首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The models HARM and ELMO are used to investigate the importance of different source categories contributing to total PM10 (SIA, SOA and primary particulate matter) across the UK and the impact of uncertainties on both present day and future concentration estimates. Modelled concentrations of SIA (secondary inorganic aerosol) are compared against data from the UK's Nitric Acid and Aerosol Network and SOA (secondary organic aerosol) against measurements made at the Bush Estate, Edinburgh. These data indicate that the HARM/ELMO modelling approach comes close to achieving mass closure. Comparison with national maps of total PM10 indicate that the models underestimate particulate matter concentrations around large conurbations, probably due to the localised nature of emissions of primary particulates in these areas and model scale. The models are used to attribute particulate matter to different source and size categories, assessing the relative importance of primaries, SIA and SOA; the contributions of anthropogenic and biogenic precursors of SOA; the relative importance of PMcoarse (PM10–PM2.5) and PMfine (PM2.5) and UK vs. other EMEP area sources. The implications of these attributions for emissions control policies are discussed. The impact of uncertainties in emissions of the sources of primaries, SIA and SOA are explored. For primary PM10 and SOA this has been achieved through emissions scaling and for SIA using the GLUE (Generalised Likelihood Uncertainty Estimation) approach. The selection of acceptable model parameter sets has been based on the need to retain the capability to model deposition of S and N species. The impact of uncertainty on estimates of present day SIA concentrations is illustrated for sites in the Nitric Acid and Aerosol Network. A more limited assessment for 2010 has been carried out at the national scale, illustrating that inclusion of uncertainty can change modelled concentrations from no exceedance of current air quality objectives, to one of exceedance over large areas of south and east England.  相似文献   

2.
Air quality data collected in the California Regional PM10/ PM(2.5) Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM(2.5)) mass concentrations in California (< or = 188 microg/m3 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filter and canister measurements and several months of wintertime continuous gas and aerosol measurements. The phase-partitioning of nitrogen oxide (NO(x))-related nitrogen species and carbonaceous species shows that concentrations of gaseous precursor species are far more abundant than measured secondary aerosol nitrate or estimated secondary organic aerosols. Comparisons of ammonia and nitric acid concentrations indicate that ammonium nitrate formation is limited by the availability of nitric acid rather than ammonia. Time-resolved aerosol nitrate data collected at the surface and on a 90-m tower suggest that both the daytime and nighttime nitric acid formation pathways are active, and entrainment of aerosol nitrate formed aloft at night may explain the spatial homogeneity of nitrate in the SJV. NO(x) and volatile organic compound (VOC) emissions plus background O3 levels are expected to determine NO(x) oxidation and nitric acid production rates, which currently control the ammonium nitrate levels in the SJV. Secondary organic aerosol formation is significant in winter, especially in the Fresno urban area. Formation of secondary organic aerosol is more likely limited by the rate of VOC oxidation than the availability of VOC precursors in winter.  相似文献   

3.
Abstract

Air quality data collected in the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM2.5) mass concentrations in California (≤188 μg/m3 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filter and canister measurements and several months of wintertime continuous gas and aerosol measurements. The phase-partitioning of nitrogen oxide (NOx)-related nitrogen species and carbonaceous species shows that concentrations of gaseous precursor species are far more abundant than measured secondary aerosol nitrate or estimated secondary organic aerosols. Comparisons of ammonia and nitric acid concentrations indicate that ammonium nitrate formation is limited by the availability of nitric acid rather than ammonia. Time-resolved aerosol nitrate data collected at the surface and on a 90-m tower suggest that both the daytime and nighttime nitric acid formation pathways are active, and entrainment of aerosol nitrate formed aloft at night may explain the spatial homogeneity of nitrate in the SJV. NOx and volatile organic compound (VOC) emissions plus background O3 levels are expected to determine NOx oxidation and nitric acid production rates, which currently control the ammonium nitrate levels in the SJV. Secondary organic aerosol formation is significant in winter, especially in the Fresno urban area. Formation of secondary organic aerosol is more likely limited by the rate of VOC oxidation than the availability of VOC precursors in winter.  相似文献   

4.
First-time measurements of the potentially toxic inorganic species of arsenic (arsenite arid arsenate) have been obtained in fine (<2.5 µm AD) and coarse (>2.5 µm AD) atmospheric particles in the Los Angeles area. A recently developed method that includes procedures for sample collection, preparation, and analysis was used in this study. Size-fractlonated aerosol samples were collected with a high-volume dichotomous virtual impactor that employed polytetrafluoroethylene filters. Results were obtained for the recovery of arsenic standards added to unexposed and collected filters. Data from this study, indicated that the recently developed speciation method can be used to determine concentrations of As(lll) and As(V) In atmospheric particulate matter samples.

