首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Some of the mechanisms involved in inorganic carbon (Ci) acquisition by tropical seagrasses from the western Indian Ocean were described by Björk et al. (Mar Biol 129:363–366, 1997). However, since then, it has been found that an additional, buffer-sensitive, system of Ci utilisation may operate in some temperate seagrasses (Hellblom et al. in Aquat Bot 69:55–62, 2001, Hellblom and Axelsson in Photos Res 77:173–191, 2003); this buffer sensitivity indicates a mechanism in which electrogenic H+ extrusion may form acidic diffusion boundary layers, in which either HCO 3 ? –H+ is co-transported into the cells, or where HCO 3 ? is converted to CO2 (as catalysed by carbonic anhydrase) prior to uptake of the latter Ci form. Because a buffer was used in the 1997 study, we found it important to reinvestigate those same eight species, taking into account the direct effect of buffers on this potential mode of Ci acquisition in these plants. In doing so, it was found that all seagrass species investigated except Cymodocea serrulata were sensitive to 50 mM TRIS buffer of the same pH as the natural seawater in which they grew (pH 8.0). Especially sensitive were Halophila ovalis, Halodule wrightii and Cymodocea rotundata, which grow high up in the intertidal zone (only ca. 50–65% of the net photosynthetic activity remained after the buffer additions), followed by the submerged Enhalus acoroides and Syringodium isoetifolium (ca. 75% activity remaining), while Thalassia hemprichii and Thalassodendron ciliatum, which grow in-between the two zones, were less sensitive to buffer additions (ca. 80–85% activity remaining). In addition to buffer sensitivity, all species were also sensitive to acetazolamide (AZ, an inhibitor of extracellular carbonic anhydrase activity) such that ca. 45–80% (but 90% for H. ovalis) of the net photosynthetic activity remained after adding this inhibitor. Raising the pH to 8.8 (in the presence of AZ) drastically reduced net photosynthetic rates (0–14% remaining in all species); it is assumed that this reduction in rates was due to the decreased CO2 concentration at the higher pH. These results indicate that part of the 1997 results for the same species were due to a buffer effect on net photosynthesis. Based on the present results, it is concluded that (1) photosynthetic Ci acquisition in six of the eight investigated species is based on carbonic anhydrase catalysed HCO 3 ? to CO2 conversions within an acidified diffusion boundary layer, (2) C. serrulata appears to support its photosynthesis by extracellular carbonic anhydrase catalysed CO2 formation from HCO 3 ? without the need for acidic zones, (3) H. ovalis features a system in which H+ extrusion may be followed by HCO 3 ? –H+ co-transport into the cells, and (4) direct, non-H+-mediated, uptake of HCO 3 ? is improbable for any of the species.  相似文献   

2.
The mechanism whereby inorganic carbon (Ci) is acquired by the symbiotic association between the giant clam (Tridacna derasa) and zooxanthellae (Symbiodinium sp.) has been investigated. Ci in the haemolymph of the clam is in equilibrium with the surrounding sea water. The photosynthesis rate exhibited by the intact clam varies as a function of the Ci concentration in the clam haemolymph. The gill tissue contains high carbonic anhydrase activity which may be important in adjusting the Ci equilibrium between haemolymph and sea water. Zooxanthellae (Symbiodinium sp.) isolated from the clam mantle prefer CO2 to HCO 3 - as a source of inorganic carbon. The zooxanthellae have low levels of carbonic anhydrase on the external surface of the cell; however, mantle extracts display high carbonic anhydrase activity. Carbonic anhydrase is absent from the mantle of aposymbiotic clams (T. gigas), indicating that this enzyme may be essential to the symbiosis. The enzyme is probably associated with the zooxanthellae tubes in the mantle. The results indicate that carbonic anhydrase plays an important role in the supply of carbon dioxide within the clam symbiosis.  相似文献   

