首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Chemosphere》2007,66(11):2045-2053
The fertilizing potential of Fe-enriched biosolids has been attributed to Fe associations with humic substances contained therein. In this study, alkaline and near-neutral aqueous extractions of humic substances from an Fe-enriched biosolid were followed by gel chromatographic fractionation and characterization (CHNS elemental analysis; UV/visible and FTIR spectroscopy; FAAS analysis). The alkaline bulk humic extract had a strong fulvic character and Fe was predominantly associated with the higher molecular weight (∼50 000 Da) molecules, possibly including organic-coated Fe oxides from which Fe may be released more slowly. Under both near-neutral and alkaline conditions, associations with lower molecular weight humic molecules were also observed, indicative of the presence of Fe in more readily available forms. Thus the biosolid appears to have good short- and long-term fertilizing potential, particularly for alkaline, Fe-deficient soils.  相似文献   

2.
Conte P  Piccolo A 《Chemosphere》1999,38(3):517-528
High Pressure Size Exclusion chromatography (HPSEC) is increasingly used to evaluate molecular sizes of humic substances from different sources. Asymmetry factors (As), number of theoretical plates (N), coefficient of distribution (k(d)), and column resolution (Rs) were determined for two different HPSEC columns (TSK G3000SW and Biosep S2000) and polysaccharides of known molecular weights were used as standards. Calibration curves were equivalent for both columns whereas analytical parameters revealed that the TSK column was only slightly more efficient in separating polysaccharide standards. Mw and Mn values for humic substances differed according to the molecular weight range of each column but relative standard deviation never exceeded 5% for both columns. Variations between columns were attributed to intrinsic humic properties such as the stability of conformational structures. These results suggested that humic substances in solutions are loosely-bound association of small molecules that may be consistently dispersed by diffusion through size-exclusion pores. HPSEC is confirmed to represent a highly precise method to evaluate the relative molecular-size distribution of dissolved humic substances.  相似文献   

3.
Charge characteristics of humic and fulvic acids of a different origin (inshore soils, peat, marine sediments, and soil (lysimetric) waters) were evaluated by means of two alternative methods - colloid titration and potentiometric titration. In order to elucidate possible limitations of the colloid titration as an express method of analysis of low content of humic substances we monitored changes in acid-base properties and charge densities of humic substances with soil depth, fractionation, and origin. We have shown that both factors - strength of acidic groups and molecular weight distribution in humic and fulvic acids - can affect the reliability of colloid titration. Due to deviations from 1:1 stoichiometry in interactions of humic substances with polymeric cationic titrant, the colloid titration can underestimate total acidity (charge density) of humic substances with domination of weak acidic functional groups (pK>6) and high content of the fractions with molecular weight below 1kDa.  相似文献   

4.
Natural organic polyelectrolytes (humic and fulvic acids) and their metal complexes were removed by adsorption onto xonotlite. The removal percentages of humic and fulvic acids by xonotlite were approximately 80% and 30%, respectively. Humic acid removal from solution by adsorption onto xonotlite took place more readily than fulvic acid removal. The molecular weight distributions of the humic substances remaining in solution after adsorption with the xonotlite were measured with size exclusion chromatography. A comparison of molecular weight distributions demonstrated conclusively that large molecular weight components were adsorbed preferentially, indicating that adsorption efficiency depends on the number of functional groups of humic substances. Furthermore, the surface topography of the adsorbent was observed before and after adsorption by scanning electron microscopy. The calculated heat of adsorption was of 330 kJ mol(-1) which was evaluated from the Clapeyron-Clausius equation. Therefore, the adsorption type can be considered chemical. Since xonotlite can be easily synthesized and obtained at low cost, the adsorption method of humic and fulvic acids is superior to their precipitation.  相似文献   

5.
R. M. Baxter  John Malysz 《Chemosphere》1992,24(12):1745-1753
Three preparations of humic material (a commercial humic acid and material isolated from soil and from water) were analysed by electrophoresis on polyacrylamide gradient gel slabs. All gave similar patterns showing four bands of material of molecular weights apparently ranging from a few hundred to about 20,000 as estimated by comparing their mobilities with those of protein markers. The high molecular weight material from bleached kraft mill effluent (BKME) showed similar patterns with the addition of completely unresolved material of molecular weight up to about 100,000.

