首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A spatial comparison of pollutant concentrations within the residential environment is undertaken, comparing pollutant concentrations from three indoor sampling locations (zones). The indoor air quality base was obtained from sampling the indoor air of 12 residential sites and two office buildings in the metropolitan Boston area. Each residential site was monitored continuously for two weeks, and data were reduced into hourly averages. Interzonal comparisons of the mean of hourly averages, 24-h averages, and daily maximum hourly concentrations were made at all sites. Linear regressions were computed between daily maximum hourly concentrations and mean 24-h concentrations of NO, NO2, and CO for kitchens to determine whether maximum hourly concentrations could be predicted from the 24-h concentration. These pollutants show interzonal statistical differences in residences with gas-fired cooking facilities but not in residences with electric cooking facilities. It was determined that, while one indoor sampling zone is not sufficient to specify indoor pollutant concentration maxima in residences having indoor sources of pollution, the daily mean of hourly pollutant concentrations obtained from one indoor zone can adequately describe the indoor environment. In addition, the maximum indoor hourly concentration for NO, NO2, and CO can be estimated for residences with all electric facilities, by using the mean 24-h concentration. The reliability of similar estimates for NO, NO2, and CO in residences with unvented gas appliances is reduced because of substantially more scatter in the paired data point, particularly at higher pollutant concentrations.  相似文献   

2.
The results of more than 1 yr of air monitoring inside and outside of five homes in each of two communities are presented for SO2, NO2, mass respirable particles, SO4, Al, Br, Cl, Mn, Na, and V. Outdoor measurements across the home site in each city are consistent with proximity to outdoor sources. Looking across indoor residential sites in each city, the home appears to alter outdoor concentrations in several ways. Indoor level of SO2, SO4, Mn, and V are lower than those measured outdoors. These constituents are thought generally to result from outdoor sources. The other constituents studied are at times found in excess within homes. In some cases the source or sources of excess concentration of a particular constituent could be identified; often, however, the source of excess indoor concentration could not be identified.  相似文献   

3.
Determinants of outdoor, indoor and personal concentrations of nitrogen dioxide (NO2) were assessed in a subset of pregnant women of the Spanish INMA (Environment and Childhood) Study. Home indoor and outdoor NO2 concentrations were measured during 48 h with passive samplers for 50 and 58 women from the INMA cohorts of Valencia and Sabadell, respectively. Women from Sabadell also carried personal NO2 samplers during the same period. Data on time–activity patterns, socio-economic characteristics, and environmental exposures were obtained through questionnaires. Multiple linear regression models were developed to predict NO2 levels.In Valencia, median outdoor NO2 levels (42 µg/m3) were higher than median indoor levels (36 µg/m3). In Sabadell, personal NO2 showed the highest median levels (40 µg/m3), followed by indoor (32 µg/m3) and outdoor (29 µg/m3) levels. Personal exposure to NO2 correlated best with the indoor NO2 levels. Temporal and traffic-related variables were significant predictors for outdoor NO2 levels. Thirty-two percent of the indoor NO2 variability in the two cohorts was explained by outdoor NO2 levels and the use of the gas appliances. The model for personal exposure accounted for 59% of the variance in NO2 levels in Sabadell with four predictor variables (outdoor and indoor NO2 levels, time spent in outdoor environments and time exposed to a gas cooker). No significant association was found between personal or indoor NO2 levels and exposure to environmental tobacco smoke (ETS) at home.Personal NO2 levels were found to be strongly influenced by indoor NO2 concentrations. The study supports the use of time–activity patterns along with indoor measurements to predict personal exposure to traffic-related air pollution.  相似文献   

4.
Measurement of personal exposure to nitrogen dioxide for short and long term was made with a sensitive NO2 passive sampler by volunteer housewives and office workers in different seasons. These measurements were compared with the simultaneous measurement of outdoor and indoor concentration of the participants. A common result over all the measurements is the potential effect of using an unvented space heater to increase personal exposure. Mean personal exposure and indoor concentration are higher than outdoor levels elevated by the samples exposed to pollutant produced from the heater. Without an NO2 source indoors, the mean outdoor concentrations are always highest among the data of measurement. A time-weighted indoor/outdoor activity model gives modestly improved estimates of personal exposure over those predicted from measured indoor concentrations alone.  相似文献   