Size-fractionated aerosol samples were collected in the city of Industry during January and February 1987. In most samples, As(lll) and As( V) were above the detection limit (approximately 1 ng m-3 of either species) in both aerosol size fractions. A greater portion (about 75 percent) of the two species were observed in the fine particles. The As(lll)/As(V) ratio for both particle sizes was close to 1 (I.e., an equal mixture of both species). Comparison of total suspended particulate arsenic measured by the speciation method to that measured by a routine California Air Resources Board-approved procedure showed good agreement (r = 0.94), indicating both methods were approximately equivalent for the collection and analysis of aerosol arsenic.  相似文献   

5.
Ammonia emissions contribute to the formation of secondary particulate matter (PM) and violations of the National Ambient Air Quality Standard. Ammonia mass concentration measurements were made in February 1999 upwind and downwind of an open-lot dairy in California, using a combination of active bubbler and passive filter samplers. Ammonia fluxes were calculated from concentrations measured at 2, 4, and 10 m above ground at three locations on the downwind edge of the dairy, using micrometeorological techniques. A new method was developed to interpolate fluxes at six additional locations from ammonia concentrations measured at a single height, providing measurements at sufficient spatial resolution along the downwind border of the dairy to account for the heterogeneity of the source. PM measured up- and downwind of the dairy demonstrated insignificant ammonium particle formation in the immediate vicinity of the dairy and negligible contribution of dissociated ammonium nitrate to measured ammonia concentrations. Ammonium nitrate concentrations measured downwind of the dairy ranged from 26 to 0.26 microg m(-3) and from 2 to 43% of total PM2.5 mass concentrations. Measured ammonia fluxes showed that liquid manure retention ponds represented relatively minor sources of ammonia in winter on the dairy studied. Ammonia emission factors derived from the measurements ranged from 19 to 143 g head(-1) day(-1), showing an increase with warmer, drier weather and a decrease with increased relative humidity and lower temperatures.  相似文献   

6.
Abstract

Ammonia emissions contribute to the formation of secondary particulate matter (PM) and violations of the National Ambient Air Quality Standard. Ammonia mass concentration measurements were made in February 1999 upwind and downwind of an open-lot dairy in California, using a combination of active bubbler and passive filter samplers. Ammonia fluxes were calculated from concentrations measured at 2, 4, and 10 m above ground at three locations on the downwind edge of the dairy, using micrometeorological techniques. A new method was developed to interpolate fluxes at six additional locations from ammonia concentrations measured at a single height, providing measurements at sufficient spatial resolution along the downwind border of the dairy to account for the heterogeneity of the source. PM measured up- and downwind of the dairy demonstrated insignificant ammonium particle formation in the immediate vicinity of the dairy and negligible contribution of dissociated ammonium nitrate to measured ammonia concentrations. Ammonium nitrate concentrations measured downwind of the dairy ranged from 26 to 0.26 μg m?3 and from 2 to 43% of total PM2.5 mass concentrations. Measured ammonia fluxes showed that liquid manure retention ponds represented relatively minor sources of ammonia in winter on the dairy studied. Ammonia emission factors derived from the measurements ranged from 19 to 143 g head?1 day?1, showing an increase with warmer, drier weather and a decrease with increased relative humidity and lower temperatures.  相似文献   