Electrophoresis on polyacrylamide slabs may prove valuable for the study of humic substances and other ill-defined polymeric materials.  相似文献   


6.
城市污水二级出水中溶解性有机物特性分析   总被引:2,自引:0,他引:2  
分别采用凝胶色谱、亲疏水性组分分离、荧光色谱等方法,研究了城市污水处理厂二级出水中溶解性有机物的分子量分布、亲疏水组分含量以及荧光光谱特性。结果表明,二级出水中疏水性组分较亲水性组分多,疏水性组分约占总有机物的64.3%,而亲水性组分占35.7%左右;二级出水及其不同亲/疏水组分中溶解性有机物分子量分布基本集中在4.5 kDa以下,其中弱疏水性组分和亲水性组分中主要为分子量小于1.5 kDa的有机物;二级出水溶解性有机物中含有腐殖酸类、富里酸类以及蛋白质类物质,其中含量以腐殖酸类为主。  相似文献   

7.
Yan M  Korshin G  Wang D  Cai Z 《Chemosphere》2012,87(8):879-885
High-performance liquid chromatography-size exclusion chromatography (HPLC-SEC) coupled with a multiple wavelength absorbance detector (200-445 nm) was used in this study to investigate the apparent molecular weight (AMW) distributions of dissolved organic matter (DOM). Standard DOM, namely humic acid, fulvic acid and hydrophilic acid, from the Suwannee River were tested to ascertain the performance and sensitivity of the method. In addition to four compounds groups: humic substances (Peak 1, AMW 16 kD), fulvic acids (Peak 2, AMW 11 kD), low AMW acids (Peak 3, AMW 5 kD), and low AMW neutral and amphiphilic molecules, proteins and their amino acid building blocks (Peak 4, AMW 3 kD), an new group that appears to include low AMW, 6-10 kD, humic substances was found based on investigating the spectra at various elution times. The spectroscopic parameter S>365 (slope at wavelengths >365 nm) was determined to be a good predictor of the AMW of the DOM. The detector wavelength played an important role in evaluating the AMW distribution. For some fractions, such as the humic and low AMW non-aromatic substances, the error in measurement was ±30% as determined by two-dimensional chromatograms detected at an artificially selected wavelength. HPLC-SEC with multiple wavelength absorbance detection was found to be a useful technique for DOM characterization. It characterized the AMW distributions of DOM more accurately and provided additional, potentially important information concerning the properties of DOM with varying AMWs.  相似文献   

8.

Introduction

A synthetic water-soluble meso-tetra(2,6-dichloro-3-sulfonatophenyl)porphyrinate of iron(III) chloride, Fe-(TDCPPS)Cl, was employed to catalyze the oxidative co-polymerization of penta-halogenated phenols in two humic materials of different origin.

Materials and methods

Co-polymerization of pentachlorophenol (PCP) was followed by high-performance size-exclusion chromatography (HPSEC), the unbound PCP recovered from reacting humic solutions was evaluated by gas-chromatography/electron capture detector, and the oxidative catalyzed coupling of pentafluorophenol (PFP) into humic matter was assessed by liquid-state 19F-NMR spectroscopy. HPSEC showed that the catalyzed oxidative coupling between PCP and humic molecules increased the apparent weight-average molecular weight (M w) values in both humic substances.

Results and discussion

HPSEC further indicated that the co-polymerization reaction turned the loosely bound humic supramolecular structures into more stable conformations, which could no longer be disrupted by the disaggregating effect of acetic acid. The occurrence of covalent linkages established between PCP and humic molecules was also suggested by the very little amount of PCP found free in solution after the catalyzed co-polymerization. 19F-NMR spectroscopy suggested that also PFP could be oxidatively coupled to humic materials. PFP-humic co-polymerization reaction produced 19F-spectra with many more 19F signals and wider chemical shifts spread than for PFP alone or PFP subjected to catalyzed coupling without humic matter.

Conclusions

These findings show that biomimetic iron-porphyrin is an efficient catalyst for the covalent binding of polyhalogenated phenols to humic molecules, thereby suggesting that the co-polymerization reaction may become a useful technology to remediate soils and waters contaminated by polyhalogenated phenols and their analogues.  相似文献   

9.
Samples of humic substances were obtained from a waterworks at Fuhrberg, Germany. The material had a bimodal molecular size distribution with 40% of the total carbon in the 50,000–100,000-D (nominal molecular weight, NMW, in daltons) size fraction and 50% of the carbon in the <10,000-D (NMW) size fraction. The fulvic and humic acids isolated from the bulk humic substances were low in nitrogen content and had low H/C atomic ratios. Furthermore, the fulvic and humic acids had very similar elemental, spectral and copper binding characteristics. Over 70% of the carbon in both the fulvic and humic acids was present in aromatic or aliphatic groups, with 13C NMR analyses indicating approximately even distribution among the two types. Competitive elemental binding studies indicated that Ca2+, Mg2+, Al3+ and Fe3+ do not effectively compete for copper binding sites on these compounds. In humic acids, these cations are predominantly bond by carboxylic groups.  相似文献   