3.
A. Israel  S. Beer  G. Bowes 《Marine Biology》1991,110(2):195-198
Photosynthetic properties of the common red algaGracilaria conferta, collected from the eastern Mediterranean Sea were investigated in 1989, in order to begin evaluating its adaptative strategies with regard to the inorganic carbon composition of seawater, and to test whether the alleged C4 photosynthesis of anotherGracilaria species is common within the genus. Net photosynthetic rates ofG. conferta were, under ambient conditions of inorganic carbon (ca. 10µM, CO2 and 2.2 mM HCO 3 - ), not sensitive to O2 over the range 10 to 300µM, and the CO2 compensation point was low (ca. 0.005µM). Ribulose-1,5-bisphosphate carboxylase/oxygenase was the major carboxylating enzyme, with a crude extract activity of 175µmol CO2 g–1 fresh wt h–1 while phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase were present at 70 and 20%, respectively, of that activity. No activities of the decarboxylases NAD-and NADP-malic enzyme could be detected. The14C pulse-chase incorporation pattern showed thatG. conferta fixes inorganic carbon via the photosynthetic carbon reduction cycle only, with no evidence for photosynthetic C4 acid metabolism. Photosynthesis at the natural seawater pH of 8.2 was, at 25°C and saturating light, saturated at the ambient inorganic carbon concentration of 2.5 mM. It is proposed that, under ambient inorganic carbon conditions, a CO2 concentrating system other than C4 metabolism provides an internal CO2 concentration sufficient to suppress the O2 effect on ribulose-1,5-bisphosphate carboxylase/oxygenase and, thus, on photorespiration, in a medium where the external free CO2 concentration is lower than theK m(CO2) of the carboxylating enzyme. Since inorganic carbon, under natural saturating light conditions, seems not to be a limiting factor for photosynthesis ofG. conferta, it likely follows that other nutrients limit the growth of this alga in nature.  相似文献   

4.
M. J. Durako 《Marine Biology》1993,115(3):373-380
The effects of total dissolved inorganic carbon (DIC), free carbon dioxide [CO2(aq)], and bicarbonate (HCO 3 - ) concentrations on net photosynthetic oxygen evolution of the marine angiosperm Thalassia testudinum Banks ex König collected from Biscayne Bay (1988) and from Tampa Bay (1990), Florida, USA, were examined. Rates of photosynthesis declined by 85% from pH 7.25 to 8.75 in buffered seawater media with constant DIC concentration (2.20 mM), suggesting a strong influence of CO2(aq) concentration. A plateau in the pH-response curve between pH 7.75 and 8.50 indicated possible utilization of HCO 3 - . Responses of photosynthesis measured in buffered seawater media of varying DIC concentrations (0.75 to 13.17 mM) and pH (7.8 to 8.61) demonstrated that photosynthesis is rate-limited at ambient DIC levels. Photosynthesis increased in media with increasing HCO 3 - concentrations but near-constant CO2(aq) levels, confirming HCO 3 - assimilation. Calculated half-saturation constants (K s )for CO2(aq) and HCO 3 - indicated a high affinity for the former [K s (CO2)=3 to 18 M] and a much lower affinity for the latter [K s (HCO 3 - )=1.22 to 8.88 mM]. Calculated V max values for HCO 3 - were generally higher than those for CO2(aq), suggesting relatively efficient HCO 3 - utilization, despite the apparent low affinity for this carbon form.  相似文献   

5.
Photosynthesis rate and carbonic anhydrase (CA) activity have been studied in the green seaweed Ulva rigida C. Agardh (Chlorophyta) grown in seawater (SW) and SW supplemented with 40 M NH4Cl (N-SW). Higher growth and maximal O2 evolution rates were observed in N-SW- than in SW-grown sea-weeds. Western blot analysis of the total homogenates probed with antibodies raised against small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) showed crossreaction with a 15 kdalton polypeptide in both SW- and N-SW-grown plants, although the band was more intense in N-SW-grown plants. Carbonic anhydrase activities in the total homogenate and in the soluble protein fraction were higher in N-SW-grown plants. Although the pellets from both plants showed a considerable CA activity, the activity of CA in the thylakoid membranes was undetectable. The low nitrogen concentration is a major environmental factor that affects the level of RuBisCO and CA, and therefore CO2 assimilation in U. rigida.  相似文献   

