首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ecological modelling》2007,200(1-2):20-32
Species composition in forests depends on the interaction of species traits and species availability. Yet many forest simulation models focus only on interactions of adult trees and saplings, ignoring how species become members of the community. We modify a published forest model for bottomland hardwood forests (program SWAMP [Phipps, R.L., 1979. Simulation of wetlands forest vegetation dynamics. Ecol. Modell. 7, 257–288]) to make it spatially explicit and incorporate explicit seed production and dispersal algorithms. The resulting individual-based, spatially explicit forest simulator (YAFSIM) combines mechanistic seed dispersal with growth and mortality of trees to track forest dynamics over time. We describe the structure of the model and test its validity for dynamics in small bottomland hardwood patches in the Mississippi Alluvial Valley. Dynamics of species composition and basal areas of trees predicted by Yazoo Forest Simulator (YAFSIM) were similar to those of natural second- and old-growth bottomland forests. However, diversity of simulated forest patches declined over time largely because of random dynamics acting on small, isolated populations.  相似文献   

2.
Conversion of forested wetlands to agricultural use and the resulting fragmentation of the landscape has led to concerns for the functional integrity of the Mississippi River Alluvial Plain ecosystem. We describe an effort spearheaded by The Nature Conservancy to initiate a multi-decade partnership dedicated to creating and implementing a viable, cooperative, landscape-level restoration project in the Mississippi River Alluvial Plain. Important phases of the process during the first 5 years were (1) initiation of the development of an extensive network of partners, including state and federal agencies, private land owners, conservation groups, academicians, and other interested citizens; (2) development of a geographic information system (GIS) for the entire extent of the ecosystem; and (3) for one watershed, the Tensas basin in northeastern Louisiana, refinement of a high resolution GIS to generate more detailed land-use conversion statistics to demonstrate the feasibility of a semi-objective, landscape-scale restoration planning procedure, including methodology for prioritization of existing wetland forest patches and areas most suitable for reforestation and connection via corridors.  相似文献   

3.
A multi-scale examination of stopover habitat use by birds   总被引:1,自引:0,他引:1  
Buler JJ  Moore FR  Woltmann S 《Ecology》2007,88(7):1789-1802
Most of our understanding of habitat use by migrating land birds comes from studies conducted at single, small spatial scales, which may overemphasize the importance of intrinsic habitat factors, such as food availability, in shaping migrant distributions. We believe that a multi-scale approach is essential to assess the influence of factors that control en route habitat use. We determined the relative importance of eight variables, each operating at a habitat-patch, landscape, or regional spatial scale, in explaining the differential use of hardwood forests by Nearctic-Neotropical land birds during migration. We estimated bird densities through transect surveys at sites near the Mississippi coast during spring and autumn migration within landscapes with variable amounts of hardwood forest cover. At a regional scale, migrant density increased with proximity to the coast, which was of moderate importance in explaining bird densities, probably due to constraints imposed on migrants when negotiating the Gulf of Mexico. The amount of hardwood forest cover at a landscape scale was positively correlated with arthropod abundance and had the greatest importance in explaining densities of all migrants, as a group, during spring, and of insectivorous migrants during autumn. Among landscape scales ranging from 500 m to 10 km radius, the densities of migrants were, on average, most strongly and positively related to the amount of hardwood forest cover within a 5 km radius. We suggest that hardwood forest cover at this scale may be an indicator of habitat quality that migrants use as a cue when landing at the end of a migratory flight. At the patch scale, direct measures of arthropod abundance and plant community composition were also important in explaining migrant densities, whereas habitat structure was of little importance. The relative amount of fleshy-fruited trees was positively related and was the most important variable explaining frugivorous migrant density during autumn. Although constraints extrinsic to habitat had a moderate role in explaining migrant distributions, our results are consistent with the view that food availability is the ultimate factor shaping the distributions of birds during stopover.  相似文献   

