in various combinations of four forest vegetation variables (understory height, understory density, percent deciduous vs. conifer understory, and percent canopy closure) in two Michigan northern hardwood forests. My goal was to identify vegetation boundaries that corresponded with boundaries in an understory-dependent songbird’s distribution, and with boundaries in demographic measures for this songbird that indicate habitat quality (e.g., occupancy by older vs. yearling males, reproductive success). Both forests were actively-managed, mature stands: The first site (78 ha) was heavily deer-browsed (HB), with many browse-resistant conifers in the understory, and the second (62 ha) was less-browsed (LB), with deciduous-dominated understory. I compared the vegetation difference and cluster boundaries to difference boundaries based on 6 years of distribution and demographic data for black-throated blue warblers (Dendroica caerulescens). At the HB site, warbler boundaries overlapped strongly with vegetation boundaries that included all four variables, and clustering effectively divided the habitat into areas with different warbler occupancy and demographic characteristics. At the LB site, warbler distribution showed high overlap with difference and cluster boundaries based on just the height and density of understory vegetation, and cluster boundaries again effectively partitioned the study area into sites that varied in habitat quality. Thus, geographic boundary analysis is likely to be a useful tool for identifying key vegetation variables for management, and for delineating clusters (habitat patches) within sites that capture differences in habitat quality.
Kimberly R. HallEmail:
  相似文献   

3.
Polygon-based thematic maps can be composed of boundaries that exist by definition—i.e., bona fide boundaries—or those that exist relative to a specific interpretation of a spatial phenomenon—i.e., fiat boundaries. The construction of maps composed of fiat boundaries is usually based on a subjective interpretive methodology that is affected by the data used to construct the map and the minimum mapping unit employed. That fiat boundaries are not the same as bona fide boundaries affects their use in computer-based spatial decision support tools. This is discussed both in terms of an analysis conducted at one specific moment, and in respect to increasingly common multi-temporal analysis.
Kim LowellEmail:
  相似文献   

4.
Landscapes exhibit various degrees of spatial heterogeneity according to the differential intensity and interactions among processes and disturbances that they are subjected to. The management of these spatially dynamical landscapes requires that we can accurately map them and monitor the evolution of their spatial arrangement through time. Such a mapping requires first the delineation of various spatial features present in the landscape such as patches and their boundaries. However, there are several environmental (spatial variability) as well as technical (spatial resolution) factors that impair our ability to accurately delineate patches and their boundaries as polygons. Here, we investigate how the spatial structure and spatial resolution of the data affect the accuracy of detecting patches and their boundaries over simulated landscapes and real data. Simulated landscapes consisted of two patches with parameterized spatial properties (patches’ level of spatial autocorrelation, mean value and variance) separated by a boundary of known location. Real data allowed the investigation of a more complex landscape where there is a known transition between two forest domains with unknown spatial properties. Boundary locations are defined using the lattice-wombling edge detector at various aggregation levels and the degree of patch homogeneity is determined using Getis-Ord’s G*. Results show that boundary detection using a local edge detector is greatly affected by the spatial conditions of the data, namely variance, abruptness of the spatial gradient between two patches and patches’ level of spatial autocorrelation. They also suggest that data aggregation is not a panacea for bringing out the ecological process creating the patches and that indicators derived from local measures of spatial association can be complementary tools for analysing spatial structures affecting boundary delineation.
Marie-Josée FortinEmail:
  相似文献   