6.
Studies on 14CO2-assimilation in marine rhodophyceae   总被引:2,自引:0,他引:2  
Experiments on enzymatic (in vitro) and in vivo CO2-fixation using a variety of marine Rhodophyceae such as Porphyra umbilicalis (L.) J.Ag., Rhodomela confervoides (Huds.) Silva, Corallina officinalis L. and Chondrus crispus Stackh. revealed that carbon assimilation in the Rhodophyceae is almost exclusively performed by photosynthesis via ribulose-1, 5-di-phosphate carboxylase, whereas light-independent CO2-fixation via -carboxylation by phosphoenolpyruvate carboxykinase scarcely exceeds 1% of the total carbon fixation potential of the plants. Activity of phosphoenolpyruvate carboxylase could not be detected. With respect to the main accumulation products of photosynthetic CO2-fixation, the Rhodophyceae investigated are not uniform: Corallina officinalis L., Rhodymenia palmata (L.) Grev., and Gigartina stellata (Stackh.) Batt. have been found to accumulate 14C in the neutral compound floridoside (=2-O-glycerol--D-galactopyranose), whereas Delesseria sanguinea (Huds.) Lamour., Ceramium cubrum (Huds,) C.Ag., and Rhodomela confervoides (Huds.) Silva, representing members of the Delesseriaceae, Ceramiaceae and Rhodomelaceae, respectively, do not photosynthesize floridoside, but show intense 14C-labelling in an acidic constituent, mannosidoglycerate (= digeneaside). This compound is reported for the first time as a rapidly 14C-labelled and accumulated photosynthate in a variety of red algal species exclusively belonging to the Ceramiales.  相似文献   

7.
Photosynthesis and respiration in Ahnfeltia plicata (Huds.) Fries (Gigartinales) was measured in a seawater flowthrough system at different temperatures, salinities and photon flux densities (PFD). The exchanges of dissolved oxygen and inorganic carbon were continuously recorded with an oxygen probe and a pH electrode measuring variation in CO2–HCO 3 - equilibrium as pH changes. Highest apparent photosynthesis at moderate photon flux density (PFD 50 E m-2 s-1) was found at 15°C and 33 S. Photosynthesis was measured up to PFD 500 E m-2 s-1 and no light saturation was documented. In the present experimental set-up, with continuous supply of fresh seawater, the number of limiting factors during photosynthesis measurements is reduced.  相似文献   

8.
9.
The effect of light intensity, pH and carbonic anhydrase (CA) inhibitors on photosynthesis of the red marine macroalgae Solieria filiformis (Kützing) Gabrielson, collected from Taliarte (Gran Canaria, Canary Islands) in 1991, has been investigated. Plants taken from the sea (wild phenotype) developed spherical morphology (ball phenotype) after 2 mo culture in aerated tanks. The photosynthetic oxygen evolution in the wild phenotype was saturated at 100 mol photons m-2s-1, while the ball phenotype displayed saturation at 200 mol photons m-2s-1. The inhibitors of total CA activity (6-ethoxizolamide) and extracellular CA activity (dextran-bound sulfonamide) inhibited photosynthesis at pH 8.2, to 90 and 50% respectively, in both phenotypes. No inhibition of the photosynthetic oxygen evolution was detected at pH 6.5. CA activity was associated with both supernatant and pellet fractions of crude extracts of S. filiformis. The rate of alkalization of the medium by the algae was dependent on light intensity. We suggest that carbon dioxide is the general form of inorganic carbon transported across the plasmamembrane in S. filiformis. HCO3 transport into the cell takes place simultaneously by an indirect mechanism (dehydration to CO2 catalyzed by CAext) and by direct uptake. Extracellular (CAext) and intracellular (CAint) CAs are involved in the mechanisms of inorganic carbon assimilation by S. filiformis.  相似文献   