4.
Loss of natural forests by forest clearcutting has been identified as a critical conservation challenge worldwide. This study addressed forest fragmentation and loss in the context of the establishment of a functional green infrastructure as a spatiotemporally connected landscape-scale network of habitats enhancing biodiversity, favorable conservation status, and ecosystem services. Through retrospective analysis of satellite images, we assessed a 50- to 60-year spatiotemporal clearcutting impact trajectory on natural and near-natural boreal forests across a sizable and representative region from the Gulf of Bothnia to the Scandinavian Mountain Range in northern Fennoscandia. This period broadly covers the whole forest clearcutting period; thus, our approach and results can be applied to comprehensive impact assessment of industrial forest management. The entire study region covers close to 46,000 km2 of forest-dominated landscape in a late phase of transition from a natural or near-natural to a land-use modified state. We found a substantial loss of intact forest, in particular of large, contiguous areas, a spatial polarization of remaining forest on regional scale where the inland has been more severely affected than the mountain and coastal zones, and a pronounced impact on interior forest core areas. Salient results were a decrease in area of the largest intact forest patch from 225,853 to 68,714 ha in the mountain zone and from 257,715 to 38,668 ha in the foothills zone, a decrease from 75% to 38% intact forest in the inland zones, a decrease in largest patch core area (assessed by considering 100-m patch edge disturbance) from 6114 to 351 ha in the coastal zone, and a geographic imbalance in protected forest with an evident predominance in the mountain zone. These results demonstrate profound disturbance of configuration of the natural forest landscape and disrupted connectivity, which challenges the establishment of functional green infrastructure. Our approach supports the identification of forests for expanded protection and conservation-oriented forest landscape restoration.  相似文献   

5.
Development and maintenance of structurally complex forests in landscapes formerly managed for timber production is an increasingly common management objective. It has been postulated that the rate of forest structural development increases with site productivity. We tested this hypothesis for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests using a network of permanent study plots established following complete timber harvest of the original old-growth forests. Forest structural development was assessed by comparing empirical measures of live tree structure to published values for Douglas-fir forests spanning a range of ages and structural conditions. The rate of forest structural development--resilience--exhibited a positive relationship with site index, a measure of potential site productivity. Density of shade-intolerant conifers declined in all study stands from an initial range of 336-4068 trees/ha to a range of 168-642 trees/ha at the most recent measurement. Angiosperm tree species declined from an initial range of 40-371 trees/ha to zero in seven of the nine plots in which they were present. Trends in shade-tolerant tree density were complex: density ranged from 0 to 575 trees/ha at the first measurement and was still highly variable (25-389 trees/ha) at the most recent measurement. Multivariate analysis identified the abundance of hardwood tree species as the strongest compositional trend apparent over the study period. However, structural variables showed a strong positive association with increasing shade-tolerant basal area and little or no association with abundance of hardwood species. Thus, while tree species succession and forest structural development occur contemporaneously, they are not equivalent processes, and their respective rates are not necessarily linearly related. The results of this study support the idea that silvicultural treatments to accelerate forest structural development should be concentrated on lower productivity sites when the management objective is reserve-wide coverage of structurally complex forests. Alternatively, high-productivity sites should be prioritized for restoration treatments when the management objective is to develop structurally complex forests on a portion of the landscape.  相似文献   

6.
Abstract: We analyzed the structure and composition of a bird assemblage in a fragmented relict temperate forest located in northcentral Chile ( Fray Jorge National Park). In terms of species composition, the bird assemblage we found in Fray Jorge was more similar to southern temperate forest sites, located more than 1200 km south of Fray Jorge, than to localities found in nearby scrub habitats. The relict character and long-term isolation of the Fray Jorge forest provides a natural experiment with which to establish the potential long-term effects of fragmentation and isolation on southern Chilean temperate forests. Between May 1996 and March 1997, we conducted seasonal surveys of birds in six forest fragments, ranging in size from 0.5 to 22.5 ha, at Fray Jorge. The number of bird species at each forest fragment was positively correlated with fragment area during all seasons. The relict forest system had a steeper species-area slope than that reported for similar temperate-forest bird assemblages in forest fragments within Chiloé Island and for islands across the Chiloé Archipelago in southern Chile. In this regard, this bird fauna resembled a depauperate oceanic archipelago. This difference in area effects is likely a consequence of the minimization of rescue effects because of the absence of large source forest areas nearby and the long-term isolation of the system. In addition, the distribution of species among forest fragments in Fray Jorge was not random, showing a nested subset pattern. Thus, some species occur across all fragments, regardless of their area, and therefore are less affected by habitat fragmentation and less prone to local extinction. These results suggest that, for south-temperate forest birds, large fragments (or reserves) should afford better protection against extinction than small forest patches.  相似文献   

