首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Limited knowledge of dispersal for most organisms hampers effective connectivity conservation in fragmented landscapes. In forest ecosystems, deadwood‐dependent organisms (i.e., saproxylics) are negatively affected by forest management and degradation globally. We reviewed empirically established dispersal ecology of saproxylic insects and fungi. We focused on direct studies (e.g., mark‐recapture, radiotelemetry), field experiments, and population genetic analyses. We found 2 somewhat opposite results. Based on direct methods and experiments, dispersal is limited to within a few kilometers, whereas genetic studies showed little genetic structure over tens of kilometers, which indicates long‐distance dispersal. The extent of direct dispersal studies and field experiments was small and thus these studies could not have detected long‐distance dispersal. Particularly for fungi, more studies at management‐relevant scales (1–10 km) are needed. Genetic researchers used outdated markers, investigated few loci, and faced the inherent difficulties of inferring dispersal from genetic population structure. Although there were systematic and species‐specific differences in dispersal ability (fungi are better dispersers than insects), it seems that for both groups colonization and establishment, not dispersal per se, are limiting their occurrence at management‐relevant scales. Because most studies were on forest landscapes in Europe, particularly the boreal region, more data are needed from nonforested landscapes in which fragmentation effects are likely to be more pronounced. Given the potential for long‐distance dispersal and the logical necessity of habitat area being a more fundamental landscape attribute than the spatial arrangement of habitat patches (i.e., connectivity sensu strict), retaining high‐quality deadwood habitat is more important for saproxylic insects and fungi than explicit connectivity conservation in many cases.  相似文献   

2.
Habitat fragmentation is expected to impose strong selective pressures on dispersal rates. However, evolutionary responses of dispersal are not self-evident, since various selection pressures act in opposite directions. Here we disentangled the components of dispersal behavior in a metapopulation context using the Virtual Migration model, and we linked their variation to habitat fragmentation in the specialist butterfly Proclossiana eunomia. Our study provided a nearly unique opportunity to study how habitat fragmentation modifies dispersal at the landscape scale, as opposed to microlandscapes or simulation studies. Indeed, we studied the same species in four landscapes with various habitat fragmentation levels, in which large amounts of field data were collected and analyzed using similar methodologies. We showed the existence of quantitative variations in dispersal behavior correlated with increased fragmentation. Dispersal propensity from habitat patches (for a given patch size), and mortality during dispersal (for a given patch connectivity) were lower in more fragmented landscapes. We suggest that these were the consequences of two different evolutionary responses of dispersal behavior at the individual level: (1) when fragmentation increased, the reluctance of individuals to cross habitat patch boundaries also increased; (2) when individuals dispersed, they flew straighter in the matrix, which is the best strategy to improve dispersal success. Such evolutionary responses could generate complex nonlinear patterns of dispersal changes at the metapopulation level according to habitat fragmentation. Due to the small size and increased isolation of habitat patches in fragmented landscapes, overall emigration rate and mortality during dispersal remained high. As a consequence, successful dispersal at the metapopulation scale remained limited. Therefore, to what extent the selection of individuals with a lower dispersal propensity and a higher survival during dispersal is able to limit detrimental effects of habitat fragmentation on dispersal success is unknown, and any conclusion that metapopulations would compensate for them is flawed.  相似文献   

3.
Abstract: Corridors have been proposed to reduce isolation and increase population persistence in fragmented landscapes, yet little research has evaluated the types of landscapes in which corridors will be most effective. I tested the hypothesis that corridors increase patch colonization by a butterfly, Junonia coenia , regardless of the butterfly's initial distance from a patch. I chose J. coenia because it has been shown to move between patches preferentially through corridors. Individuals were released 16–192 m away from open experimental patches into adjacent open corridors or forest. Neither corridors nor distance had a significant effect on patch colonization, but there was a significant interaction between the presence or absence of corridors and distance. At small distances (16–64 m), J. coenia was more likely to colonize open patches when released within forest than within open corridors, most likely because J. coenia used corridors as habitat. Nevertheless, patch colonization by butterflies released within forest decreased rapidly as distance from patches increased, as predicted by a null model of random movement. Colonization did not change with distance in the corridor, and at long distances (128–192 m), butterflies released in corridors were twice as likely to colonize open patches as those released in forest. These results suggest that one critical factor, interpatch distance, may determine the relative effectiveness of corridors and other landscape configurations, such as stepping stones, in reducing isolation in fragmented landscapes. When distances between patches are short compared to an animal's movement ability, a stepping stone approach may most effectively promote dispersal. Alternatively, the conservation value of corridors is highest relative to other habitat configurations when longer distances separate patches in fragmented landscapes.  相似文献   

