首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
通过连续流实验和批式实验研究了有机物和NO2--N对厌氧氨氧化菌和反硝化菌耦合脱氮特性的影响.在连续流实验中,保证底物NO2--N充足,研究了葡萄糖有机物对厌氧氨氧化颗粒污泥反应器脱氮性能的影响.当进水葡萄糖有机物的COD浓度为100mg/L时,颗粒污泥具有良好的厌氧氨氧化耦合反硝化脱氮活性,当COD浓度为200mg/L时,颗粒污泥的厌氧氨氧化耦合反硝化脱氮活性较差.当进水COD浓度分别为100,200mg/L时,反应器中颗粒污泥的厌氧氨氧化NH4+-N去除活性分别为0.096,0.071kg NH4+-N/(kgVSS-d),厌氧氨氧化NO2--N去除活性分别为0.153,0.092kg NO2--N/(kgVSS-d),反硝化NO2--N去除活性分别为0.111,0.212kg NO2--N/(kgVSS-d).在批式实验中,研究了碳源种类和COD/NO2--N比对厌氧氨氧化耦合反硝化颗粒污泥脱氮性能的影响.控制COD/NO2--N比为1~4,以葡萄糖为碳源时,厌氧氨氧化菌在亚硝态的竞争过程中占据优势;以乙酸钠为碳源时,控制COD/NO2--N比为1~4,厌氧氨氧化菌在亚硝态的竞争过程中处于劣势.  相似文献   

2.
以处理实际低C/N生活污水的前置A2NSBR系统为研究对象,考察系统内生物膜的硝化特性和活性污泥的反硝化除磷特性.试验研究了有机物和NO2--N浓度对生物膜硝化性能的影响,以及不同电子受体浓度对反硝化吸磷速率的影响.结果测得硝化速率为11.3mgNH4+-N/(L·h),在填充率40%的条件下容积负荷为0.27kgNH4+-N/(m3·d),有机物的存在会对硝化有抑制,但是系统表现出了良好的抗有机负荷冲击能力,硝化速率为9.72mg NH4+-N/(L·h).NO2--N处理对AOB活性几乎无影响,对NOB活性抑制作用明显,当NO2--N浓度为400mg/L时,NOB活性仅为1.63%,几乎接近完全被抑制.根据本次不同电子受体条件下除磷批次试验的结果,好氧吸磷速率为17.62mg P/(g VSS·h),以NO3--N为电子受体的缺氧吸磷速率是12.94mg P/(g VSS·h),从而可知缺氧聚磷菌占总聚磷菌的比例大约是73.4%,其中在NO2--N浓度为30mg/L出现吸磷抑制,当NO2--N和NO3--N共存时,NO2--N在初始浓度为15mg/L便出现吸磷抑制.  相似文献   

3.
亚硝酸型反硝化除磷工艺特性及其应用   总被引:1,自引:0,他引:1  
以亚硝酸盐作为电子受体进行反硝化除磷污泥的驯化,并探究了工艺运行条件、性能及实际应用情况.研究表明:厌氧-缺氧-好氧驯化方式可快速富集以亚硝酸盐为电子受体的反硝化聚磷菌,通过逐步提高底物浓度可以驯化富集耐受高NO2--N浓度的DNPAOs.实际废水运行实验表明,反硝化除磷法处理猪场废水UASB-SFSBR尾水是可行的,当缺氧进水NO3--N、NO2--N和PO43--P浓度分别为5,70,30mg/L时,出水NO3--N和NO2--N浓度基本为0,PO43--P浓度在1.0mg/L以下.  相似文献   