10.
Photosynthetic rates of eight seagrass species from Zanzibar were limited by the inorganic carbon composition of natural seawater (2.1 mM, mostly in the form of HCO3 ), and they exhibited more than three time higher rates at inorganic carbon saturation (>6 mM). The intertidal species that grew most shallowly, Halophila ovalis, Halodule wrightii and Cymodocea rotundata, showed the highest affinity for inorganic carbon (K 1/2 = ca. 2.5 mM), followed by the subtidal species (K 1/2 > 5 mM). Photosynthesis of H. wrightii, C. rotundata, Cymodocea serrulata and Enhalus acoroides was >50% inhibited by acetazolamide, a membrane-impermeable inhibitor of carbonic anhydrase, indicating that extracellular HCO3 dehydration is an important part of their inorganic carbon uptake. Photosynthetic rates of H. wrightii, Thalassia hemprichii, Thalassodendron ciliatum, C. serrulata and E. acoroides were strongly reduced by changing the seawater pH from 8.2 to 8.6 in a closed system. In H. ovalis, C. rotundata and Syringodiumisoetifolium, photosynthesis at pH 8.6 was maintained at a higher level than could be caused by the ca. 30% CO2 concentration which remained in the closed experimental systems at that pH, pointing toward HCO3 uptake in those species. It is suggested that the ability of H. ovalis and C. rotundata to grow in the high, frequently air-exposed, intertidal zone may be related to a capability to take up HCO3 directly, since this is a more efficient way of HCO3 utilisation than extracellular HCO3 dehydration under such conditions. The inability of all species to attain maximal photosynthetic rates under natural conditions of inorganic carbon supports the notion that seagrasses may respond favourably to any future increases in marine CO2 levels. Received: 19 March 1997 / Accepted: 31 March 1997  相似文献   

11.
Calcification, photosynthesis and respiration of the scleractinian coral Astrangia danae were calculated from the changes in total alkalinity, pH, calculated total CO2, and oxygen concentration produced by colonies incubated in glass jars. A correction for changes in ammonia, nitrate and nitrite was taken into account and the method evaluated. The fluxes of oxygen and CO2 were highly correlated (r=0.99). The statistical error of alkalinity determinations was less than 10% of the changes observed in the slowest calcifying samples. Metabolism of polyparium alone was estimated by difference after removal of tissue and reincubation of bare corallum. Zooxanthellae concentration in the polyps was obtained from cell counts made on homogenates of polyp tissue. The calculated photosynthetic rate of the zooxanthellae in vivo was 25 mol O2 (108 cell)-1 h-1 at a light intensity of 120 Ein m-2 s-1. In corals having 0.5x109 zooxanthellae/dm2 of colony area up to 8% of the total photosynthesis was attributed to the corallum microcosm. Polyp respiration, photosynthesis, and CaCO3 uptake rates were all much higher than rates previously reported from A. danae, apparently because in these experiments the organisms were better fed. This increased photosynthesis in turn enhanced calcification still further. The symbiosis therefore appears to provide a growth advantage even to fed corals, under the conditions of these experiments.  相似文献   