4.
Abstract: Studies comparing dispersal in fragmented versus unfragmented landscapes show that habitat fragmentation alters the dispersal behavior of many species. We used two complementary approaches to explore Florida Scrub‐Jay (Aphelocoma c?rulescens) dispersal in relation to landscape fragmentation. First, we compared dispersal distances of color‐marked individuals in intensively monitored continuous and fragmented landscapes. Second, we estimated effective dispersal relative to the degree of fragmentation (as inferred from two landscape indexes: proportion of study site covered with Florida Scrub‐Jay habitat and mean distance to nearest habitat patch within each study site) by comparing genetic isolation‐by‐distance regressions among 13 study sites having a range of landscape structures. Among color‐banded individuals, dispersal distances were greater in fragmented versus continuous landscapes, a result consistent with other studies. Nevertheless, genetic analyses revealed that effective dispersal decreases as the proportion of habitat in the landscape decreases. These results suggest that although individual Florida Scrub‐Jays may disperse farther as fragmentation increases, those that do so are less successful as breeders than those that disperse short distances. Our study highlights the importance of combining observational data with genetic inferences when evaluating the complex biological and life‐history implications of dispersal.  相似文献   

5.
Conserving or restoring landscape connectivity between patches of breeding habitat is a common strategy to protect threatened species from habitat fragmentation. By managing connectivity for some species, usually charismatic vertebrates, it is often assumed that these species will serve as conservation umbrellas for other species. We tested this assumption by developing a quantitative method to measure overlap in dispersal habitat of 3 threatened species—a bird (the umbrella), a butterfly, and a frog—inhabiting the same fragmented landscape. Dispersal habitat was determined with Circuitscape, which was parameterized with movement data collected for each species. Despite differences in natural history and breeding habitat, we found substantial overlap in the spatial distributions of areas important for dispersal of this suite of taxa. However, the intuitive umbrella species (the bird) did not have the highest overlap with other species in terms of the areas that supported connectivity. Nevertheless, we contend that when there are no irreconcilable differences between the dispersal habitats of species that cohabitate on the landscape, managing for umbrella species can help conserve or restore connectivity simultaneously for multiple threatened species with different habitat requirements. Definición y Evaluación del Concepto de Especie Paraguas para Conservar y Restaurar la Conectividad de Paisajes  相似文献   

6.
Molecular methods of assessing dispersal have become increasingly powerful and have superseded direct methods of studying dispersal. Although now less popular, direct methods of studying dispersal remain important tools for understanding the evolution of dispersal. Here, we use data from Siberian jays Perisoreus infaustus, a group-living bird species, to compare natal dispersal distances and rates using visual mark–recapture, radio-tracking and microsatellite data. Siberian jays have bimodal natal dispersal timing; socially dominant offspring remain with their parents for up to 5 years (delayed dispersers), while they force their subordinate brood mates to leave the parental territory at independence (early dispersers). Early dispersers moved about 9,000 m (visual mark–recapture, radio-tracking) before settling in a group as a non-breeder. In contrast, delayed dispersers moved about 1,250 m (visual mark–recapture only) and mainly moved to a breeding opening. Dispersal distances were greater in managed habitat compared to natural habitat for both early and delayed dispersers. Molecular estimates based on 23 microsatellite loci and geographical locations supported distance estimates from the direct methods. Our study shows that molecular methods are at least 22 times cheaper than direct methods and match estimates of dispersal distance from direct methods. However, molecular estimates do not give insight into the behavioural mechanisms behind dispersal decisions. Thus, to understand the evolution of dispersal, it is important to combine direct and indirect methods, which will give insights into the behavioural processes affecting dispersal decisions, allowing proximate dispersal decisions to be linked to the ultimate consequences thereof.  相似文献   

