共查询到13条相似文献,搜索用时 808 毫秒
1.
为研究乌鲁木齐市冬季采暖期间大气颗粒物污染特征,通过采样和在线监测二种手段分析了2015年1~2月大气颗粒物样品,采用重量法分析颗粒物质量浓度,并对其相关性进行分析。结果表明:依据《环境空气质量标准》(GB 3095-2012),采样期间乌鲁木齐市大气PM_(10) 和PM_(2.5)的日均质量浓度均超过了国家二级标准,颗粒物污染严重;PM_(10) 和PM_(2.5)存在显著相关性,PM_(2.5)和PM_(10) 浓度的比值均大于0.5,采暖期PM2.5对乌鲁木齐市大气颗粒物贡献显著。 相似文献
2.
以四川省南充市为研究区域,通过实地调研、现场测试及结合统计年鉴等获得数据,采用排放因子法计算南充市2014年大气PM_(10)、PM_(2.5)排放量并建立排放清单。结果表明,南充市2014年扬尘源、移动源、生物质燃烧源、化石燃料固定燃烧源、工艺过程源排放总量PM_(10)分别为85 187、1 777、9 175、2 417、3 519 t,PM_(2.5)分别为16 093、1 619、7 322、914、1 585 t,PM_(10)贡献率分别为83.5%、1.7%、9.0%、2.4%、3.4%,PM_(2.5)贡献率分别为58.4%、5.9%、26.6%、3.3%、5.8%。城市区域扬尘源、生物质燃烧源、移动源、化石燃料固定燃烧源、工艺过程源对PM_(10)贡献分别为60.0%、12.5%、6.3%、8.6%、12.5%,对PM_(2.5)贡献分别为41.8%、21.6%、14.4%、8.1%、14.1%。南充市2014年大气PM_(10)、PM_(2.5)排放源总量和贡献率以及区域空间分布特征均存在差异。 相似文献
3.
TSP-PM10-PM2.5-2型中流量大气颗粒物采集系统的开发和应用 总被引:13,自引:0,他引:13
自行开发并研制了TSP-PM10-PM2.5-2型中流量TSP、PM10、PM2.5大气颗粒物采集系统,是目前中国唯一可以采集TSP、PM10、PM2.5样品并提供足够的样品量进行大气颗粒物化学成分分析的中流量大气颗粒物采集器.该系统精心设计和加工的限流孔可以保持完全固定的流量,保证切割粒径的稳定,减小采样的误差并方便操作.该系统已经成功地应用于20多个城市和地区大气颗粒物的监测和研究中,为研究大气颗粒物的污染状况和来源提供了有效的技术手段和支持. 相似文献
4.
为深入研究PM2.5和PM10质量浓度异常“倒挂”现象的成因及影响,在苏州市相城区国控点开展比对监测分析,回顾性分析了2016—2020年苏州全部国控点颗粒物浓度数据。苏州市相城区国控点PM2.5浓度的比对分析结果表明:该国控点频繁出现PM2.5浓度高于其他国控点PM2.5浓度和高于该站点PM10浓度(“倒挂”率高达34%)的“双高”现象,PM2.5平均浓度比其他9个国控点高12.5%~37.2%,比位于同一站点的备用监测仪器(“倒挂”率为0)高38.1%。2016—2020年,苏州全部国控点“倒挂”时间的总体趋势都是逐年递增,且集中发生在相对湿度较高的20:00至次日07:00。这5年间各国控点PM2.5浓度异常偏高导致的异常“倒挂”现象对全市年均浓度产生的正误差分别为1.6%、2.8%、6.0%、6.2%和4.1%,基本呈现出逐年递增的趋势。上述结果表明:苏州PM2.5浓度偏高是由动态加... 相似文献
5.
采集贵阳市老城区夏季5个典型监测点(太慈桥、贵州师范大学、大西门、省政府及省植物园)的样品进行PM2.5、PM10质量浓度分析。同时对PM2.5中PAHs的质量浓度进行分析。结果表明:贵阳市夏季PM2.5和PM10浓度排序均为太慈桥省政府大西门贵州师范大学省植物园,且PM2.5和PM10之间有良好的相关性,PM10=0.931 3 PM2.5+0.019 4,R2=0.996 7,PM2.5污染较重。此外,5个监测点总PAHs和苯并(a)芘的分析结果均为太慈桥省政府大西门贵州师范大学省植物园,苯并(a)芘浓度均未超标。 相似文献
6.
2013年3月—2014年2月期间,设置1个监测点位,采集了西安市区大气环境中PM10和PM2.5样品,采用重量法测定了PM2.5和PM10质量浓度。结果表明,西安市区PM2.5质量浓度为16~558μg/m3,平均值为128μg/m3,超标率69.1%;PM10质量浓度范围为32~887μg/m3,平均值为249μg/m3,超标率71.8%。虽然PM2.5和PM10质量浓度的逐日变化幅度比较大,但是整体变化趋势非常相似,存在显著的正相关关系(r=0.831 9)。PM2.5和PM10质量浓度存在明显的季节变化,均为冬季最高,春季次之,秋季较低,夏季最低。ρ(PM2.5)/ρ(PM10)为0.245~0.822,平均值为0.510,说明PM2.5在PM10中所占比例大于PM2.5~10;此外,该比值呈现一定的季节变化规律,冬季、夏季较高,秋季次之,春季最低。霾天气发生时,该比值和PM2.5质量浓度明显高于无霾天气。 相似文献
7.