12.
Ocean sequestration of CO2 is proposed as a possible measure to mitigate environmental changes due to the increasing atmospheric concentration of the gas. However, toxic effects of CO2 on marine organisms are poorly understood. We therefore studied acid–base responses and mortality during exposure to fatal levels of CO2 in three marine fishes (Japanese flounder, Paralichthys olivaceus; yellowtail, Seriola quinqueradiata; and starspotted dogfish, Mustelus manazo). The teleosts died during exposure to seawater equilibrated with a gas mixture containing 5% CO2 (water PCO2 4.95 kPa); 100% mortality occurred within 8 h for yellowtail and within 48 h for flounder. Only 20% mortality was recorded at 72 h for the dogfish during exposure to 7% CO2 (water PCO2 6.96 kPa). Arterial pH (pHa) initially decreased, but completely recovered within 1–24 h for the teleosts at 1% and 3%, although the recovery was slower and complete only at 1% (water PCO2 0.99 kPa) for the dogfish. During exposure to 5%, the flounder died after the pHa had been completely restored, suggesting that the mortality was not due to plasma acidosis. During exposure to 1% hypercapnia, plasma [Cl] appeared to be the main counter ion to balance increases in plasma [HCO3-]. There was a 1:1 stoichiometry for the rise in [HCO3-] and the fall in [Cl] for the teleosts, whereas the ratio was 1:0.4 for the dogfish at 1% CO2. At the higher levels of hypercapnia, the rise in [HCO3-] consistently exceeded the fall in [Cl], and plasma [Na+] significantly increased.These results do not agree with the generally accepted model for acid–base regulation in marine fish in which Na+/H+ exchangers are assumed to play a predominant role, and indicate that an acid–base regulatory mechanism differs between teleost and elasmobranch fishes, as well as the intensity of acidic stress.Communicated by T. Ikeda, Hakodate  相似文献   

13.
B. R. Oates 《Marine Biology》1985,89(2):109-119
Rates of gross photosynthesis for the intertidal saccate alga Colpomenia peregrina (Sauv.) Hamel were determined under submersed and emersed conditions. Maximal photosynthetic rates were lower than for most seaweeds but comparable with other saccate members of the genus. By fitting the data to a hyperbolic tangent function, maximal photosynthetic rates were estimated to be 5.29 mmol CO2 m-2 h-1 under submersed conditions and 2.06 mmol CO2 m-2 h-1 under emersed conditions. Ik for submersed thalli was 69.1 E m-2 s-1, wherea for emersed thalli it was 149.0 E m-2 s-1, or 2.2 times higher. At low tide in the field and under saturating irradiance, carbon from seawater retained within the thallus cavity was assimilated at 0.9 mmol CO2 m-2 h-1. In the laboratory under emersed conditions, carbon from this source was taken up at 0.6 mmol CO2 m-2 h-1 at 20°C and at 0.34 mmol CO2 m-2 h-1. Retained seawater also greatly reduced drying under desiccating conditions. Experimental thalli from which seawater had been removed lost thallus water continuously throughout the drying period (120 min). On the other hand, control, thalli lost water for the first 15 min, after which no further water loss occurred. At the termination of the experiment, control thalli had lost 7.2% of their water, whereas experimental thalli had lost 39.2%. Desiccation affected the emersed photosynthetic rate of experimental and control thalli. Emersed photosynthetic rates for thalli dried for 15 min were higher than for fullyhydrated thalli. However, emersed photosynthesis of thalli dried for longer than 15 min was lower than fully-hydrated rates and was directly related to percent water loss. Utilizing data from this study, a model was constructed to determine total photosynthetic production of C. peregrina over a single daylight period. From these calculations it was determined that emersed photosynthesis can increase daily photosynthetic production of C. peregrina by 50%.  相似文献   

14.
In situ measurements of seagrass photosynthesis in relation to inorganic carbon (Ci) availability, increased pH and an inhibitor of extracellular carbonic anhydrase were made using an underwater pulse amplitude modulated (PAM) fluorometer. By combining the instrument with a specially designed Perspex chamber, we were able to alter the water surrounding a leaf without removing it from the growing plant. Responses to Ci within the chamber showed that subtidal plants of the seagrasses Cymodocea serrulata and Halophila ovalis had photosynthetic rates that were limited by the ambient Ci concentration depending on the irradiance that was available during short-term photosynthesis–irradiance trials. Relative electron transport rates (RETRs) at light saturation (up to 500 μ mol photons m−2 s−1) increased by 66–100% when the Ci concentration was increased from ca. 2.2 to 6.2 mM. On the other hand, intertidal plants of the same species exhibited a much lesser limitation of photosynthesis by Ci at any irradiance (up to 1500 μ mol photons m−2 s−1). Both species were able to use HCO 3 efficiently, and there was stronger evidence for direct uptake of HCO 3 rather than extracellular dehydration of HCO 3 to CO2 prior to Ci uptake. Subtidally, H. ovalis and C. serrulata grew to 10 and 12 m, respectively, where ambient irradiances were approximately 16 and 11% of those at the surface. Maximum RETRs (at light saturation) were lower for these deep-growing plants than for the intertidally growing ones. For both species, the onset of light saturation of photosynthesis (E k) occurred at approximately 100 μ mol photons m−2 s−1 for the deep water populations, which was four and two times lower than for the shallow populations of C. serrulata and H. ovalis, respectively. This, and the differences in maximal photosynthetic rates (RETR max), reflects an acclimation of the deep-growing populations to the lower light environment. The results presented here show that photosynthesis, as measured in situ, was limited by the availability of Ci for the deeper growing plants in Zanzibar, while the intertidally growing plants photosynthesised at close to Ci saturation. The latter result is contrary to previous conclusions regarding Ci limitations for these intertidal plants, and, in general, our findings highlight the need for performing similar experiments in situ rather than under laboratory conditions. Received: 4 April 2000 / Accepted: 31 August 2000  相似文献   