7.
Understanding the processes leading to population declines in fragmented landscapes is essential for successful conservation management. However, isolating the influence of disparate processes, and dispersal in particular, is challenging. The Grey Shrike-thrush, Colluricincla harmonica, is a sedentary woodland-dependent songbird, with learned vocalizations whose incidence in suitable habitat patches falls disproportionally with decline in tree cover in the landscape. Although it has been suggested that gaps in tree cover might act as barriers to its dispersal, the species remains in many remnants of native vegetation in agricultural landscapes, suggesting that it may have responded to habitat removal and fragmentation by maintaining or even increasing dispersal distances. We quantified population connectivity of the Grey Shrike-thrush in a system fragmented over more than 120 years using genetic (microsatellites) and acoustic (song types) data. First, we tested for population genetic and acoustic structure at regional and local scales in search of barriers to dispersal or gene flow and signals of local spatial structuring indicative of restricted dispersal or localized acoustic similarity. Then we tested for effects of habitat loss and fragmentation on genetic and acoustic connectivity by fitting alternative models of mobility (isolation-by-distance [the null model] and reduced and increased movement models) across treeless vs. treed areas. Birds within -5 km of each other had more similar genotypes and song types than those farther away, suggesting that dispersal and song matching are limited in the region. Despite restricted dispersal detected for females (but not males), populations appeared to be connected by gene flow and displayed some cultural (acoustic) connectivity across the region. Fragmentation did not appear to impact greatly the dispersal of the Grey Shrike-thrush: none of the mobility models fit the genetic distances of males, whereas for females, an isolation-by-distance model could not be rejected in favor of the models of reduced or increased movement through treeless gaps. However, dissimilarities of the song types were more consistent with the model of reduced cultural connectivity through treeless areas, suggesting that fragmentation impedes song type sharing in the Grey Shrike-thrush. Our paper demonstrates that habitat fragmentation hinders important population processes in an Australian woodland bird even though its dispersal is not detectably impacted.  相似文献   

8.
Spatially explicit population models (SEPMs) are often considered the best way to predict and manage species distributions in spatially heterogeneous landscapes. However, they are computationally intensive and require extensive knowledge of species' biology and behavior, limiting their application in many cases. An alternative to SEPMs is graph theory, which has minimal data requirements and efficient algorithms. Although only recently introduced to landscape ecology, graph theory is well suited to ecological applications concerned with connectivity or movement. This paper compares the performance of graph theory to a SEPM in selecting important habitat patches for Wood Thrush (Hylocichla mustelina) conservation. We use both models to identify habitat patches that act as population sources and persistent patches and also use graph theory to identify patches that act as stepping stones for dispersal. Correlations of patch rankings were very high between the two models. In addition, graph theory offers the ability to identify patches that are very important to habitat connectivity and thus long-term population persistence across the landscape. We show that graph theory makes very similar predictions in most cases and in other cases offers insight not available from the SEPM, and we conclude that graph theory is a suitable and possibly preferable alternative to SEPMs for species conservation in heterogeneous landscapes.  相似文献   

9.
Abstract: In a time of increasing urbanization, the fundamental value of conserving urban biodiversity remains controversial. How much of a fixed budget should be spent on conservation in urban versus nonurban landscapes? The answer should depend on the goals that drive our conservation actions, yet proponents of urban conservation often fail to specify the motivation for protecting urban biodiversity. This is an important shortcoming on several fronts, including a missed opportunity to make a stronger appeal to those who believe conservation biology should focus exclusively on more natural, wilder landscapes. We argue that urban areas do offer an important venue for conservation biology, but that we must become better at choosing and articulating our goals. We explored seven possible motivations for urban biodiversity conservation: preserving local biodiversity, creating stepping stones to nonurban habitat, understanding and facilitating responses to environmental change, conducting environmental education, providing ecosystem services, fulfilling ethical responsibilities, and improving human well‐being. To attain all these goals, challenges must be faced that are common to the urban environment, such as localized pollution, disruption of ecosystem structure, and limited availability of land. There are, however, also challenges specific only to particular goals, meaning that different goals will require different approaches and actions. This highlights the importance of specifying the motivations behind urban biodiversity conservation. If the goals are unknown, progress cannot be assessed.  相似文献   