10.
The high-molecular weight water-soluble organic compounds present in atmospheric aerosols underwent functional-group characterization using liquid chromatography tandem mass spectrometry (LC-MS/MS), with a focus on understanding the chemical structure and origins of humic-like substances (HULIS) in the atmosphere. Aerosol samples were obtained from several locations in North America at times when primary sources contributing to organic aerosol were well-characterized: Riverside, CA, Fresno, CA, urban and peripheral Mexico City, Atlanta, GA, and Bondville, IL. Chemical analysis targeted identification and quantification of functional groups, such as aliphatic, aromatic, and bulk carboxylic acids, organosulfates, and carbohydrate-like substances that comprise species with molecular weights (MW) 200–600 amu. Measured high-MW functional groups were compared to modeled primary sources with the purpose of identifying associations between aerosol sources, high-MW aerosol species, and HULIS. Mobile source emissions were linked to high-molecular weight carboxylic acids, especially aromatic acids, biomass burning was associated with carboxylic acids and carbohydrate-like substances, and secondary organic aerosol (SOA) correlated well with the total amount of HULIS measured, whereas organosulfates showed no correlation with aerosol sources and exhibited unique spatial trends. These results suggested the importance of motor vehicles, biomass burning, and SOA as important sources of precursors to HULIS. Structural characteristics of atmospheric HULIS were compared to terrestrial humic and fulvic acids and revealed striking similarities in chemical structure, with the exception of organosulfates which were unique to atmospheric HULIS.  相似文献   

11.
Abstract

The effects of Fe(II), Mn(II) and humic substances on the catalyzed ozonation of alachlor, an endocrine disruptor were investigated. Results revealed that small amounts of Fe(II), Mn(II), and humic substances could enhance the ozonation of alachlor, but larger amounts of them would retard the oxidation. These results were successfully identified by an electron paramagnetic resonance (EPR) spectroscopy/spin-trapping method that could quantify hydroxyl radicals. The production of hydroxyl radicals was obviously increased with the increasing of Fe(II) concentration, which contributed to enhance ozonation at low concentrations. But the excess Fe(II) consumed some of the radicals when it was added at a higher concentration (1.5 mg/L). However, no obvious radicals were observed when a different amount of Mn(II) was used, and the catalytic ozonation of alachlor by Mn(II) mainly followed the mechanism of “active sites created on the surface of MnO2.” The radical pathway was followed when alachlor was ozonated with different concentrations of humic substances because of its radical initiating, promoting, and inhibiting effects.  相似文献   

12.
Formation of chloroacetic acids from soil,humic acid and phenolic moieties   总被引:1,自引:0,他引:1  
The mechanism of formation of chloroacetates, which are important toxic environmental substances, has been controversial. Whereas the anthropogenic production has been well established, a natural formation has also been suggested. In this study the natural formation of chloroacetic acids from soil, as well as from humic material which is present in soil and from phenolic model substances has been investigated. It is shown that chloroacetates are formed from humic material with a linear relationship between the amount of humic acid used and chloroacetates found. More dichloroacetate (DCA) than trichloroacetate (TCA) is produced. The addition of Fe(2+), Fe(3+) and H(2)O(2) leads to an increased yield. NaCl was added as a source of chloride. We further examined the relationship between the structure and reactivity of phenolic substances, which can be considered as monomeric units of humic acids. Ethoxyphenol with built-in ethyl groups forms large amounts of DCA and TCA. The experiments with phenoxyacetic acid yielded large amounts of monochloroacetate (MCA). With other phenolic substances a ring cleavage was observed. Our investigations indicate that chloroacetates are formed abiotically from humic material and soils in addition to their known biotic mode of formation.  相似文献   