5.
Given the shrinking spatial contrasts in outdoor air pollution in Switzerland and the trends toward tightly insulated buildings, the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) needs to understand to what extent outdoor air pollution remains a determinant for residential indoor exposure. The objectives of this paper are to identify determining factors for indoor air pollution concentrations of particulate matter (PM), ultrafine particles in the size range from 15 to 300 nm, black smoke measured as light absorbance of PM (PMabsorbance) and nitrogen dioxide (NO2) and to develop predictive indoor models for SAPALDIA. Multivariable regression models were developed based on indoor and outdoor measurements among homes of selected SAPALDIA participants in three urban (Basel, Geneva, Lugano) and one rural region (Wald ZH) in Switzerland, various home characteristics and reported indoor sources such as cooking. Outdoor levels of air pollutants were important predictors for indoor air pollutants, except for the coarse particle fraction. The fractions of outdoor concentrations infiltrating indoors were between 30% and 66%, the highest one was observed for PMabsorbance. A modifying effect of open windows was found for NO2 and the ultrafine particle number concentration. Cooking was associated with increased particle and NO2 levels. This study shows that outdoor air pollution remains an important determinant of residential indoor air pollution in Switzerland.  相似文献   

6.
Using integrating NO2 diffusion dosimeters, personal, indoor and outdoor exposures were measured for nine families in Topeka, Kansas. NO2 exposures in homes that used gas for cooking were clearly different from those in homes that used electricity. The gas-cooking homes had indoor levels three times the outdoor levels. Members of the gas-cooking households had levels twice those of electric-cooking families and twice the outdoor levels. A linear model that includes outdoor concentrations and stove types explains 77% of the variance in observed NO2 exposure. The differential NO2 exposures in homes with and without gas stoves should be considered in epidemiologic studies of the health effects of air pollution.  相似文献   

7.
Since the air pollution as measured by stationary monitoring stations is a poor indicator of the population exposure, personal monitors are indispensible to health effects studies. This article reviews the current research on the development of personal monitors. Although most of the analytical methods reviewed in this study appear to be sensitive to the levels of the target pollutants NO2, SO2, and O3 generally encountered in indoor and outdoor air, they lack the desired performance characteristics for a personal monitoring device, such as user safety and ease of operation, weight, and maintenance. Electrochemical transducers/sensors, which have not yet been exploited, are attractive candidates for the application to personal monitoring. This technique has an added feature of generating real-time measurements. A few research models and commercially attractive devices that can be used in field studies are included.  相似文献   

8.
Long-term air quality data with high temporal and spatial resolutions are needed to understand some important processes affecting the air quality and corresponding environmental and health effects. The annual and diurnal variations of each criteria pollutant including PM2.5 and PM10 (particulate matter with aerodynamic diameter less than 2.5 μm and 10 μm, respectively), CO (carbon monoxide), NO2 (nitrogen dioxide), SO2 (sulfur dioxide) and O3 (ozone) in 31 provincial capital cities between April 2014 and March 2015 were investigated by cluster analysis to evaluate current air pollution situations in China, and the cities were classified as severely, moderately, and slightly polluted cities according to the variations. The concentrations of air pollutants in winter months were significantly higher than those in other months with the exception of O3, and the cities with the highest CO and SO2 concentrations were located in northern China. The annual variation of PM2.5 concentrations in northern cities was bimodal with comparable peaks in October 2014 and January 2015, while that in southern China was unobvious with slightly high PM2.5 concentrations in winter months. The concentrations of particulate matter and trace gases from primary emissions (SO2 and CO) and NO2 were low in the afternoon (~ 16:00), while diurnal variation of O3 concentrations was opposite to that of other pollutants with the highest values in the afternoon. The most polluted cities were mainly located in North China Plain, while slightly polluted cities mostly focus on southern China and the cities with high altitude such as Lasa. This study provides a basis for the formulation of future urban air pollution control measures in China.  相似文献   