10.
Abstract: Habitat connectivity is required at large spatial scales to facilitate movement of biota in response to climatic changes and to maintain viable populations of wide‐ranging species. Nevertheless, it may require decades to acquire habitat linkages at such scales, and areas that could provide linkages are often developed before they can be reserved. Reserve scheduling methods usually consider only current threats, but threats change over time as development spreads and reaches presently secure areas. We investigated the importance of considering future threats when implementing projects to maintain habitat connectivity at a regional scale. To do so, we compared forward‐looking scheduling strategies with strategies that consider only current threats. The strategies were applied to a Costa Rican case study, where many reserves face imminent isolation and other reserves will probably become isolated in the more distant future. We evaluated strategies in terms of two landscape‐scale connectivity metrics, a pure connectivity metric and a metric of connected habitat diversity. Those strategies that considered only current threats were unreliable because they often failed to complete planned habitat linkage projects. The most reliable and effective strategies considered the future spread of development and its impact on the likelihood of completing planned habitat linkage projects. Our analyses highlight the critical need to consider future threats when building connected reserve networks over time.  相似文献   

11.
Abstract: Determining population viability of rare insects depends on precise, unbiased estimates of population size and other demographic parameters. We used data on the endangered St. Francis' satyr butterfly (Neonympha mitchellii francisci) to evaluate 2 approaches (mark–recapture and transect counts) for population analysis of rare butterflies. Mark–recapture analysis provided by far the greatest amount of demographic information, including estimates (and standard errors) of population size, detection, survival, and recruitment probabilities. Mark–recapture analysis can also be used to estimate dispersal and temporal variation in rates, although we did not do this here. Models of seasonal flight phenologies derived from transect counts (Insect Count Analyzer) provided an index of population size and estimates of survival and statistical uncertainty. Pollard–Yates population indices derived from transect counts did not provide estimates of demographic parameters. This index may be highly biased if detection and survival probabilities vary spatially and temporally. In terms of statistical performance, mark–recapture and Pollard–Yates indices were least variable. Mark–recapture estimates were less likely to fail than Insect Count Analyzer, but mark–recapture estimates became less precise as sampling intensity decreased. In general, count‐based approaches are less costly and less likely to cause harm to rare insects than mark–recapture. The optimal monitoring approach must reconcile these trade‐offs. Thus, mark–recapture should be favored when demographic estimates are needed, when financial resources enable frequent sampling, and when marking does not harm the insect populations. The optimal sampling strategy may use 2 sampling methods together in 1 overall sampling plan: limited mark–recapture sampling to estimate survival and detection probabilities and frequent but less expensive transect counts.  相似文献   

12.
Here we propose an integrated framework for modeling connectivity that can help ecologists, conservation planners and managers to identify patches that, more than others, contribute to uphold species dispersal and other ecological flows in a landscape context. We elaborate, extend and partly integrate recent network-based approaches for modeling and supporting the management of fragmented landscapes. In doing so, experimental patch removal techniques and network analytical approaches are merged into one integrated modeling framework for assessing the role of individual patches as connectivity providers. In particular, we focus the analyses on the habitat availability metrics PC and IIC and on the network metric Betweenness Centrality. The combination and extension of these metrics jointly assess both the immediate connectivity impacts of the loss of a particular patch and the resulting increased vulnerability of the network to subsequent disruptions. In using the framework to analyze the connectivity of two real landscapes in Madagascar and Catalonia (NE Spain), we suggest a procedure that can be used to rank individual habitat patches and show that the combined metrics reveal relevant and non-redundant information valuable to assert and quantify distinctive connectivity aspects of any given patch in the landscape. Hence, we argue that the proposed framework could facilitate more ecologically informed decision-making in managing fragmented landscapes. Finally, we discuss and highlight some of the advantages, limitations and key differences between the considered metrics.  相似文献   