5.
Statistical characterization of past fire regimes is important for both the ecology and management of fire-prone ecosystems. Survival analysis—or fire frequency analysis as it is often called in the fire literature—has increasingly been used over the last few decades to examine fire interval distributions. These distributions can be generated from a variety of sources (e.g., tree rings and stand age patterns), and analysis typically involves fitting the Weibull model. Given the widespread use of fire frequency analysis and the increasing availability of mapped fire history data, our goal has been to review and to examine some of the issues faced in applying these methods in a spatially explicit context. In particular, through a case study on the massive Cedar Fire in 2003 in southern California, we examine sensitivities of parameter estimates to the spatial resolution of sampling, point- and area-based methods for assigning sample values, current age surfaces versus historical intervals in generating distributions, and the inclusion of censored (i.e., incomplete) observations. Weibull parameter estimates were found to be roughly consistent with previous fire frequency analyses for shrublands (i.e., median age at burning of ~30–50 years and relatively low age dependency). Results indicate, however, that the inclusion or omission of censored observations can have a substantial effect on parameter estimates, far more than other decisions about specifics of sampling.
Max A. MoritzEmail:
  相似文献   

6.
The concept of the renewal property is extended to processes indexed by a multidimensional time parameter. The definition given includes not only partial sum processes, but also Poisson processes and many other point processes whose jump points are not totally ordered. Various properties of renewal processes are discussed. Renewal processes are proposed as a basis for modelling the spread of a forest fire under a prevailing wind.
B. Gail IvanoffEmail:
  相似文献   

7.
The influence of multiple anchored fish aggregating devices (FADs) on the spatial behavior of yellowfin (Thunnus albacares) and bigeye tuna (T. obesus) was investigated by equipping all thirteen FADs surrounding the island of Oahu (HI, USA) with automated sonic receivers (“listening stations”) and intra-peritoneally implanting individually coded acoustic transmitters in 45 yellowfin and 12 bigeye tuna. Thus, the FAD network became a multi-element passive observatory of the residence and movement characteristics of tuna within the array. Yellowfin tuna were detected within the FAD array for up to 150 days, while bigeye tuna were only observed up to a maximum of 10 days after tagging. Only eight yellowfin tuna (out of 45) and one bigeye tuna (out of 12) visited FADs other than their FAD of release. Those nine fish tended to visit nearest neighboring FADs and, in general, spent more time at their FAD of release than at the others. Fish visiting the same FAD several times or visiting other FADs tended to stay longer in the FAD network. A majority of tagged fish exhibited some synchronicity when departing the FADs but not all tagged fish departed a FAD at the same time: small groups of tagged fish left together while others remained. We hypothesize that tuna (at an individual or collective level) consider local conditions around any given FAD to be representative of the environment on a larger scale (e.g., the entire island) and when those conditions become unfavorable the tuna move to a completely different area. Thus, while the anchored FADs surrounding the island of Oahu might concentrate fish and make them more vulnerable to fishing, at a meso-scale they might not entrain fish longer than if there were no (or very few) FADs in the area. At the existing FAD density, the ‘island effect’ is more likely to be responsible for the general presence of fish around the island than the FADs. We recommend further investigation of this hypothesis.
Laurent Dagorn (Corresponding author)Email:
Kim N. HollandEmail:
David G. ItanoEmail:
  相似文献   

8.
This paper examines the effect wildfire mitigation has on broad-scale wildfire behavior. Each year, hundreds of million of dollars are spent on fire suppression and fuels management applications, yet little is known, quantitatively, of the returns to these programs in terms of their impact on wildfire extent and intensity. This is especially true when considering that wildfire management influences and reacts to several, often times confounding factors, including socioeconomic characteristics, values at risk, heterogeneous landscapes, and climate. Due to the endogenous nature of suppression effort and fuels management intensity and placement with wildfire behavior, traditional regression models may prove inadequate. Instead, I examine the applicability of propensity score matching (PSM) techniques in modeling wildfire. This research makes several significant contributions including: (1) applying techniques developed in labor economics and in epidemiology to evaluate the effects of natural resource policies on landscapes, rather than on individuals; (2) providing a better understanding of the relationship between wildfire mitigation strategies and their influence on broad-scale wildfire patterns; (3) quantifying the returns to suppression and fuels management on wildfire behavior.
David T. ButryEmail:
  相似文献   