15.
Light-dependent 14CO2 fixation by the algae of Diplosoma virens (Hartmeyer) ranged between about 3 and 27 moles mg-1 chlorophyll h-1. The principal first products of 14C fixation were 3-phosphoglyceric acid and phosphorylated sugars, indicating that ribulose bisphosphate carboxylase was the primary carboxylation enzyme. The activity of this enzyme in crude extracts of the algae was 4 to 6 moles CO2 mg-1 chlorophyll h-1. The principal end product of 14C fixation by these algae in the ascidian host was a water-soluble oligosaccharide which was an -1,4-glucan. A maximum of 7% of the 14C fixed was found in insoluble materials of the algae or its host after 60 min 14CO2 fixation. Whether the -1,4-glucan is a product of algal or animal metabolism remains to be determined.  相似文献   

16.
The short- and long-term fixation of 14CO2 by Phaeodactylum tricornutum was studied using methods of fractionation that allowed examination of all the products labelled with 14C. There was no doubt that the major pathway of CO2 fixation was into 3-phosphoglycerate, but there was also significant incorporation by -carboxylation by means of phosphoenol-pyruvate carboxylase and transamination into aspartate. At short time intervals (10 sec), 90% of the radioactive products found were accounted for by 3-phosphoglycerate and aspartate. The lipids associated with the photosynthetic apparatus contained a high proportion of the 14C fixed, which at 60 sec was located mainly in the carbohydrate portion of the lipids. At 30 and 300 min, the chlorophylls, carotenoids and the long-chain fatty acids were heavily labelled with 14C. The monogalacto-diglycerides, the digalacto-diglycerides and the sulpholipids each had a characteristic long-chain fatty acid composition. The cell proteins and a reserve polysaccharide were also labelled with 14C at short time intervals and increased their radioactivity in a linear fashion up to the longest period studied, 300 min. The activity of the enzymes ribulose diphosphate carboxylase and phosphoenolpyruvate carboxylase was sufficient to account for the pattern of fixation found.  相似文献   

17.
Net photosynthetic O2 evolution by five marine macroalgae:Ulva lactuca L.,Enteromorpha sp.,Ceramium strictum Harvey,Fucus serratus L., andF. vesiculosus L., collected from Danish waters in the summer of 1983 was followed at increasing O2 and with pH either fixed close to pH 7, 8 or 9, or drifting upwards during photosynthesis in a closed chamber to determine the effects of changing O2, pH and DIC (dissolved inorganic carbon) on photosynthesis. Increasing O2, increasing pH and decreasing DIC together limited O2 evolution. Raising the O2 concentration with pH and DIC held constant resulted in less inhibition of net-O2 evolution than when all three factors acted together. The O2 inhibition of photosynthesis was similar to the reported O2 inhibition of ribulose 1,5-bisphosphate carboxylase isolated from lower and higher plants. Net-O2 evolution as a function of the molar ratio of O2 to HCO 3 + CO2 in solution provided a general, linear relationship (r 2 = 0.72 to 0.84), predicting inhibition of photosynthesis based on O2 pH and DIC changing together. Slopes of this relationship, representing competition between O2 and carbon based on external concentrations, were similar for the five taxonomically different algae, suggesting that similar processes act to reduce net-O2 evolution.  相似文献   