13.
The connectivity of remnant patches of habitat may affect the persistence of species in fragmented landscapes. We evaluated the effects of the structural connectivity of forest patches (i.e., distance between patches) and matrix class (land-cover type) on the functional connectivity of 3 bird species (the White-crested Elaenia [Elaenia albiceps], the Green-backed Firecrown Hummingbird [Sephanoides sephaniodes], and the Austral Thrush [Turdus falklandii]). We measured functional connectivity as the rate at which each species crossed from one patch to another. We also evaluated whether greater functional connectivity translated into greater ecological connectivity (dispersal of fruit and pollen) by comparing among forest patches fruit set of a plant pollinated by hummingbirds and abundance of seedlings and adults of 2 plants with bird- and wind-dispersed seeds. Interpatch distance was strongly associated with functional connectivity, but its effect was not independent of matrix class. For one of the bird-dispersed plants, greater functional connectivity for White-crested Elaenias and Austral Thrushes (both frugivores) was associated with higher densities of this plant. The lack of a similar association for the wind-dispersed species suggests this effect is linked to the dispersal vector. The abundance of the hummingbird-pollinated species was not related to the presence of hummingbirds. Interpatch distance and matrix class affect animal movement in fragmented landscapes and may have a cascading effect on the distribution of some animal-dispersed species. On the basis of our results, we believe effort should be invested in optimizing patch configuration and modifying the matrix so as to mitigate the effects of patch isolation in fragmented landscapes.  相似文献   

14.
Abstract: Populations of large brown algae of the Laminariales and Fucales (Phaeophyta) have declined or been extirpated from many locations on temperate coasts worldwide. We conducted field surveys and a literature review, and examined herbarium specimens, through which we discovered previously unreported extirpations of large brown algal species from a tropical and subtropical coastline. Sargassum amaliae, S. aquifolium, S. carpophyllum, S. polycystum, and S. spinifex were common habitat‐forming macroalgae that supported diverse assemblages of invertebrates and smaller algae before urbanization began in 1970 along the 45‐km length of Sunshine Coast in Queensland, Australia. Causes of these extirpations are not known, but are consistent with losses of other large brown algal species from coastal areas undergoing urbanization or eutrophication. Sargassum spp. do not have the characteristics thought to protect marine species from extinction (large geographical ranges, occurrence on many different substrata, long‐distance dispersal). Some local Sargassum spp. are endemic to eastern Australia. Abundance of Sargassum is limited by suitable substrata on the sandy southern Queensland coast (370 km). These substrata are 12 rocky headlands separated by long (5–105 km) sandy beaches. Most multicellular propagules (the only motile stage in Sargassum) settle within 1–3 m of parental thalli, which restricts long‐distance dispersal needed to maintain connectivity among populations and to recolonize areas of the headlands from which populations have been extirpated. Local Sargassum spp. could be categorized as data deficient by the International Union for Conservation of Nature (IUCN), but the IUCN vulnerable category is more accurate given extirpations, limited habitat, and the lack of connectivity among populations.  相似文献   

15.
Ongoing, rapid urban growth accompanied by habitat fragmentation and loss challenges biodiversity conservation and leads to decreases in ecosystem services. Application of the concept of ecological networks in the preservation and restoration of connections among isolated patches of natural areas is a powerful conservation strategy. However, previous approaches often failed to objectively consider the impacts of complex 3-D city environments on ecological niches. We used airborne lidar-derived information on the 3-D structure of the built environment and vegetation and detailed land use and cover data to characterize habitat quality, niche diversity, and human disturbance and to predict habitat connectivity among 38 identified habitat core areas (HCAs) in Nanjing, China. We used circuit theory and Linkage Mapper to create a landscape resistance layer, simulate habitat connectivity, and identify and prioritize important corridors. We mapped 64 links by using current flow centrality to evaluate each HCA's contribution and the links that facilitate intact connectivity. Values were highest for HCA links located in the west, south, and northeast of the study area, where natural forests with complex 3-D structures predominate. Two smaller HCA areas had high centrality scores relative to their extents, which means they could act as important stepping stones in connectivity planning. The mapped pinch-point regions had narrow and fragile links among the HCAs, suggesting they require special protection. The barriers with the highest impact scores were mainly located at the HCA connections to Purple Mountain and, based on these high scores, are more likely to indicate important locations that can be restored to improve potential connections. Our novel framework allowed us to sufficiently convey spatially explicit information to identify targets for habitat restoration and potential pathways for species movement and dispersal. Such information is critical for assessing existing or potential habitats and corridors and developing strategic plans to balance habitat conservation and other land uses based on scientifically informed connectivity planning and implementation.  相似文献   