7.
Mounting evidence of wildlife population gains from targeted conservation practices has prompted the need to develop and evaluate practices that are integrated into production agriculture systems and targeted toward specific habitat objectives. However, effectiveness of targeted conservation actions across broader landscapes is poorly understood. We evaluated multiregion, multispecies avian densities on row‐crop fields with native grass field margins (i.e., buffers) as part of the first U.S. agricultural conservation practice designed to support habitat and population recovery objectives of a national wildlife conservation initiative. We coordinated breeding season point transect surveys for 6 grassland bird species on 1151 row‐crop fields with and without native grass buffers (9–37 m) in 14 U.S. states (10 ecoregions) from 2006 to 2011. In most regions, breeding season densities of 5 of 6 targeted bird species were greater in the 500‐m surrounding survey points centered on fields with native grass buffers than in landscapes without buffers. Relative effect sizes were greatest for Northern Bobwhite (Colinus virginianus), Dickcissel (Spiza americana), and Field Sparrow (Spizella pusilla) in the Mississippi Alluvial Valley and Eastern Tallgrass Prairie regions. Other species (e.g., Eastern Meadowlark [Sturnella magna], Grasshopper Sparrow [Ammodramus savannarum]) exhibited inconsistent relative effect sizes. Bird densities on fields with and without buffers were greatest in the Central Mixed‐grass Prairie region. Our results suggest that strategic use of conservation buffers in regions with the greatest potential for relative density increases in target species will elicit greater range‐wide population response than diffuse, uninformed, and broadly distributed implementation of buffers. We recommend integrating multiple conservation practices in broader agricultural landscapes to maximize conservation effectiveness for a larger suite of species. Evaluación de los Beneficios de la Mutliregionalidad de Aves a Partir de Amortiguadores Agriculturales Estratégicamente Señalados  相似文献   

8.
Abstract:  To better understand responses of reptiles and amphibians to forest fragmentation in the lowland Neotropics, we examined community and population structure of frogs and lizards in the fragmented landscape surrounding La Selva Biological Station in the Sarapiquí region of northeastern Costa Rica. We used diurnal quadrats and nocturnal transects to sample frogs and lizards in nine forest fragments (1–7 ha each) and La Selva (1100 ha). Species richness in all fragments combined was 85% of that found in La Selva with comparable sampling effort. Richness varied from 10 to 24 species among forest fragments, compared with 36 species at La Selva. Lizard density was higher and frog density was lower in forest fragments than in La Selva. Community composition varied among sites and by fragment size class, and species occurrence was nested with respect to fragment area. Isolation and habitat variables did not significantly affect species richness, composition, or nestedness. We classified 34% of species as fragmentation sensitive because they were absent or occurred at low densities in fragments. Nevertheless, the relatively high diversity observed in the entire set of fragments indicates that preserving a network of small forest patches may be of considerable conservation value to the amphibians and reptiles of this region.  相似文献   

9.
Habitat loss and fragmentation alter the composition of bird assemblages in rainforest. Because birds are major seed dispersers in rainforests, fragmentation‐induced changes to frugivorous bird assemblages are also likely to alter the ecological processes of seed dispersal and forest regeneration, but the specific nature of these changes is poorly understood. We assessed the influence of fragment size and landscape forest cover on the abundance, species composition, and functional properties of the avian seed disperser community in an extensively cleared, former rainforest landscape of subtropical Australia. Bird surveys of fixed time and area in 25 rainforest fragments (1–139 ha in size across a 1800 km2 region) provided bird assemblage data which were coupled with prior knowledge of bird species’ particular roles in seed dispersal to give measurements of seven different attributes of the seed disperser assemblage. We used multimodel regression to assess how patch size and surrounding forest cover (within 200 m, 1000 m, and 5000 m radii) influenced variation in the abundance of individual bird species and of functional groups based on bird species’ responses to fragmentation and their roles in seed dispersal. Surrounding forest cover, specifically rainforest cover, generally had a greater effect on frugivorous bird assemblages than fragment size. Amount of rainforest cover within 200 m of fragments was the main factor positively associated with abundances of frugivorous birds that are both fragmentation sensitive and important seed dispersers. Our results suggest a high proportion of local rainforest cover is required for the persistence of seed‐dispersing birds and the maintenance of seed dispersal processes. Thus, even small rainforest fragments can function as important parts of habitat networks for seed‐dispersing birds, whether or not they are physically connected by vegetation. Respuestas de Aves Dispersoras de Semillas al Incremento de Selvas en el Paisaje Alrededor de Fragmentos  相似文献   