13.
Pore water was separated either with or without water extraction prior to centrifugation (7600 or 20 000 × g) in order to investigate the effects of separation procedure on the amount and properties of dissolved organic matter (DOM i.e. the material passing through a 0.45-μm filter) in three freshwater sediments. On the basis of solubility in alkaline, organic matter was concluded to compose of humic substances in two (S1 and S3) and of humin (S2) in one of the sediments. DOM in the samples was quantified by total organic carbon measurement. Specific UV-absorption (SUVA) and high performance size exclusion chromatography (HPSEC) analyses were used to characterize DOM. Sorption of pyrene was used as a measure for functionality of DOM. Both water extraction and centrifugation speed were shown to affect the properties of DOM; however, the effects were sediment dependent. Water extraction increased the amount of DOM separated from the two sediments that had humic character (S1 and S3). In most cases water extraction increased SUVA and shifted the molecular size distribution of DOM towards larger sizes. The separation procedure had also an effect on the functionality of DOM. In water extracted samples of S2 and S3 the sorption of pyrene was higher than in the corresponding samples separated without water extraction, whereas in S1 similar effect was not found. Generally, centrifugation speed had smaller effects on the properties of DOM than water extraction. The fact that the effects of separation procedure on DOM depend on the sediment characteristics complicates the comparison between samples and evaluation of functionality in field conditions.  相似文献   

14.
The effects of Fe(II), Mn(III) and humic substances on the catalyzed ozonation of alachlor, an endocrine disruptor were investigated. Results revealed that small amounts of Fe(II), Mn(II), and humic substances could enhance the ozonation of alachlor, but larger amounts of them would retard the oxidation. These results were successfully identified by an electron paramagnetic resonance (EPR) spectroscopy spin-trapping method that could quantify hydroxyl radicals. The production of hydroxyl radicals was obviously increased with the increasing of Fe(II) concentration, which contributed to enhance ozonation at low concentrations. But the excess Fe(II) consumed some of the radicals when it was added at a higher concentration (1.5 mg/L). However, no obvious radicals were observed when a different amount of Mn(II) was used, and the catalytic ozonation of alachlor by Mn(II) mainly followed the mechanism of "active sites created on the surface of MnO2." The radical pathway was followed when alachlor was ozonated with different concentrations of humic substances because of its radical initiating, promoting, and inhibiting effects.  相似文献   

15.
Brigante M  Zanini G  Avena M 《Chemosphere》2008,71(11):2076-2081
The dissolution kinetics of humic acid particles has been studied in batch experiments, and the effects of monocarboxylic (formic, acetic, and propionic) acids are reported. The dissolution rate of the particles is significantly affected by the presence of monocarboxylic acids in the pH range 4–10. At pH 7, for example, propionic acid increases 30 times this dissolution rate. The capacity of increasing the dissolution rate is in the order formic acid < acetic acid < propionic acid, and this dissolving capacity of carboxylics seems to be directly related to their affinity for HA molecules located at the surface of the solid particles. The results indicate that carboxylics and related compounds may affect markedly the mobility and transport of humic substances in the environment.  相似文献   

16.
Abstract

The binding site interactions of IHSS humic substances, Suwannee River Humic Acid, Suwannee River Fulvic Acid, Nordic Fulvic Acid, and Aldrich Humic Acid with various metals ions and a herbicide, methyl viologen were investigated using fluorescence emission and synchronous‐scan spectroscopy. The metal ions used were, Fe(III), Cr(III), Cr(VI), Pb(II), Cu(II) and Ni(II). Stern‐Volmer constants, KSV for these quenchers were determined at pH 4 and 8 using an ionic strength of 0.1M. For all four humic substances, and at both pH studied, Fe(III) was found to be the most efficient quencher. Quenching efficiency was found to be 3–10 times higher at pH 8. The bimolecular quenching rate constants were found to exceed the maximum considered for diffusion controlled interactions, and indicate that the fluorophore and quencher are in close physical association. Synchronous‐scan spectra were found to change with pH and provided useful information on binding site interactions between humic substances and these quenchers.  相似文献   

17.
Cheng WP  Chi FH 《Chemosphere》2003,53(7):773-778
Water from the three reservoirs, Min-ter, Li-yu-ten and Yun-ho-shen, was examined for concentration of chlorophyll a, ultraviolet absorption (UV(254)), fluorescence intensity (FI), concentration of dissolved organic carbon (DOC), and fractionation of dissolved molecules by molecular weight. The water samples were collected over the change from spring to summer (May to July but before the typhoon season) when the water temperature and extent of eutrophication increase. Analytical results indicate that the concentration of DOC is proportional to the concentration of chlorophyll a, but not to the values of UV(254) and FI. Therefore, eutrophication, extraneous contaminants of small molecules, and the extracellular products of algae cause an increase in DOC, but a decrease in the proportion of large organic molecules such as of humic substances. The fraction of DOC with a molecular weight of less than 5000 Da increases with the concentration of chlorophyll a. All these data suggest that changes in the quality of water after eutrophication make the treatment of drinking water more difficult. The method of enhanced coagulation was recently developed for removing DOC. However, the results of this paper demonstrate that the efficiency of DOC removal falls as the degree of eutrophication increases. When the percentage of DOC with small molecules excreted by algae increased by 1%, the efficiency of DOC removal decreased by approximately 1%, implying that enhanced coagulation are not able to remove the DOC excreted by the algae during eutrophication, and resulting an increased concentration of trihalomethanes formation in water disinfections process.  相似文献   