7.
Atmospheric aerosol particles in urban and mountain areas around Lhasa city (29.65°N, 91.13°E) in the Tibetan Plateau were collected in the summers of 1998 and 1999. The particles were analyzed with electron microscopes and an energy dispersive X-ray spectrometer. Individual particle morphology, elemental composition and mixture of sulfate and nitrate were investigated. In the urban area, soot particles emitted from vegetation burning were dominant. These particles were characterized by chain or aggregate morphologies, and an elemental composition of potassium and sulfur. Such particles were frequently detected in mountain areas out of the city, where they formed droplets acting as condensation nuclei. Quantitative estimation indicated that sulfur was accumulated onto the soot particles during their dispersion from the urban area to mountain areas. Sulfate and nitrate detections indicated that soot particles collected in the urban area did not contain nitrate and BaCl2-reactive sulfate, which revealed that the combination of sulfur and potassium in the particles was not K2SO4. In contrast, the particles dispersed to mountain areas contained BaCl2-reactive sulfate and some contained nitrate, suggesting that soot particles emitted from the urban area could increase the buffering capacity of aerosol particles and enhance the formation of particulate sulfate through heterogeneous conversion in the Tibetan atmosphere.  相似文献   

8.
An analysis of fine particulate data in eastern North Carolina was conducted to investigate the impact of the hog industry and its emissions of ammonia into the atmosphere. The fine particulate data are simulated using ISORROPIA, an equilibrium thermodynamic model that simulates the gas and aerosol equilibrium of inorganic atmospheric species. The observational data analyses show that the major constituents of fine particulate matter (PM2.5) are organic carbon, elemental carbon, sulfate, nitrate, and ammonium. The observed PM2.5 concentration is positively correlated with temperature but anticorrelated with wind speed. The correlation between PM2.5 and wind direction at some locations suggests an impact of ammonia emissions from hog facilities on PM2.5 formation. The modeled results are in good agreement with observations, with slightly better agreement at urban sites than at rural sites. The predicted total inorganic particulate matter (PM) concentrations are within 5% of the observed values under conditions with median initial total PM species concentrations, median relative humidity (RH), and median temperature. Ambient conditions with high PM precursor concentrations, low temperature, and high RH appear to favor the formation of secondary PM.  相似文献   

9.
The purpose of this study is to explore the possible reasons accounting for elevated nitrate aerosol levels during high particulate days (HPD) in Taichung urban area of central Taiwan. To achieve this goal, simultaneous measurements of particulate and gaseous pollutants were carried out from September 2004 to April 2005 using an annular denuder system (ADS). The formation rate of NO2 to nitrate aerosol, calculated using the relevant chemical reactions, was employed to interpret enhanced nitrate aerosol concentrations during HPD. The observations showed that nitrate concentration during HPD was 14 times higher than that during low particulate days (LPD). The average formation rate during HPD was 4.0% h?1, which was 3.1 times higher than that during LPD. The quantitative analysis showed that the formation rate was mainly influenced by temperature and relative humidity. Lower temperature and higher relative humidity led much nitrate aerosol formation in HPD. Moreover, the residence time analysis of air masses staying over the studied area showed that the slow-motion air retained high nitrate concentrations due to more nitrate aerosol converted from the precursors in NOx-rich areas.  相似文献   

10.
PM2.5 samples were collected at five sites in Guangzhou and Hong Kong, Pearl River Delta Region (PRDR), China in both summer and winter during 2004–2005. Elemental carbon (EC) and organic carbon (OC) in these samples were measured. The OC and EC concentrations ranked in the order of urban Guangzhou > urban Hong Kong > background Hong Kong. Total carbonaceous aerosol (TCA) contributed less to PM2.5 in urban Guangzhou (32–35%) than that in urban Hong Kong (43–57%). The reason may be that, as an major industrial city in South China, Guangzhou would receive large amount of inorganic aerosol from all kinds of industries, however, as a trade center and seaport, urban Hong Kong would mainly receive organic aerosol and EC from container vessels and heavy-duty diesel trucks. At Hong Kong background site Hok Tsui, relatively lower contribution of TCA to PM2.5 may result from contributions of marine inorganic aerosol and inland China pollutant. Strong correlation (R2=0.76–0.83) between OC and EC indicates minor fluctuation of emission and the secondary organic aerosol (SOA) formation in urban Guangzhou. Weak correlation between OC and EC in Hong Kong can be related to the impact of the long-range transported aerosol from inland China. Averagely, secondary OC (SOC) concentrations were 3.8–5.9 and 10.2–12.8 μg m−3, respectively, accounting for 21–32% and 36–42% of OC in summer and winter in Guangzhou. The average values of 4.2–6.8% for SOA/ PM2.5 indicate that SOA was minor component in PM2.5 in Guangzhou.  相似文献   