10.
Effects of Restoring Oak Savannas on Bird Communities and Populations   总被引:2,自引:0,他引:2  
Abstract:  Efforts to restore and maintain oak savannas in North America, with emphasis on the use of prescribed fire, have become common. Little is known, however, about how restoration affects animal populations, especially those of birds. I compared the breeding densities, community structure, and reproductive success of birds in oak savannas maintained by prescribed fire (12 sites) with those in closed-canopy forests (13 sites). All sampling was conducted in Illinois (U.S.A.). Of the 31 bird species analyzed, 12 were more common in savannas, 14 were not affected by habitat structure, and 5 were more common in forest habitat. The species favored by disturbance and restoration included Northern Bobwhites ( Colinus virginianus ), Mourning Doves (  Zenaida macroura ), Red-headed Woodpeckers (  Melanerpes erythrocephalus ), Indigo Buntings (  Passerina cyanea ), and Baltimore Orioles ( Icterus galbula ). Those more common in closed-canopy forest included Ovenbirds ( Seiurus aurocapilla ) and Wood Thrushes (  Hylocichla mustelina ). Few species were unique to one type of habitat, but overall avian community structure in oak savannas and closed-canopy forests was generally distinctive. Estimates of nesting success (derived from 785 nests) revealed that 6 of the 13 species considered experienced greater productivity in the savanna habitat. Rates of brood parasitism were unaffected by restoration and habitat structure. Within savannas, tract size had little effect on breeding abundances and reproductive success. My results illustrate that restoration techniques can significantly affect the ecology of constituent animal populations and communities and have key implications regarding avian conservation and the management of forest habitat in fragmented landscapes. Small patches of forest habitat that regularly function as population sinks may offer far better prospects for birds if they are subjected to disturbance and ecosystem restoration.  相似文献   

11.
Forest fragmentation has several phases; thus, the ecological significance of each phase during a particular period of time must be interpreted. To interpret, this study quantifies the magnitude of forest loss and the changes in the temporal pattern of fragmentation in the State of Selangor, peninsular Malaysia. Using the decision tree model of land transformation, five phases of forest fragmentation were identified: perforation, dissection, dissipation, shrinkage and attrition. This analysis showed that the magnitude of forest loss was the highest during the dissipation phase. The patchiness analysis showed that dissipation contributes to the highest environmental uncertainty found for the forest patches. This study can be considered a first step in the exploration of the properties and the behavioural pattern shown by the spatial process of forest fragmentation.  相似文献   