9.
Studies in a number of countries have reported associations between exposure to ambient air pollutants and adverse birth outcomes, including low birth weight, preterm birth (PTB) and, less commonly, small for gestational age (SGA). Despite their growing number, the available studies have significant limitations, e.g., incomplete control of temporal trends in exposure, modest sample sizes, and a lack of information regarding individual risk factors such as smoking. No study has yet examined large numbers of susceptible individuals.We investigated the association between ambient air pollutant concentrations and term SGA and PTB outcomes among 164,905 singleton births in Detroit, Michigan occurring between 1990 and 2001. SO2, CO, NO2, O3 and PM10 exposures were used in single and multiple pollutant logistic regression models to estimate odds ratios (OR) for these outcomes, adjusted for the infant's sex and gestational age, the mother's race, age group, education level, smoking status and prenatal care, birth season, site of residence, and long-term exposure trends.Term SGA was associated with CO levels exceeding 0.75 ppm (OR = 1.14, 95% confidence interval = 1.02–1.27) and NO2 exceeding 6.8 ppb (1.11, 1.03–1.21) exposures in the first month, and with PM10 exceeding 35 μg/m3 (1.22, 1.03–1.46) and O3 (1.11, 1.02–1.20) exposure in the third trimester. PTB was associated with SO2 (1.07, 1.01–1.14) exposure in the last month, and with (hourly) O3 exceeding 92 ppb (1.08, 1.02–1.14) exposure in the first month.Exposure to several air pollutants at modest concentrations was associated with adverse birth outcomes. This study, which included a large Black population, suggests the importance of the early period of pregnancy for associations between term SGA with CO and NO2, and between O3 with PTB; and the late pregnancy period for associations between term SGA and O3 and PM10, and between SO2 with PTB. It also highlights the importance of accounting for individual risk factors such as maternal smoking, maternal race, and long-term trends in air pollutant levels and adverse birth outcomes in evaluating relationships between pollutant exposures and adverse birth outcomes.  相似文献   

10.
A photochemical air quality simulation model was applied to an area covering a large portion of The Netherlands and nearby source areas in Belgium and Germany. Simulations of an O3 episode typical of those that occur during summer months yielded good agreement between predicted and observed O3 levels. The level of performance for NO2 and NO was somewhat less than that for O3. The model was used to study the influence of mobile and stationary sources within the region, as well as the inflow of pollutants from outside the region on predicted O3, NO2, and NO levels within the modeling region. Pollutants transported into the region appear to have a significant influence on O3 levels. The influence of stationary source emissions on O3 and NO2 levels is greater than that of mobile source emissions. The model has been a valuable tool in evaluating the possible influence of different source categories and control regulations on pollutant concentration levels.  相似文献   

11.
Indoor air quality was examined for some gaseous pollutants and particulate matters. In a public library, the indoor/outdoor ratio of gaseous pollutants were found to be dependent on their reactivity, also on the outdoor concentrations and weather conditions. This ratio was 0.6 for SO2,and 1.3 for CO. The indoor/outdoor ratio of carbon monoxide was found to increase at the higher floors of the same building. Concentrations of indoor particulates was found to be influenced by the outdoor concentrations and the particle size. Analysis indicated that indoor suspended dust contained a significant high concentration of lead as compared with outdoor values. Indoor sources were found to pollute the premises of fossil-fuel equipped homes, thus having carbon monoxide concentrations more than the recognized threshold limit value for industry.  相似文献   

12.
Since the last decade the WHO Collaborating Centre for Air Quality Management and Air Pollution Control, Berlin, Germany, operates a quality assurance and control (QA/QC) programme on air quality monitoring in the WHO European Region. As main activity Intercomparison workshops have been established for air monitoring network laboratories on a regular basis to harmonise air quality measurements, analysis and calibration techniques. 36 air hygiene laboratories of public health and environmental institutions of 24 countries participated in twelve Intercomparisons between 1994 and 2004. The majority was carried out for NO, NO2, SO2 and O3. The results were predominantly satisfactory for automatic methods. The results of manual methods were mainly in a good, and for several concentration levels partly very good accordance with the data obtained by the monitors.  相似文献   

13.
Data on indoor/outdoor pollutant and tracer concentrations were collected during different periods in 1981 at a residence in Newton, MA. Special studies within the kitchen were conducted to determine the vertical and horizontal variability of pollutant and tracer gas concentrations. A reactive chemistry model incorporating simplified NOx chemistry was developed to simulate pollutant concentrations indoors. Multicompartmental mathematical modeling tools were also developed and tested to estimate efficiently the effective, emission, ventilation, and removal rates, as well as the intercompartmental pollutant exchange coefficients. Model studies utilizing two- and three-compartment systems and tracer measurements proved that the dynamics of pollutant mixing inside a kitchen is not only complex but may be quite important in controlling spatial and temporal variability of reactive species. Further monitoring and modeling studies to investigate the critical aspects of the short-term dynamics of the reactive pollutants inside homes with gas cooking stoves are recommended.  相似文献   