11.
The concentrations of particulate organic matter were measured from May to September 1998 in urban area of Algiers and in municipal waste landfill of Oued Smar. For the sake of comparability, organic aerosols were also monitored at Montelibretti (Italy) in June of the same year. In addition to n-alkanes and polycyclic aromatic hydrocarbons (PAH), monocarboxylic n-alkanoic acids accounted for a large portion of identified organic compounds of aerosol at both Algerian sites. All these species were more abundant at Oued Smar than in downtown Algiers. At the urban site, concentration levels reached by n-alkanes and PAH highlighted the strong impact of motor vehicle emission resulting over the city area. Instead, at the Oued Smar landfill n-alkane and PAH contents depended upon the nature and account of the wastes burnt, and their behaviours were consistent with a pyrolytic origin. n-Alkanoic acids rather originated from the bacterial activity. By contrast, n-alkanes and n-alkanoic acids at Montelibretti seemed to be released by biogenic sources, whereas PAH presence was related to downwind transport of air parcels from Rome metropolitan area.  相似文献   

12.
Aerosol samples collected in three characteristic Chilean cities-including urban and remote zones-have been analyzed by the PIXE spectroscopic technique. Elemental composition, total suspended particulate matter (TSP), particle size distribution, and the peculiar geographic and meteorological parameters have been included in this study. Santiago--the polluted capital of Chile--registered high TSP indexes and important amounts of hazardous elements in air such as S, V, Cr, Zn, Br and Pb. The atmosphere of Antofagasta city showed marine and mineral activity influence. Results from Chillán city are similar to those from rural environments. Protons and deuterons-provided by the isochronous cyclotron of the University of Chile-were used to excite X-ray radiation from the sample. Signals were processed by an energy dispersive detection system, including a cryogenic Si(Li) detector, electronic for pulse amplification and an analog to digital converter. The absolute elemental concentration of the particulate matter in air was obtained through a fundamental parameter equation. Samples consist of particulate material collected directly on Nuclepore filters or deposited over Kapton foils. Typical elements analyzed were Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, As, Br and Pb.  相似文献   

13.
At urban areas in south Europe atmospheric aerosol levels are frequently above legislation limits as a result of road traffic and favourable climatic conditions for photochemical formation and dust suspension. Strategies for urban particulate pollution control have to take into account specific regional characteristics and need correct information concerning the sources of the aerosol.With these objectives, the ionic and elemental composition of the fine (PM2.5) and coarse (PM2.5–10) aerosol was measured at two contrasting sites in the centre of the city of Oporto, roadside (R) and urban background (UB), during two campaigns, in winter and summer.Application of Spatial Variability Factors, in association with Principal Component/Multilinear Regression/Inter-site Mass Balance Analysis, to aerosol data permitted to identify and quantify 5 main groups of sources, namely direct car emissions, industry, photochemical production, dust suspension and sea salt transport. Traffic strongly influenced PM mass and composition. Direct car emissions and road dust resuspension contributed with 44–66% to the fine aerosol and with 12 to 55% to the coarse particles mass at both sites, showing typically highest loads at roadside. In fine particles secondary origin was also quite important in aerosol loading, principally during summer, with 28–48% mass contribution, at R and UB sites respectively. Sea spray has an important contribution of 18–28% to coarse aerosol mass in the studied area, with a highest relative contribution at UB site.Application of Spatial Variability/Mass Balance Analysis permitted the estimation of traffic contribution to soil dust in both size ranges, across sites and seasons, demonstrating that as much as 80% of present dust can result from road traffic resuspension.  相似文献   