12.
Rain forest fragmentation and the proliferation of successional trees   总被引:9,自引:0,他引:9  
The effects of habitat fragmentation on diverse tropical tree communities are poorly understood. Over a 20-year period we monitored the density of 52 tree species in nine predominantly successional genera (Annona, Bellucia, Cecropia, Croton, Goupia, Jacaranda, Miconia, Pourouma, Vismia) in fragmented and continuous Amazonian forests. We also evaluated the relative importance of soil, topographic, forest dynamic, and landscape variables in explaining the abundance and species composition of successional trees. Data were collected within 66 permanent 1-ha plots within a large (approximately 1000 km2) experimental landscape, with forest fragments ranging from 1 to 100 ha in area. Prior to forest fragmentation, successional trees were uncommon, typically comprising 2-3% of all trees (> or =10 cm diameter at breast height [1.3 m above the ground surface]) in each plot. Following fragmentation, the density and basal area of successional trees increased rapidly. By 13-17 years after fragmentation, successional trees had tripled in abundance in fragment and edge plots and constituted more than a quarter of all trees in some plots. Fragment age had strong, positive effects on the density and basal area of successional trees, with no indication of a plateau in these variables, suggesting that successional species could become even more abundant in fragments over time. Nonetheless, the 52 species differed greatly in their responses to fragmentation and forest edges. Some disturbance-favoring pioneers (e.g., Cecropia sciadophylla, Vismia guianensis, V. amazonica, V. bemerguii, Miconia cf. crassinervia) increased by >1000% in density on edge plots, whereas over a third (19 of 52) of all species remained constant or declined in numbers. Species responses to fragmentation were effectively predicted by their median growth rate in nearby intact forest, suggesting that faster-growing species have a strong advantage in forest fragments. An ordination analysis revealed three main gradients in successional-species composition across our study area. Species gradients were most strongly influenced by the standlevel rate of tree mortality on each plot and by the number of nearby forest edges. Species-composition also varied significantly among different cattle ranches, which differed in their surrounding matrices and disturbance histories. These same variables were also the best predictors of total successional-tree abundance and species richness. Successional-tree assemblages in fragment interior plots (>150 m from edge), which are subjected to fragment area effects but not edge effects, did not differ significantly from those in intact forest, indicating that area effects per se had little influence on successional trees. Soils and topography also had little discernable effect on these species. Collectively, our results indicate that successional-tree species proliferate rapidly in fragmented Amazonian forests, largely as a result of chronically elevated tree mortality near forest edges and possibly an increased seed rain from successional plants growing in nearby degraded habitats. The proliferation of fast-growing successional trees and correlated decline of old-growth trees will have important effects on species composition, forest dynamics, carbon storage, and nutrient cycling in fragmented forests.  相似文献   

13.
Abstract: Habitat fragmentation increases seed dispersal limitation across the landscape and may also affect subsequent demographic stages such as seedling establishment. Thus, the development of adequate plans for forest restoration requires an understanding of mechanisms by which fragmentation hampers seed delivery to deforested areas and knowledge of how fragmentation affects the relationship between seed‐deposition patterns and seedling establishment. We evaluated the dispersal and recruitment of two bird‐dispersed, fleshy‐fruited tree species (Crataegus monogyna and Ilex aquifolium) in fragmented secondary forests of northern Spain. Forest fragmentation reduced the probability of seed deposition for both trees because of decreased availability of woody perches and fruit‐rich neighborhoods for seed dispersers, rather than because of reductions in tree cover by itself. The effects of fragmentation went beyond effects on the dispersal stage in Crataegus because seedling establishment was proportional to the quantities of bird‐dispersed seeds arriving at microsites. In contrast, postdispersal mortality in Ilex was so high that it obscured the seed‐to‐seedling transition. These results suggest that the effects of fragmentation are not necessarily consistent across stages of recruitment across species. Habitat management seeking to overcome barriers to forest recovery must include the preservation, and even the planting, of fleshy‐fruited trees in the unforested matrix as a measure to encourage frugivorous birds to enter into open and degraded areas. An integrative management strategy should also explicitly consider seed‐survival expectancies at microhabitats to preserve plant‐population dynamics and community structure in fragmented landscapes.  相似文献   

14.
Londré RA  Schnitzer SA 《Ecology》2006,87(12):2973-2978
Lianas (woody vines) are an important and dynamic component of many forests throughout the world, and increases in CO2, mean winter temperature, and forest fragmentation may promote their growth and proliferation in temperate forests. In this study, we used a 45-year data set to test the hypothesis that lianas have increased in abundance and basal area in the interiors of 14 deciduous temperate forests in Wisconsin (USA) since 1959. We also censused woody plants along a gradient from the forest edge to the interior in seven of these forests to test the hypothesis that the abundance of lianas declines significantly with increasing distance from the forest edge. We found that lianas did not increase in abundance within the interiors of temperate forests in Wisconsin over the last 45 years. However, relative and absolute liana abundance decreased sharply with increasing distance from forest edges. Our findings suggest that forest fragmentation, not climate change, may be increasing the abundance of lianas in northern deciduous temperate forests, and that lianas may further increase in abundance if the severity of forest fragmentation intensifies.  相似文献   