18.
Synchronous-scan fluorescence spectra of Chlorella vulgaris solution   总被引:1,自引:0,他引:1  
Liu X  Tao S  Deng N 《Chemosphere》2005,60(11):1550-1554
The characterization of the Chlorella vulgaris solution was carried out using synchronous-scan spectroscopy. The range of concentration of algae and Fe(III) in aqueous solutions were 5 × 108–8 × 109 cells l−1 and 10–60 μM, respectively. Effective characterization method used was synchronous-scan fluorescence spectroscopy. The wavelength difference (Δλ) of 90 nm was maintained between excitation and emission wavelengths; 90 nm was found to be the best Δλ for effective characterization of Chlorella vulgaris solution with or without quencher species (e.g., Fe(III), humic acid (HA)) for the first time. The peak was observed at about EX 236.6 nm/EM 326.6 nm for synchronous-scan fluorescence spectra. The fluorescence quenching of algae in system of algae–Fe(III)–HA was studied using synchronous-scan spectroscopy for the first time. Fe(III) was clearly the effective quencher. The relationship between I0/I (quenching efficiency) and c (concentration of Fe(III) added) was a linear correlation for the algae solution with Fe(III). Also, Aldrich humic acid was found to be an effective quencher. pH effect on synchronous-scan fluorescence intensity of algal solution with Fe(III) and/or HA was evident.  相似文献   

19.
Liu S  Lim M  Fabris R  Chow C  Chiang K  Drikas M  Amal R 《Chemosphere》2008,72(2):263-271
The photocatalytic removal of humic acid (HA) using TiO2 under UVA irradiation was examined by monitoring changes in the UV254 absorbance, dissolved organic carbon (DOC) concentration, apparent molecular weight distribution, and trihalomethane formation potentials (THMFPs) over treatment time. A resin fractionation technique in which the samples were fractionated into four components: very hydrophobic acids (VHA), slightly hydrophobic acids, hydrophilic charged (CHA) and hydrophilic neutral (NEU) was also employed to elucidate the changes in the chemical nature of the HA components during treatment. The UVA/TiO2 process was found to be effective in removing more than 80% DOC and 90% UV254 absorbance. The THMFPs of samples were decreased to below 20 μg l−1 after treatments, which demonstrate the potential to meet increasingly stringent regulatory level of trihalomethanes in water. Resin fractionation analysis showed that the VHA fraction was decreased considerably as a result of photocatalytic treatments, forming CHA intermediates which were further degraded with increased irradiation time. The NEU fraction, which comprised of non-UV-absorbing low molecular weight compounds, was found to be the most persistent component.  相似文献   

20.
Lippold H  Evans ND  Warwick P  Kupsch H 《Chemosphere》2007,67(5):1050-1056
Aiming at an assessment of counteractive effects on colloid-borne migration of actinides in the event of release from an underground repository, competition by Fe(III) in respect of metal complexation by dissolved organic matter was investigated for the example of Eu(III) as an analogue of trivalent actinides. Complexation with different humic materials was examined in cation exchange experiments, using (59)Fe and (152)Eu as radioactive tracers for measurements in dilute systems as encountered in nature. Competitive effects proved to be significant when Fe is present at micromolar concentrations. Flocculation as a limiting process was attributed to charge compensation of humic colloids. Fe fractions bound to humic acids (HA) were higher than 90%, exceeding the capacity of binding sites at high Fe concentrations. It is thus concluded that the polynuclear structure of hydrolysed Fe(III) is maintained when bound to HA, which is also inferred from UV-Vis spectrometry. The competitive effect was found to be enhanced if Fe and HA were in contact before Eu was added. Depending on the time of Fe/HA pre-equilibration, Eu complexation decreased asymptotically over a time period of several weeks, the amount of bound Fe being unchanged. Time-dependent observations of UV-Vis spectra and pH values revealed that the ageing effect was due to a decline in Fe hydrolysis rather than structural changes within HA molecules. Fe polycations are slowly degraded in contact with humic colloids, and more binding sites are occupied as a consequence of dispersion. The extent of degradation as derived from pH shifts depended on the Fe/HA ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号