16.
Urbanization has been cited as an important factor in worldwide amphibian declines, and although recent work has illustrated the important influence of broad-scale ecological patterns and processes on amphibian populations, little is known about the factors structuring amphibian communities in urban landscapes. We therefore examined amphibian community responses to wetland habitat availability and landscape characteristics along an urban-rural gradient in central Iowa, USA, a region experiencing rapid suburban growth. We conducted call surveys at 61 wetlands to estimate anuran calling activity, and quantified wetland habitat structure and landscape context. We used canonical correspondence analysis (CCA) to examine patterns in anuran community structure and identify the most important variables associated with those patterns. Urban density at the landscape scale had a significant negative influence on overall anuran abundance and diversity. While every species exhibited a decrease in abundance with increasing urban density, this pattern was especially pronounced for species requiring post-breeding upland habitats. Anurans most affected by urbanization were those associated with short hydroperiods, early breeding activity, and substantial upland habitat use. We suggest that broad-scale landscape fragmentation is an important factor underlying anuran community structure in this region, possibly due to limitations on the accessibility of otherwise suitable habitat in fragmented urban landscapes. This study underscores the importance of a regional approach to amphibian conservation in urban and urbanizing areas; in fragmented landscapes, a network of interconnected wetland and upland habitats may be more likely to support a successful, diverse anuran community than will isolated sites.  相似文献   

17.
Wildlife corridors aim to promote species’ persistence by connecting habitat patches across fragmented landscapes. Their implementation is limited by patterns of land ownership and complicated by differences in the jurisdictional and regulatory authorities under which lands are managed. Terrestrial corridor conservation requires coordination across jurisdictions and sectors subject to site-specific overlapping sources of legal authority. Mapping spatial patterns of legal authority concurrent with habitat condition can illustrate opportunities to build or leverage capacity for connectivity conservation. Streamside areas provide pragmatic opportunities to leverage existing policy mechanisms for riverine and terrestrial habitat connectivity across boundaries. Conservation planners and practitioners can make use of these opportunities by harmonizing actions for multiple conservation outcomes. We formulated an integrative, data-driven method for mapping multiple sources of legal authority weighted by capacity for coordinating terrestrial habitat conservation along streams. We generated a map of capacity to coordinate streamside corridor protections across a wildlife habitat gap to demonstrate this approach. We combined values representing coordination capacity and naturalness to generate an integrated legal-ecological resistance map for connectivity modeling. We then computed least-cost corridors across the integrated map, masking the terrestrial landscape to focus on streamside areas. Streamside least-cost corridors in the integrated, local-scale model diverged (∼25 km) from national-scale least-cost corridors based on naturalness. Spatial categories comparing legal- and naturalness-based resistance values by stream reach highlighted potential locations for building or leveraging existing capacity through spatial coordination of policy mechanisms or restoration actions. Agencies or nongovernmental organizations intending to restore or maintain habitat connectivity across fragmented landscapes can use this approach to inform spatial prioritization and build coordination capacity. Article impact statement: Combined mapping of legal authority and habitat condition reveals capacity to coordinate actions along streams for clean water and wildlife.  相似文献   