15.
We examined the cost of conserving species as climate changes. We used a Maxent species distribution model to predict the ranges from 2000 to 2080 of 74 plant species endemic to the forests of Madagascar under 3 climate scenarios. We set a conservation target of achieving 10,000 ha of forest cover for each species and calculated the cost of achieving this target under each scenario. We interviewed managers of projects to restore native forests and conducted a literature review to obtain the net present cost per hectare of management actions to maintain or establish forest cover. For each species, we added hectares of land from lowest to highest cost per additional year of forest cover until the conservation target was achieved throughout the time period. Climate change was predicted to reduce the size of species' ranges, the overlap between species' ranges and existing or planned protected areas, and the overlap between species' ranges and existing forest. As a result, climate change increased the cost of achieving the conservation target by necessitating successively more costly management actions: additional management within existing protected areas (US$0-60/ha); avoidance of forest degradation (i.e., loss of biomass) in community-managed areas ($160-576/ha); avoidance of deforestation in unprotected areas ($252-1069/ha); and establishment of forest on nonforested land within protected areas ($802-2710/ha), in community-managed areas ($962-3226/ha), and in unprotected areas ($1054-3719/ha). Our results suggest that although forest restoration may be required for the conservation of some species as climate changes, it is more cost-effective to maintain existing forest wherever possible.  相似文献   

16.
The South American dry Chaco is a mosaic of woody vegetation and grasslands with high deforestation rates in recent decades. Considering forests and grasslands as the main natural habitats, we assessed the trade-offs between bird populations and agricultural production to compare the potential consequences of different land use strategies (‘sharing’, ‘sparing’, and intermediate) for populations of bird species sensitive to agriculture, while attaining a regional production target. We evaluated how populations responded to scenarios with different proportions of forest and grasslands, considering three reference states (100% forest, 80:20% and 50:50% forest and grasslands, respectively); and scenarios capable of meeting three after-farming scenarios, with land destined to reach a regional production target with three variations of forest:grasslands within spared land. We fitted curves to relate bird abundance to agricultural yield along a gradient of meat production intensity; and we classified bird species as ‘losers’ (if their populations were lower than the baseline population in the reference state, at any level of production) and ‘winners’ (if their current populations were higher than the baseline population). At the ‘current’ (c. 2010) level of regional agricultural production, we found a similar number of loser species maximized by land-sparing and land-sharing strategies; while intermediate strategies were the least favourable to balance production and bird populations. Under the most probable scenarios of increases in regional meat production, most loser bird species populations were maximized by a land-sparing strategy, suggesting that if meat production targets are going to increase in the region, this can be more efficiently achieved by combining well-protected forests and grasslands, and high-yielding mechanized agriculture (e.g. soybean). Our results highlight the importance of assessing all the important natural habitats (e.g. forests and grasslands) of a region to explore conservation strategies at a regional scale.  相似文献   

17.
Abstract: Despite many studies on fragmentation of tropical forests, the extent to which plant and animal communities are altered in small, isolated forest fragments remains obscure if not controversial. We examined the hypothesis that fragmentation alters the relative abundance of tree species with different vegetative and reproductive traits. In a fragmented landscape (670 km2) of the Atlantic Forest of northeastern Brazil, we categorized 4056 trees of 182 species by leafing pattern, reproductive phenology, and morphology of seeds and fruit. We calculated relative abundance of traits in 50 1‐ha plots in three types of forest configurations: forest edges, small forest fragments (3.4–83.6 ha), and interior of the largest forest fragment (3500 ha, old growth). Although evergreen species were the most abundant across all configurations, forest edges and small fragments had more deciduous and semideciduous species than interior forest. Edges lacked supra‐annual flowering and fruiting species and had more species and stems with drupes and small seeds than small forest fragments and forest interior areas. In an ordination of species similarity and life‐history traits, the three types of configurations formed clearly segregated clusters. Furthermore, the differences in the taxonomic and functional (i.e., trait‐based) composition of tree assemblages we documented were driven primarily by the higher abundance of pioneer species in the forest edge and small forest fragments. Our work provides strong evidence that long‐term transitions in phenology and seed and fruit morphology of tree functional groups are occurring in fragmented tropical forests. Our results also suggest that edge‐induced shifts in tree assemblages of tropical forests can be larger than previously documented.  相似文献   