14.
The particle size distributions (PSDs) of particulate matter (PM) in the downwind plume from simulated sources of a cotton gin were analyzed to determine the impact of PM settling on PM monitoring. The PSD of PM in a plume varies as a function of gravitational settling. Gravitational settling has a greater impact on the downwind PSD from sources with PSDs having larger mass median diameters (MMDs). The change in PSD is a function of the source PSD of emitted PM, wind speed, and downwind distance. Both MMD and geometric standard deviation (GSD) in the downwind plume decrease with an increase in downwind distance and source MMD. The larger the source MMD, the greater the change in the downwind MMD and GSD. Also, the greater the distance from the source to the sampler, the greater the change in the downwind MMD and GSD. Variations of the PSD in the downwind plume significantly impact PM10 sampling errors associated with the U.S. Environmental Protection Agency (EPA) PM10 samplers. For the emission sources with MMD > 10 microm, the PM10 oversampling rate increases with an increase in downwind distance caused by the decrease of GSD of the PSD in the downwind plume. Gravitational settling of particles does not help reduce the oversampling problems associated with the EPA PM10 sampler. Furthermore, oversampling rates decrease with an increase of the wind speed.  相似文献   

15.
Aerosol mass spectrometer (AMS) measurements are used to characterize the evolution of exhaust particulate matter (PM) properties near and downwind of vehicle sources. The AMS provides time-resolved chemically speciated mass loadings and mass-weighted size distributions of nonrefractory PM smaller than 1 microm (NRPM1). Source measurements of aircraft PM show that black carbon particles inhibit nucleation by serving as condensation sinks for the volatile and semi-volatile exhaust gases. Real-world source measurements of ground vehicle PM are obtained by deploying an AMS aboard a mobile laboratory. Characteristic features of the exhaust PM chemical composition and size distribution are discussed. PM mass and number concentrations are used with above-background gas-phase carbon dioxide (CO2) concentrations to calculate on-road emission factors for individual vehicles. Highly variable ratios between particle number and mass concentrations are observed for individual vehicles. NRPM1 mass emission factors measured for on-road diesel vehicles are approximately 50% lower than those from dynamometer studies. Factor analysis of AMS data (FA-AMS) is applied for the first time to map variations in exhaust PM mass downwind of a highway. In this study, above-background vehicle PM concentrations are highest close to the highway and decrease by a factor of 2 by 200 m away from the highway. Comparison with the gas-phase CO2 concentrations indicates that these vehicle PM mass gradients are largely driven by dilution. Secondary aerosol species do not show a similar gradient in absolute mass concentrations; thus, their relative contribution to total ambient PM mass concentrations increases as a function of distance from the highway. FA-AMS of single particle and ensemble data at an urban receptor site shows that condensation of these secondary aerosol species onto vehicle exhaust particles results in spatial and temporal evolution of the size and composition of vehicle exhaust PM on urban and regional scales.  相似文献   

16.
Air quality field data, collected as part of the fine particulate matter Supersites program and other field measurements programs, have been used to assess the role of aerosol transport, over length scales of approximately 100-1000 km, on fine particulate matter concentrations. Assessment of data from New York, NY; Baltimore, MD; Pittsburgh, PA; Atlanta, GA; Houston, TX; St. Louis, MO; and Fresno, CA, indicates that in virtually all of the regions, transport of aerosol over distances of 100-1000 km has a significant impact on urban particulate matter concentrations and a dominant role in determining rural particulate matter concentrations, though the nature of the regional contributions differs from region to region. This assessment is generally consistent with previous conceptual models of fine particulate matter formation and accumulation in these regions. The nature of the transported aerosol is largely sulfate in Eastern and Midwestern cities and nitrate in the Central Valley of California. In addition to physical transport of aerosol over distances of 100-1000 km, regional transport of aerosol precursors may lead to conditions conducive to large-scale nucleation events. Regional nucleation events have been reported in the East, Midwest, and in California. The events occurred in the morning soon after surface layers coupled with layers aloft, and the events generate ultrafine particles. In some cases, these nucleation events have been correlated with availability of sulfur dioxide and, therefore, may be sulfate formation events.  相似文献   