18.
Climate changes impose requirements for many species to shift their ranges to remain within environmentally tolerable areas, but near‐continuous regions of intense human land use stretching across continental extents diminish dispersal prospects for many species. We reviewed the impact of habitat loss and fragmentation on species’ abilities to track changing climates and existing plans to facilitate species dispersal in response to climate change through regions of intensive land uses, drawing on examples from North America and elsewhere. We identified an emerging analytical framework that accounts for variation in species' dispersal capacities relative to both the pace of climate change and habitat availability. Habitat loss and fragmentation hinder climate change tracking, particularly for specialists, by impeding both propagule dispersal and population growth. This framework can be used to identify prospective modern‐era climatic refugia, where the pace of climate change has been slower than surrounding areas, that are defined relative to individual species' needs. The framework also underscores the importance of identifying and managing dispersal pathways or corridors through semi‐continental land use barriers that can benefit many species simultaneously. These emerging strategies to facilitate range shifts must account for uncertainties around population adaptation to local environmental conditions. Accounting for uncertainties in climate change and dispersal capabilities among species and expanding biological monitoring programs within an adaptive management paradigm are vital strategies that will improve species' capacities to track rapidly shifting climatic conditions across landscapes dominated by intensive human land use.  相似文献   

19.
Patch Size and Connectivity Thresholds for Butterfly Habitat Restoration   总被引:4,自引:0,他引:4  
Abstract:  Recovery of endangered species in highly fragmented habitats often requires habitat restoration. Selection of restoration sites typically involves too many options and too much uncertainty to reach a decision based on existing reserve design methods. The Fender's blue butterfly (  Icaricia icarioides fenderi ) survives in small, isolated patches of remnant prairie in Oregon's Willamette Valley—a habitat for which <0.5% of the original remains. Recovery of this species will require considerable habitat restoration. We investigated the potential of biologically based rules of thumb and more complex models to serve as tools in making land acquisitions. Based on Fender's blue dispersal behavior and demography, we have estimated that restored patches should be <1 km from existing habitat and at least 2 ha. We compared these rules to the results of two modeling approaches: an incidence function model and a spatially explicit simulation of demography and dispersal behavior. Not surprisingly, the simple rules and complex models all conclude that large (>2 ha) connected (<1 km) patches have the highest restoration value. The dispersal model, however, suggests that small, connected patches have more restoration value than large, isolated patches, whereas the incidence function model suggests that size and connectivity are equally important. These differences stem from model assumptions. We used incidence functions to predict long-term, stochastic, steady-state conditions and dispersal simulations to predict short-term (25-year) colonization dynamics. To apply our results in the context of selecting restoration sites on the ground, we recommend selecting nearby sites when short-term colonization dynamics are expected to be an important aspect of a species' biology.  相似文献   

20.
Abstract: Determining the permeability of different types of landscape matrices to animal movement is essential for conserving populations in fragmented landscapes. We evaluated the effects of habitat patch size and matrix type on diversity, isolation, and dispersal of ithomiine butterflies in forest fragments surrounded by coffee agroecosystems in the Colombian Andes. Because ithomiines prefer a shaded understory, we expected the highest diversity and abundance in large fragments surrounded by shade coffee and the lowest in small fragments surrounded by sun coffee. We also thought shade coffee would favor butterfly dispersal and immigration into forest patches. We marked 9675 butterflies of 39 species in 12 forest patches over a year. Microclimate conditions were more similar to the forest interior in the shade‐coffee matrix than in the sun‐coffee matrix, but patch size and matrix type did not affect species richness and abundance in forest fragments. Furthermore, age structure and temporal recruitment patterns of the butterfly community were similar in all fragments, independent of patch size or matrix type. There were no differences in the numbers of butterflies flying in the matrices at two distances from the forest patch, but their behavior differed. Flight in the sun‐coffee matrix was rapid and directional, whereas butterflies in shade‐coffee matrix flew slowly. Seven out of 130 recaptured butterflies immigrated into patches in the shade‐coffee matrix, and one immigrated into a patch surrounded by sun coffee. Although the shade‐coffee matrix facilitated movement in the landscape, sun‐coffee matrix was not impermeable to butterflies. Ithomiines exhibited behavioral plasticity in habitat use and high mobility. These traits favor their persistence in heterogeneous landscapes, opening opportunities for their conservation. Understanding the dynamics and resource requirements of different organisms in rural landscapes is critical for identifying management options that address both animals’ and farmers’ needs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号