18.
Abstract: Subsistence game hunting has profound negative effects on the species diversity, standing biomass, and size structure of vertebrate assemblages in Amazonian forests that otherwise remain largely undisturbed. These effects are likely to be considerably aggravated by forest fragmentation because fragments are more accessible to hunters, allow no (or very low rates of  ) recolonization from nonharvested source populations, and may provide a lower-quality resource base for the frugivore-granivore vertebrate fauna. I examined the likelihood of midsized to large-bodied bird and mammal populations persisting in Amazonian forest fragments of variable sizes whenever they continue to be harvested by subsistence hunters in the aftermath of isolation. I used data from a comprehensive compilation of game-harvest studies throughout Neotropical forests to estimate the degree to which different species and populations have been overharvested and then calculated the range of minimum forest areas required to maintain a sustainable harvest. The size distribution of 5564 Amazonian forest fragments—estimated from Landsat images of six regions of southern and eastern Brazilian Amazonia—clearly shows that these are predominantly small and rarely exceed 10 ha, suggesting that persistent overhunting is likely to drive most midsized to large vertebrate populations to local extinction in fragmented forest landscapes. Although experimental studies on this negative synergism remain largely unavailable, the prospect that increasingly fragmented Neotropical forest regions can retain their full assemblages of avian and mammalian species is unlikely.  相似文献   

19.
Importance of Reserve Size and Landscape Context to Urban Bird Conservation   总被引:15,自引:1,他引:15  
Abstract:  We tested whether reserve size, landscape surrounding the reserve, and their interaction affect forest songbirds in the metropolitan area of Seattle, Washington (U.S.A.), by studying 29 reserves of varying size (small, medium, large) and surrounding urbanization intensity (urban, suburban, exurban). Larger reserves contained richer and less even bird communities than smaller reserves. These size effects disappeared when we removed the positive correlation of shrub diversity with reserve size, suggesting that greater habitat diversity in large reserves supported additional species, some of which were rare. Standardizing the number of individuals detected among all reserve size classes reversed the effect of size on richness in exurban landscapes and reduced the magnitude of the effect in suburban or urban landscapes. The latter change suggested that richness increased with reserve size in most landscapes because larger areas also supported larger samples from the regional bird species pool. Most bird species associated with native forest habitat (native forest species) and with human activity (synanthropic species) were present in reserves larger than 42 ha and surrounded by >40% urban land cover, respectively. Thus, we recommend these thresholds as means for conserving the composition of native bird communities in this mostly forested region. Native forest species were least abundant and synanthropic species most abundant in urban landscapes, where exotic ground and shrub vegetation was most common. Therefore, control of exotic vegetation may benefit native songbird populations. Bird nests in shrubs were most dense in medium (suburban) and large reserves (urban) and tended to be most successful in medium (suburban) and large reserves (exurban), potentially supplying another mechanism by which reserve size increased retention of native forest species.  相似文献   

20.
Long-Term Avifaunal Impoverishment in an Isolated Tropical Woodlot   总被引:3,自引:0,他引:3  
Abstract:  Long-term (>50 years) extinction patterns and processes in isolated tropical forest patches are poorly understood. Considering that forest fragments are rapidly becoming the common feature of most tropical landscapes, data on the long-term conservation value of such fragments are urgently needed. We report on avifaunal turnover in a tropical woodlot (Bogor Botanical Gardens; 86 ha; 54% native and 46% introduced plants; mean 83,649 visitors/month) that has been surveyed several times before and after its isolation in 1936. By 2004 the original avifaunal richness of this woodlot declined by 59% (97 to 40 species) and its forest-dependent avifauna declined by 60% (30 to 12 species). Large-bodied birds were particularly prone to extinction before 1987, but following this time none of the species traits we studied could be considered predictive of extinction proneness. All seven forest-dependent bird species that attempted to colonize this woodlot by 1987 perished thereafter. Our results show that area reduction, isolation, intense human use, and perverse management (e.g., understory removal) of this patch have probably negatively affected the long-term sustainability of its forest avifauna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号