14.
Air pollution is a major environmental problem in urban areas worldwide. Delhi, the capital city of India, is no exception to the universal pattern of deteriorating urban air quality with concentration of pollutants being well above the recommended WHO levels. The magnitude and urgency of the problem as a global environmental issue needs a systematic understanding of the potential causes of pollution and their contribution to air quality. In the present study, ambient air quality data (1987–2006) of SO2, NO2, SPM, and RSPM were analyzed to asses the changing air quality in the study area and to evaluate the effect of measures taken to control it. The primary data were collected from 1,583 households to examine the relationship between outdoor and indoor pollution level. Based on the data, the current study concludes that despite the implementation of different pollution-controlling measures, the pollutants, especially the particulate pollutants, were well above the standard limits set by CPCB. Integration between technological and social approach of urban planning is required to mitigate and manage urban environmental problems in sustainable manner.  相似文献   

15.
Studies of air pollution effects during pregnancy generally only consider exposure in the outdoor air at the home address. We aimed to compare exposure models differing in their ability to account for the spatial resolution of pollutants, space–time activity and indoor air pollution levels. We recruited 40 pregnant women in the Grenoble urban area, France, who carried a Global Positioning System (GPS) during up to 3 weeks; in a subgroup, indoor measurements of fine particles (PM2.5) were conducted at home (n = 9) and personal exposure to nitrogen dioxide (NO2) was assessed using passive air samplers (n = 10). Outdoor concentrations of NO2, and PM2.5 were estimated from a dispersion model with a fine spatial resolution. Women spent on average 16 h per day at home. Considering only outdoor levels, for estimates at the home address, the correlation between the estimate using the nearest background air monitoring station and the estimate from the dispersion model was high (r = 0.93) for PM2.5 and moderate (r = 0.67) for NO2. The model incorporating clean GPS data was less correlated with the estimate relying on raw GPS data (r = 0.77) than the model ignoring space–time activity (r = 0.93). PM2.5 outdoor levels were not to moderately correlated with estimates from the model incorporating indoor measurements and space–time activity (r =  0.10 to 0.47), while NO2 personal levels were not correlated with outdoor levels (r =  0.42 to 0.03). In this urban area, accounting for space–time activity little influenced exposure estimates; in a subgroup of subjects (n = 9), incorporating indoor pollution levels seemed to strongly modify them.  相似文献   

16.
The amount of several air pollutants emitted in some cities including Hangzhou, Ningbo, Huzhou, Shaoxing and Jiaxing of Zhejiang Province is based on pollution source census data of Zhejiang Province in 2010. This paper focused on the release of air pollutants such as NOx, SO2, CO, PM2.5, PM10 and VOC, and calculated the total amount of those air pollutants. It analyzed air pollutant emission factors and found that the electricity and heat production industry released the largest amount of pollutants.  相似文献   

17.
IntroductionLong-term exposure to air pollution (AP) has been shown to have an impact on mortality in numerous countries, but since 2005 no data exists for France.ObjectivesWe analyzed the association between long-term exposure to air pollution and mortality at the individual level in a large French cohort followed from 1989 to 2013.MethodsThe study sample consisted of 20,327 adults working at the French national electricity and gas company EDF-GDF. Annual exposure to PM10, PM10–2.5, PM2.5, NO2, O3, SO2, and benzene was assessed for the place of residence of participants using a chemistry-transport model and taking residential history into account. Hazard ratios were estimated using a Cox proportional-hazards regression model, adjusted for selected individual and contextual risk factors. Hazard ratios were computed for an interquartile range (IQR) increase in air pollutant concentrations.ResultsThe cohort recorded 1967 non-accidental deaths. Long-term exposures to baseline PM2.5, PM10-25, NO2 and benzene were associated with an increase in non-accidental mortality (Hazard Ratio, HR = 1.09; 95% CI: 0.99, 1.20 per 5.9 μg/m3, PM10-25; HR = 1.09;95% CI: 1.04, 1.15 per 2.2 μg/m3, NO2: HR = 1.14; 95% CI: 0.99, 1.31 per 19.3 μg/m3 and benzene: HR = 1.10; 95% CI: 1.00, 1.22 per 1.7 μg/m3).The strongest association was found for PM10: HR = 1.14; 95% CI: 1.05, 1.25 per 7.8 μg/m3. PM10, PM10-25 and SO2 were associated with non-accidental mortality when using time varying exposure. No significant associations were observed between air pollution and cardiovascular and respiratory mortality.ConclusionLong-term exposure to fine particles, nitrogen dioxide, sulfur dioxide and benzene is associated with an increased risk of non-accidental mortality in France. Our results strengthen existing evidence that outdoor air pollution is a significant environmental risk factor for mortality. Due to the limited sample size and the nature of our study (occupational), further investigations are needed in France with a larger representative population sample.  相似文献   