9.
We analyze and model the structure of spatio-temporal wildfire ignitions in the St. Johns River Water Management District in northeastern Florida. Previous studies, based on the K-function and an assumption of homogeneity, have shown that wildfire events occur in clusters. We revisit this analysis based on an inhomogeneous K-function and argue that clustering is less important than initially thought. We also use K-cross functions to study multitype point patterns, both under homogeneity and inhomogeneity assumptions, and reach similar conclusions as above regarding the amount of clustering. Of particular interest is our finding that prescribed burns seem not to reduce significantly the occurrence of wildfires in the current or subsequent year over this large geographical region. Finally, we describe various point pattern models for the location of wildfires and investigate their adequacy by means of recent residual diagnostics.
Marc G. Genton (Corresponding author)Email: Email:
  相似文献   

10.
Infectious disease surveillance has become an international top priority due to the perceived risk of bioterrorism. This is driving the improvement of real-time geo-spatial surveillance systems for monitoring disease indicators, which is expected to have many benefits beyond detecting a bioterror event. West Nile Virus surveillance in New York State (USA) is highlighted as a working system that uses dead American Crows (Corvus brachyrhynchos) to prospectively indicate viral activity prior to human onset. A cross-disciplinary review is then presented to argue that this system, and infectious disease surveillance in general, can be improved by complementing spatial cluster detection of an outcome variable with predictive “risk mapping” that incorporates spatiotemporal data on the environment, climate and human population through the flexible class of generalized linear mixed models.
Glen D. JohnsonEmail:
  相似文献   

11.
12.
13.
Consider the removal experiment used to estimate population sizes. Statistical methods towards testing the homogeneity of capture probabilities of animals, including a graphical diagnostic and a formal test, are presented and illustrated by real biological examples. Simulation is used to assess the test and compare it with the χ2 test.
Chang Xuan MaoEmail:
  相似文献   

14.
We revisit one of the classical problems in geography and cartography where multiple observations on a lattice (N) need to be grouped into many fewer regions (G), especially when this number of desired regions is unknown a priori. Since an optimization through all possible aggregations is not feasible, a hierarchical classification scheme is proposed with an objective function sensitive to spatial pattern. The objective function to be minimized during the assignment of observations to regions (classification) consists of two terms: the first characterizes accuracy and the second, model complexity. For the latter, we introduce a spatial measure that characterizes the number of homogeneous patches rather than the usual number of classes. A simulation study shows that such a classification procedure is less sensitive to random and spatially correlated error (noise) than non-spatial classification. We also show that for conditional autoregressive error (noise) fields the optimal partitioning is the one that has the highest within-units generalized Moran coefficient. The classifier is implemented in ArcView to demonstrate both a socio-economic and an environmental application to illustrate some potential applications.
Tarmo K. Remmel (Corresponding author)Email:
  相似文献   

15.
A complex multivariate spatial point pattern of a plant community with high biodiversity is modelled using a hierarchical multivariate point process model. In the model, interactions between plants with different post-fire regeneration strategies are of key interest. We consider initially a maximum likelihood approach to inference where problems arise due to unknown interaction radii for the plants. We next demonstrate that a Bayesian approach provides a flexible framework for incorporating prior information concerning the interaction radii. From an ecological perspective, we are able both to confirm existing knowledge on species’ interactions and to generate new biological questions and hypotheses on species’ interactions.
Rasmus P. WaagepetersenEmail:
  相似文献   

16.
Life histories of penaeid shrimp have been classified according to the preferred habitats of postlarval, juvenile, and adult stages, ranging from exclusively estuarine to exclusively offshore waters. Brown shrimp Farfantepenaeus californiensis migrate to an offshore habitat at the juvenile stage or even a smaller body size. This paper presents results of monthly samplings from 24 stations over 1 year in the Agiabampo Lagoon complex, a hypersaline lagoon in northwestern Mexico. Five species of penaeid shrimp were identified, with brown shrimp the most abundant during the year of sampling. Results suggest that residency of brown shrimp inside this lagoon is longer than reported in previous studies. An interaction between length and environmental variables (near-surface temperature, salinity, and rainfall) appear to be cues concerning migration.
C. A. Salinas-ZavalaEmail:
  相似文献   