4.
徐贵达  李冬  刘志诚  陶博  张杰 《中国环境科学》2021,41(11):5133-5141
鉴于厌氧氨氧化工艺进水必须包含NO2--N和NH4+-N两种基质,且只能脱氮,为在此基础上进一步实现除磷,提出辅以短程硝化技术,将除磷、脱氮技术相耦合,即短程硝化反硝化除磷串联厌氧氨氧化工艺.生活污水首先进入短程硝化反硝化除磷单元,主要实现NH4+-N转化为NO2--N并去除COD,其部分出水与生活污水原水相混合再进入厌氧氨氧化单元,同时短程硝化反硝化除磷单元于缺氧条件下反硝化吸磷,待反应结束后两个处理单元的出水混合排放.实验结果表明,控制进水混合比为4.2可保证Anammox单元中C/N和NO2--N/NH4+-N值分别为2和1.5,平均△NO2--N/△NH4+-N=1.41,△NO3--N/△NH4+-N=0.12,Anammox脱氮平均占比为85.2%,反硝化与Anammox反应耦合良好.整个系统稳定运行后出水COD、P、NH4+-N、NO2--N和NO3--N浓度分别为15.2,0.85,0.59,5.56,3.33mg/L,TN去除率为89.4%,通过PNDPR-Anammox耦合新工艺成功实现模拟生活污水的高效处理.  相似文献   

5.
短程硝化反硝化除磷颗粒污泥的同步驯化   总被引:1,自引:0,他引:1  
王文琪  李冬  高鑫  刘博  张杰 《环境科学》2021,42(6):2946-2956
本实验对3组同规格SBR反应器分别采用分阶段法(A/O-A/O/A)异步驯化、连续曝气A/OA同步驯化和间歇曝气A/O/A同步驯化的方式运行.以人工配水为进水基质,接种絮状污泥,通过水力选择压颗粒化,探讨了不同运行方式下短程硝化反硝化颗粒污泥的驯化及脱氮除磷特性.结果表明,在较短曝气时长(140 min)联合较低曝气强度[3.5 L·(h·L)-1]下,间歇曝气A/O/A同步驯化最具优势,后期稳定运行期间碳、氮、磷的平均去除率分别为90.74%、91.15%和95.66%,可实现同步去除.粒径为895μm,颗粒虽小但均匀致密,f值(MLVSS/MLSS)平稳保持在0.8~0.85,有较高的生物量,这是由于间歇曝气下好/缺氧的交替运行,使得缺氧异养菌作为颗粒的核心,有利于颗粒污泥结构的稳定.批次实验结果表明,间歇曝气A/O/A同步驯化下比氨氧化速率为3.38 mg·(g·h)-1,能利用NO2-为电子受体的反硝化聚磷菌(DPAOs)占比达65.46%,更有利于氨氧化菌(AOB)和NO2-型DPAOs的同步驯化及富集,保证稳定的处理效果.  相似文献   

6.
张哲  张姚  刘清华  刘超  王亚宜 《中国环境科学》2019,39(12):5056-5062
采用移动床生物膜反应器(MBBR),利用载体固定化氨氧化菌(AOB),分别以连续曝气和间歇曝气方式长期平行运行两套MBBR亚硝化反应器(RC和RI反应器),分析对比不同曝气方式下亚硝化工艺性能和强温室气体(N2O和NO)释放特性.结果表明:两种曝气方式均能实现亚硝化工艺,但RI出水NO2--N平均浓度较RC高20%左右,且出水NO2--N和NO3--N浓度波动性更小,因此间歇曝气条件下具有更好的亚硝化效果,更易形成稳定的亚硝化体系.在线测定两种体系N2O和NO释放特性可知,RC比RI减少NO释放量约87.3%,增加N2O释放量约57.5%.16S rDNA高通量测序结果表明,Nitrosomonas为AOB主要菌属,相对丰度最高分别为8%和10.06%,最低分别为2.19%和2.26%.间歇曝气方式下反应器可获得更高的AOB相对丰度.  相似文献   

7.
在稳定运行的包埋厌氧氨氧化反应器的基础上,经过94d的启动成功耦合部分反硝化,部分反硝化NO2--N积累率高达63.5%,与此同时NO3--N去除率稳定为98.4%.确定了耦合反应最佳COD/NO3--N比值范围为2.3~2.7.将pH值提升至8.0,8.5后发现,耦合性能下降,这与之前很多报道的结果不同.在耦合反应器的基础上添加PCL(聚己内酯)固体碳源进一步成功耦合全程反硝化,使得厌氧氨氧化所产生的NO3--N能够得到全部去除,TN去除率也由原来的79.4%提升至88.3%,同时发现大量反硝化生物膜附着生长于PCL颗粒上.  相似文献   