18.
Microcosms containing different densities of Corophium volutator, ranging from 0 to 6000 ind m-2, were incubated in a flow-through system. Benthic fluxes of CO2, O2, NO3 - and NH4 + were measured regularly. Thirteen days after setup the microcosms were sacrificed and sediment characteristics, pore water NO3 -, NH4 + and exchangeable NH4 + concentrations, and potential nitrification activity were measured. The presence of C. volutator increased overall mineralization processes due to burrow construction and irrigation. The amphipods increased the ratio CO2/O2 fluxes from 0.73 to 0.86 in microcosms inhabited by 0 and 6000 ind m-2, respectively. Burrow ventilation removed NH4 + from the sediment, which was nitrified in the oxic layer and transported NO3 - to the burrow sediment, where denitrification potential was enhanced. Nitrification and total denitrification rates (denitrification of NO3 - coming from the overlying water and of NO3 - generated within the sediment) were calculated and discussed. Bioturbation by C. volutator increased both nitrification and denitrification, but denitrification was stimulated more than nitrification. Denitrification of NO3 - coming from the overlying water was stimulated 1.2- and 1.7-fold in microcosms containing 3000 and 6000 ind m-2 relative to control microcosms. The presence of C. volutator (6000 ind m-2) stimulated nitrogen removal from the system, as dinitrogen, 1.5-fold relative to non-bioturbated microcosms. C. volutator individuals used in our study were collected from Norsminde Fjord, Denmark, in 1990.  相似文献   

19.
When pieces of the staghorn coral Acropora acuminata are incubated with 14C-urea, the label is incorporated into skeletal carbonate. Incorporation of this label differs from that of H14CO 3 - , suggesting urea is not immediately hydrolysed to provide a further source of HCO 3 - . The effects of certain organic substrates upon calcification suggest the ornithine cycle is involved. Citrulline, an ornithine cycle intermediate, is found in high concentrations in the tissues of hermatypic corals. Urea, allantoins, NH3 and arginine are also present. These compounds are barely detectable in zooxanthellae or an ahermatypic coral. The allantoins may be present as calcium salts. It is suggested that allantoins are the medium by which Ca2+ and CO2 are transported to sites of calcification. Hydrolysis of urea, formed by breakdown of allantoins, yields CO2 and NH3. The NH3 may neutralise protons formed during precipitation of CaCO3 and bring about their removal from sites of calcification. As well as providing urea, the ornithine cycle may also be involved in the removal of NH3 from sites of calcification.  相似文献   

20.
Net photosynthetic oxygen evolution in Amphiroa anceps (Lamarck) Decaisne is inhibited at high oxygen concentrations. Photosynthesis is highest between pH 6.5 and 7.5. At pH 9 to 10 there is still a significant photosynthetic rate, suggesting that this alga can use HCO - 3 as a substrate for photosynthesis. At pH 7.0 to 8.5, the photosynthetic rate saturates at a total inorganic carbon concentration (Ci) greater than 3 mM. At pH 8.5 and 8.8, calcification rate continues to increase with increasing concentration of Ci. Between pH 7 and 9, the calcification rate in the light in A. foliacea Lamouroux is proportional to the photosynthetic rate, whereas at higher pH where the photosynthetic rate is very low, the calcification rate is stimulated by the higher concentration of CO 2- 3 ion. At all pH values examined, the calcification rate of living plants in the dark and of dead plants is directly proportional to the CO 2- 3 ion concentration, suggesting little metabolic involvement in calcification processes in the dark, whereas calcification in live A. foliacea in the light is influenced both by the photosynthetic rate and the CO 2- 3 ion concentration in the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号