18.
Cooking and heating with coal and biomass is the main source of household air pollution in China and a leading contributor to disease burden. As part of a baseline assessment for a household energy intervention program, we enrolled 205 adult women cooking with biomass fuels in Sichuan, China and measured their 48-h personal exposure to fine particulate matter (PM2.5) and carbon monoxide (CO) in winter and summer. We also measured the indoor 48-h PM2.5 concentrations in their homes and conducted outdoor PM2.5 measurements during 101 (74) days in summer (winter). Indoor concentrations of CO and nitrogen oxides (NO, NO2) were measured over 48-h in a subset of ~ 80 homes. Women's geometric mean 48-h exposure to PM2.5 was 80 μg/m3 (95% CI: 74, 87) in summer and twice as high in winter (169 μg/m3 (95% CI: 150, 190), with similar seasonal trends for indoor PM2.5 concentrations (winter: 252 μg/m3; 95% CI: 215, 295; summer: 101 μg/m3; 95% CI: 91, 112). We found a moderately strong relationship between indoor PM2.5 and CO (r = 0.60, 95% CI: 0.46, 0.72), and a weak correlation between personal PM2.5 and CO (r = 0.41, 95% CI: − 0.02, 0.71). NO2/NO ratios were higher in summer (range: 0.01 to 0.68) than in winter (range: 0 to 0.11), suggesting outdoor formation of NO2 via reaction of NO with ozone is a more important source of NO2 than biomass combustion indoors. The predictors of women's personal exposure to PM2.5 differed by season. In winter, our results show that primary heating with a low-polluting fuel (i.e., electric stove or wood-charcoal) and more frequent kitchen ventilation could reduce personal PM2.5 exposures. In summer, primary use of a gaseous fuel or electricity for cooking and reducing exposure to outdoor PM2.5 would likely have the greatest impacts on personal PM2.5 exposure.  相似文献   

19.
The chemical characteristics of precipitation were analyzed based on the chemical composition of principal ionic within acid rain(from February 2007 to January 2008)of Liaozhong Meteorological Station located in Malong Village in Liaozhong County of Northeast China,meteorological conditions on the corresponding period ground,and variation of several air pollutants concentration.The results indicated that:(1)The precipitation average pH value of all samples was4.76;the frequency of acid rain during the observation period was 70.7%;the frequency was 82.8%in summer and autumn.(2)In the chemical composition of precipitation,the primary anions were SO42-and NO3-;the primary cations were NH4+and Ca2+.(3)All concentration of anions was higher in summer and winter,but relatively low in spring and autumn.This showed that the relationship between regional rainfall acidification and pollution was not significant.(4)Rainwater acidity and nearly floor gaseous pollution concentration were different from each other,and pH and NOx,CO,NO2 and O3concentrations showed significant negative correlation,but was not obvious with SO2 concentration.However,the pH and alkaline pollutants,such as particulate,was positively correlative.  相似文献   

20.
IntroductionEvidence has accumulated on the association between ambient air pollution and adverse birth outcomes. However, most of the previous studies were conducted in geographically distinct areas and suffer from lack of important potential covariates. We examined the effect of ambient air pollution on term low birth weight (LBW) using data from a nationwide population-based longitudinal survey in Japan that began in 2001.MethodsWe restricted participants to term singletons (n = 44,109). Air pollution concentrations during the 9 months before birth were obtained at the municipality level and were assigned to the participants who were born in the corresponding municipality. We conducted multilevel logistic regression analyses adjusting for individual and municipality-level variables.ResultsWe found that air pollution exposure during pregnancy was positively associated with the risk of term LBW. In the fully adjusted models, odds ratios following one interquartile range increase in each pollutant were 1.09 (95% confidence interval: 1.00, 1.19) for suspended particulate matter (SPM), 1.11 (0.99, 1.26) for nitrogen dioxide (NO2), and 1.71 (1.18, 2.46) for sulfur dioxide (SO2). Specifically, effect estimates for SPM and NO2 exposure at the first trimester were higher than those at other trimesters, while SO2 was associated with the risk at all trimesters. Nonsmoking mothers were more susceptible to SPM and NO2 exposure compared with smoking mothers.ConclusionsAmbient air pollution increases the risk of term LBW in a nationally representative sample in Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号