8.
支尧  张光生  钱凯  李激  王硕 《中国环境科学》2018,38(6):2097-2104
为了实现深度脱氮除磷效果,利用生物吸附/MBR/硫铁自养反硝化组合工艺进行优化研究,考察了不同HRT和硫铁体积比对系统脱氮除磷的影响.结果表明,MBR池和硫铁自养反硝化滤池的HRT分别在9h和3h条件下,污染物去除效果最佳,63%的COD在生物吸附段被去除,工艺系统平均出水COD、NH4+-N、NO3--N、TN浓度分别为18.9,0.36,0,3.3mg/L,实现了污染物的超低排放.硫铁反硝化滤池的硫铁体积比为3:1条件下,出水TP平均浓度为0.29mg/L;其中大部分NO3--N在滤池高度10~30cm处被去除,脱氮速率约为46.1gNO3--N/(m3·h).同时组合工艺在运行期间,采用间歇抽吸方式和较高曝气量能有效减缓膜污染进程.  相似文献   

9.
为促进反硝化除磷与厌氧氨氧化工艺的耦合,实现污水氮、磷的同步高效去除,构建序批式反应器(Sequencing batch reactor,SBR),优化了反硝化除磷工艺实现亚硝酸盐积累的工艺参数.SBR在厌氧-缺氧-微好氧运行条件下,缺氧段投加模拟硝酸盐工业废水逐步实现了反硝化除磷过程的亚硝酸盐积累.结果表明,经过142d的培养驯化,在进水C/P比为55时,缺氧段引入NO3--N浓度为23mg/L时,亚硝酸盐积累率为51.01%,NO3--N→NO2--N转化率为40.22%,硝酸盐去除率为72.14%,PO43--P去除率最高达88.17%.出水COD浓度低于25mg/L,COD去除率维持在90%以上.微生物群落结构分析表明,拟杆菌门(Bacteroidetes)、变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、酸杆菌门(Acidobacteria)为系统内优势菌门.通过参数优化实现了聚磷菌的驯化,Candidatus Accumulibacter为代表的反硝化聚磷菌丰度增加(累积丰度由1.49%增加到5.08%),以Candidatus Competibacter为代表的反硝化聚糖菌丰度增加更为明显(累积丰度由1.02%增加到15.49%),聚磷菌与聚糖菌的共同作用有利于实现除磷过程的亚硝酸盐累积.  相似文献   

10.
实验采用生物膜-活性污泥复合工艺(IFAS),探究了不同进水NH4+-N负荷以及游离氨(FA)浓度下的好氧氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)的动力学特性,考察了不同微生物聚集体(悬浮污泥和载体生物膜)对于NH4+-N去除的贡献,同时对其中的生物吸附和生物降解进行定量分析.利用荧光原位杂交(FISH)技术观察了总菌、AOB和NOB的数量以及空间结构的变化.结果表明,随着进水NH4+-N浓度逐渐升高,出水NO3--N浓度逐渐下降,NO2--N得到大量积累,当进水NH4+-N浓度为480mg/L时,NH4+-N去除率和亚硝酸盐氮积累率(NAR)分别稳定在95%和80%以上,而FA由(2.77±0.07)mg/L增加至(16.35±0.3)mg/L时,NAR由9.42%增加至83.31%,实现了对NOB的抑制.在NH4+-N的去除过程中生物吸附和微生物降解分别占NH4+-N去除量的3.4%和88.1%,悬浮污泥和生物膜中AOB占比分别由27.4%和10.3%增加至41.3%和18.1%,表明悬浮污泥比生物膜更有利实现对于AOB的富集.  相似文献   