研究了2013年3月在江苏范围内的一次重污染天气过程,重点分析苏州在此次污染过程中大气污染的变化特征。污染过程中,苏州市颗粒物浓度上升较为明显, PM10的小时质量浓度最高达548μg/m3, PM2.5质量浓度也达到197μg/m3,污染持续时间为2 d,3月8—9日当地空气质量均达到中度污染水平。根据后向轨迹模型、颗粒物离子浓度的分析,此次污染是由外来浮尘及苏州本地污染物排放所造成的区域霾污染影响所致。根据监测结果与实际污染特征,针对性地提出了对策和措施。 相似文献
8.
9.
逐月采集南京市大气中不同粒径的颗粒物,采用HPLC分析了2010年每个月PM_(10)和PM_(2.5)颗粒物样品中的多环芳烃(PAHs)的种类和浓度水平。结果表明:PM_(10)中PAHs年均值为25.07 ng/m~3,范围为11.03~53.56 ng/m3;PM_(2.5)中PAHs年均值为19.04 ng/m~3,范围为10.82~36.43 ng/m~3。PM_(10)和PM_(2.5)中PAHs总体浓度有着相似的变化趋势,呈现凹形变化曲线;在南京市大气颗粒物中吸附的PAHs大部分以5~6环的高环数组分为主,大部分PAHs和∑PAHs的相关性较好,年度变化幅度不大,分析结果表明,颗粒物中PAHs的来源与稳定的排放源相关,机动车排放不容忽视,与北方城市燃煤污染有着较大的区别。 相似文献
10.
2011年5月—2012年1月在天津市南开区设立采样点,采集大气中PM10和PM2.5样品。采用离子色谱法测定颗粒物中水溶性无机阴离子、阳离子成分,分析其主要组成、季节变化及污染来源。结果表明,天津市PM10中离子平均浓度为71.2μg/m3,占PM10质量浓度的33.7%。PM2.5中离子平均浓度为54.8μg/m3,占PM2.5质量浓度的39.6%。NH+4、SO2-4、NO-3等二次离子含量较大,且夏季含量均为最高。颗粒物总体呈酸性,PM10中∑阳离子/∑阴离子平均值为0.92,PM2.5中该比值为0.75。来源分析发现,PM10可能主要来源于海盐、工业源、二次反应及土壤和建筑尘等,PM2.5则主要来源于海盐污染源、二次反应及生物质燃烧。 相似文献
11.
基于北京市PM2.5和PM10质量浓度、组分浓度以及降水数据,利用数理统计、相关性分析等方法分别从降水总量、降水时长和降水前颗粒物浓度3个角度研究降水对PM2.5、PM10的清除作用,同时以一次典型降水过程为例,具体分析降水对颗粒物的影响。结果表明:降水总量的增加有助于促进PM2.5、PM10的清除,随着降水总量增加,PM2.5、PM10的平均清除率提高,有效清除的比例增加;连续降水可增强对大气颗粒物的湿清除作用,连续降水达3d可有效降低PM2.5、PM10浓度;降水对PM2.5、PM10浓度的清除率和大气颗粒物前一日的平均浓度有较好的正相关性。降水对大气颗粒物的清除可分为清除、回升和平稳3个阶段,各个阶段大气颗粒物的变化趋势不同。降水对于大气气溶胶化学组分和酸碱性的改变具有明显作用,对于大气颗粒物各种组分的清除效果不完全相同。对于大气中OC、NO3-、SO42-和NH4+去除率较高,且这4种组分主要以颗粒态形式被冲刷进入降水中,加剧了北京市降水酸化程度。 相似文献
12.
2007年6月至2008年3月分4个季节在图们市区利用大气综合采样器采集4个监测点位的大气PM10样品,用硝酸-双氧水湿法消解,火焰原子吸收分光光度法检测样品中铬、锰、铁、铜、锌、镉、铅7种重金属含量,并对7种重金属元素的时空变化规律进行研究。结果表明:图们市大气PM10中重金属含量由高到低的顺序是铁>锌>锰>铅>铬>铜>镉,铁的含量明显高于其他重金属含量。铅的年平均值为1.436 μg/m3,超出现行《环境空气质量标准》(GB 3095—1996)规定的浓度限值。重金属的季节性变化规律比较明显,冬季Cr、Cu、Zn、Pb的含量明显高于其他3个季节。区域性功能则不明显,在4个监测点位中7种重金属含量的变化不是很大。7种重金属含量年平均值的日变化规律也不是很明显,说明重金属来源除了天然源外,主要来自于煤和汽油燃烧过程中排放的飘尘。 相似文献
13.
利用2018年261个乡镇环境空气自动监测站监测数据,结合GIS空间分析技术,对石家庄市PM10和PM2.5的时空污染特征进行了研究。结果表明,石家庄地区PM10和PM2.5污染的空间分布整体表现为西北部山区好于东南部的平原地区,主城区好于周边县(市、区)的特征。采暖期PM10和PM2.5的污染程度明显重于非采暖期。PM2.5稳定性差于PM10,PM10和PM2.5的稳定性与污染程度具有一定的负相关性,表现出污染越轻的区域稳定性越差。两者的日均值浓度变化在时间序列上呈极强正相关,且污染越重的区域时间相关性越强。与日均值相关性不同,污染程度越轻的区域PM10和PM2.5年均值的线性相关性越强。 相似文献