17.
Atmospheric ammonia mixing ratios and the main inorganic ions NH4+, NO3 and SO42− of size-resolved particles in the range from 0.05 to 10 μm were measured at an urban site in Münster, Germany. High mixing ratios of ammonia with a median of 5.2 ppb and a maximum of 50 ppb were detected. The mass fraction of submicron particles was much higher during the day than at night. At night, a greater particle mass and an increased presence of particulate nitrate was measured. Recurring patterns of particle distribution were distinguished and their characteristics analysed. In half of the measurements, the accumulation mode was clearly dominating, which is an indication of aged aerosol. In some measurements, higher concentrations of fine particles were found indicating particle formation. In these cases, a smaller particle mass and about four times greater ratios of ammonia versus ammonium concentrations were observed. These data show that ammonia contributes considerably to the formation of secondary particulate material.  相似文献   

18.
19.
The marker variables, Ellenberg Nitrogen Index, nitrous oxide and nitric oxide fluxes and foliar nitrogen, were used to define the impacts of NH3 deposition from nearby livestock buildings on species composition of woodland ground flora, using a woodland site close to a major poultry complex in the UK. The study centred on 2 units in close proximity to each other, containing 350,000 birds, and estimated to emit around 140,000 kg N year(-1) as NH3. Annual mean concentrations of NH3 close to the buildings were very large (60 microg m(-3)) and declined to 3 microg m(-3) at a distance of 650 m from the buildings. Estimated total N deposition ranged from 80 kg N ha(-1) year(-1) at a distance of 30 m to 14 kg N ha(-1) year(-1) at 650 m downwind. Emissions of N2O and NO were 56 and 131 microg N m(-2) h(-1), respectively at 30 m and 13 and 80 microg N m(-2) h(-1), respectively at 250 m downwind of the livestock buildings. Species number in woodland ground flora downwind of the buildings remained fairly constant for a distance of 200 m from the units then increased considerably, doubling at a distance of 650 m. Within the first 200 m downwind, trends in plant species composition were hard to discern because of variations in tree canopy composition and cover. The mean Ellenberg N Index ranged from 6.0 immediately downwind of the livestock buildings to 4.8 at 650 m downwind. The mean abundance weighted Ellenberg N Index also declined with distance from the buildings. Tissue N concentrations in trees, herbs and mosses were all large, reflecting the substantial ammonia emissions at this site. Tissue N content of ectohydric mosses ranged from approximately 4% at 30 m downwind to 1.6% at 650 m downwind. An assessment of the relative merits of the three marker variables concludes, that while Ellenberg Index and trace gas fluxes of N2O and NO give broad indications of impacts of ammonia emissions on woodland vegetation, the application of a critical foliar N content for ectohydric mosses is the most useful method for providing spatial information which could be of value to policy developers and planners.  相似文献   

20.
Poor air quality episodes occur often in metropolitan Atlanta, GA. The primary focus of this research is to assess the capability of satellites as a tool in characterizing air quality in Atlanta. Results indicate that intracity PM2.5 (particulate matter < or = 2.5 microm in aerodynamic diameter) concentrations show similar patterns as other U.S. urban areas, with the highest concentrations occurring within the city. PM2.5 and MODIS (Moderate Resolution Imaging Spectroradiometer) aerosol optical depth (AOD) have higher values in the summer than spring, yet MODIS AOD doubles in the summer unlike PM2.5. Most (80%) of the Ozone Monitoring Instrument aerosol index (AI) is below 0.5 with little differences between spring and summer. Using this value as a constraint of the carbonaceous aerosol signal in the urban area, aerosol transport events such as wildfire smoke associated with higher positive AI values can be identified. The results indicate that MODIS AOD is well correlated with PM2.5 on a yearly and seasonal basis with correlation coefficients as high as 0.8 for Terra and 0.7 for Aqua. A possible alternative view of the PM2.5 and AOD relationship is seen through the use of AOD thresholds. These probabilistic thresholds provide a means to describe the air quality index (AQI) through the use of multiyear AOD records for a specific area. The National Ambient Air Quality Standards (NAAQS) are used to classify the AOD into different AQI codes and probabilistically determine thresholds of AOD that represent most of a specific AQI category. For example, 80% of cases of moderate AQI days have AOD values between 0.5 and 0.6. The development of AOD thresholds provides a useful tool for evaluating air quality from the use of satellites in regions where there are sparse ground-based measurements of PM2.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号