11.
为探究同步硝化内源反硝化除磷(SNEDPR)强化移动床生物膜反应器(MBBR)工艺脱氮除磷的可行性,采用连续曝气和搅拌/曝气交替运行的MBBR反应器,以磁性填料作为载体处理模拟生活污水,考察了SNEDPR启动过程中的脱氮除磷性能,并结合荧光显微镜和高通量测序技术对各个功能菌群结构变化情况进行了分析.结果表明,经两阶段运行后,氨氮和磷去除率分别达到97.6%和85.37%,出水NO2-—N、NO3-—N和COD浓度分别为1.3949,3.88和20.4mg/L,同步硝化内源反硝化率(SNEDR)由0.07%逐渐升高至86.35%.好氧阶段同步硝化内源反硝化率的提高,使出水NOx-—N浓度下降,提高了系统的脱氮性能和厌氧阶段内碳源的储存量.荧光显微镜和高通量测序结果表明,经过53d的运行,微生物群落多样性呈显著提高,系统内GAOs、AOB、NOB丰度的提高(分别由接种污泥中的3.3%、0.84%和0.66%提高至系统内的27.08%/20.48%、1.45%/1.76%和1.05%/0.85%)和PAOs、DPAOs的存在,保证了系统的脱氮除磷性能,在MBBR工艺中实现了EBPR与SNED的耦合.  相似文献   

12.
郑照明  李军  马静  杜佳  赵白航 《中国环境科学》2016,36(10):2957-2963
通过批试实验研究了氨氮浓度对SNAD生物膜厌氧氨氧化性能的影响.SNAD生物膜反应器以生活污水为进水.进水NH4+-N和COD浓度平均值分别为70mg/L和180mg/L,出水NH4+-N,NO2--N,NO3--N和COD浓度平均值分别为2mg/L,2mg/L,7mg/L和50mg/L.SNAD生物膜具有良好的厌氧氨氧化活性.初始NH4+-N和NO2--N浓度都为70mg/L时,厌氧氨氧化批试NH4+-N、NO2--N和TIN去除速率分别为0.121kg N/(kg VSS·d),0.180kg N/(kg VSS·d)和0.267kg N/(kg VSS·d).采用Haldane模型可以很好的拟合氨氮浓度对厌氧氨氧化活性的影响.在高FA和低FA工况下氨氮浓度对厌氧氨氧化活性的抑制动力学常数相差不大.M1(FA浓度为0.7~20.4mg/L)和M2(FA浓度为6.3~190.5mg/L)的最大NO2--N理论去除速率rmax分别为0.209kg N/(kg VSS·d)和0.221kg N/(kg VSS·d),氨氮半饱和常数Ks分别为9.5mg/L和6.1mg/L,氨氮自身抑制常数KI分别为422mg/L和597mg/L.氨氮(而不是游离氨)对SNAD生物膜的厌氧氨氧化活性起主要抑制作用.  相似文献   

13.
通过批式实验,得到超声波强化Anammox菌活性的最优工作参数,超声频率25kHz、超声时间3min、超声强度0.2 W/cm2,而后在此最优超声强化条件下采用固定床反应器接种传统活性污泥启动Anammox工艺.整个试验过程,温度维持在35℃.在启动阶段,水力停留时间(HRT)为2d,控制进水NH4+-N和NO2--N浓度为70mg/L.反应器运行至第38d,首次表现Anammox活性.运行至53d时,NH4+-N、NO2--N去除速率和去除率分别为30.81,34.97mgN/(L·d)和88.03%、99.91%,总氮去除速率和去除率达60.34mgN/(L·d)和86.20%.R1和R2分别稳定在1.14和0.18.在负荷提升阶段(53~135d),当进水NH4+-N和NO2--N负荷维持在最高值380mg/(L·d)时,NH4+-N和NO2--N平均去除效率分别为82.74%和97.89%.NH4+-N和NO2--N最大去除速率分别为320.67和379.85mgN/(L·d),最大总氮去除速率和去除率为698.00mgN/(L·d)和91.84%.负荷提高阶段末,R1稳定在1.18左右,R2接近于0.反应器内Anammox菌占主导,存在少量反硝化菌强化总氮去除.  相似文献   

14.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为ThiobacillusSulfurimonasThermomonas属,其相对丰度分别为14.5%、7.6%和6.0%.  相似文献   

15.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为ThiobacillusSulfurimonasThermomonas属,其相对丰度分别为14.5%、7.6%和6.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号