17.
Understanding and being able to predict forest fire occurrence, fire growth and fire intensity are important aspects of forest fire management. In Canada fire management agencies use the Canadian Forest Fire Danger Rating System (CFFDRS) to help predict these elements of forest fire activity. In this paper a review of the CFFDRS is presented with the main focus on understanding and interpreting Canadian Fire Weather Index (FWI) System outputs. The need to interpret the outputs of the FWI System with consideration to regional differences is emphasized and examples are shown of how the relationship between actual fuel moisture and the FWI System’s moisture codes vary from region to region. Examples are then shown of the relationship between fuel moisture and fire occurrence for both human- and lightning-caused fire for regions with different forest composition. The relationship between rate of spread, fuel consumption and the relative fire behaviour indices of the FWI System for different forest types is also discussed. The outputs of the CFFDRS are used every day across Canada by fire managers in every district, regional and provincial fire management office. The purpose of this review is to provide modellers with an understanding of this system and how its outputs can be interpreted. It is hoped that this review will expose statistical modellers and other researchers to some of the models used currently in forest fire management and encourage further research and development of models useful for understanding and managing forest fire activity.
B. Mike WottonEmail:
  相似文献   

18.
Properly sampling soils and mapping soil contamination in urban environments requires that impacts of spatial autocorrelation be taken into account. As spatial autocorrelation increases in an urban landscape, the amount of duplicate information contained in georeferenced data also increases, whether an entire population or some type of random sample drawn from that population is being analyzed, resulting in conventional power and sample size calculation formulae yielding incorrect sample size numbers vis-à-vis model-based inference. Griffith (in Annals, Association of American Geographers, 95, 740–760, 2005) exploits spatial statistical model specifications to formulate equations for estimating the necessary sample size needed to obtain some predetermined level of precision for an analysis of georeferenced data when implementing a tessellation stratified random sampling design, labeling this approach model-informed, since a model of latent spatial autocorrelation is required. This paper addresses issues of efficiency associated with these model-based results. It summarizes findings from a data collection exercise (soil samples collected from across Syracuse, NY), as well as from a set of resampling and from a set of simulation experiments following experimental design principles spelled out by Overton and Stehman (in Communications in Statistics: Theory and Methods, 22, 2641–2660). Guidelines are suggested concerning appropriate sample size (i.e., how many) and sampling network (i.e., where).
Daniel A. GriffithEmail:
  相似文献   

19.
Line-intersect sampling based on segmented transects is adopted in many forest inventories to quantify important ecological indicators such as coarse woody debris attributes. By assuming a design-based approach, Affleck, Gregoire and Valentine (2005, Environ Ecol Stat 12:139–154) have recently proposed a sampling protocol for this line-intersect setting and have suggested an estimation method based on linear homogeneous estimators. However, their proposal does not encompass the estimation procedure currently adopted in some national forest inventories. Hence, the present paper aims to introduce a unifying perspective for both methods. Moreover, it is shown that the two procedures give rise to coincident estimators for almost all the usual field applications. Finally, some strategies for efficient segmented-transect replications are considered.
Lucio BarabesiEmail:
  相似文献   

20.
In this paper we examine the use of data augmentation techniques for simplifying iterative simulation in the context of both Bayesian and classical statistical inference for survival rate estimation. We examine two distinct model families common in population ecology to illustrate our ideas, ring-recovery models and capture–recapture models, and we present the computational advantage of this approach. We discuss also the fact that problems associated with identifiability in the classical framework can be overcome using data augmentation, but highlight the dangers in doing so under both inferential paradigms.
I. C. OlsenEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号