首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
安监局长     
欧阳山来到红河煤矿时,正是班前会时间.他钻进了一采区二采队会议室,坐在最后一排.主持会议的是马老蔫,如今他已是一队之长了.20分钟的会,马老蔫只谈生产,只字不提安全,难道采场一点儿事都没有.  相似文献   

2.
一根筋     
老孙 《劳动保护》2005,(7):79-79
“因瓦斯超限,采场停了又干,干了又停,折腾了3次,眼瞅到点了。这碴炮若是再放不了,我们可就亏死了。”队长耗子眼同一根筋套近乎,拐弯抹角想叫他松口。可瓦检员一根筋有一定之规,连理也没理,继续测量瓦斯,从头碴测到了末碴。  相似文献   

3.
井下动抽采泵站作为井下抽采瓦斯的重要场所,为了杜绝瓦斯超限,保证设备的安全运行,对旁通阀配气管道和出水口进行技术改造。就可以安全便捷开停真空泵,防止瓦斯超限,保证真空泵的安全运行,完成全矿瓦斯抽采任务。  相似文献   

4.
正明儿个关井,这是最后一碴炮。放炮员老靳像往常一样,装好药,联好炮,等待瓦检员检查,只要瓦斯不超限,就可以放炮。这是行规,是"佛爷眼珠——动不得"。他是"老安全",岂能做违章的事。时间过去了一刻钟,仍不见瓦检员人影,别说队长黄老蔫不高兴,连老靳嘴里都嘀咕:"肯定是哪个  相似文献   

5.
地下煤矿工作面上隅角瓦斯积聚并超限是煤矿生产的重大安全隐患.为了解瓦斯积聚规律及瓦斯积聚量,构建了采场统一的三维LBM仿真模型,并开发采场瓦斯运移的三维LBM仿真软件.采场由工作面和采空区2个流场组成,其中,瓦斯与大气混合气体在工作面流场中的运动为紊流运动,而在采空区内的运动为非均质多孔介质的渗流运动.采场统一的LBM仿真模型通过采用不同的松弛时间和平衡分布函数来体现2个流场的特征.由于采场结构复杂,为了提高运算效率,采用分块耦合算法将采场划分成多个块,各块独立并行计算,块与块之间通过耦合交换数据,最终实现整个采场瓦斯运移仿真.模拟实例表明,该方法可以模拟和分析采场瓦斯运移状况,并得到采场瓦斯运移的相关数据.同时也可以得到采场流线分布规律、速度变化规律和采空区瓦斯运移规律.  相似文献   

6.
为了提出合理的邻近层瓦斯治理技术,分析了上覆岩层采动裂隙场演化与瓦斯运移规律,并进一步得出了卸压瓦斯分区富集规律,提出了通过高抽巷抽采高位富集区瓦斯,通过走向低位钻孔抽采低位富集区瓦斯,并通过现场考察和数值模拟等手段确定了合理的高抽巷位置、抽采负压等参数。协同抽放技术在现场应用效果表明,工作面、上隅角以及轨道顺槽的瓦斯浓度都降到了0.4%以下,工作面的瓦斯超限问题得到了解决。研究结论对控制邻近层采动卸压瓦斯涌出,提高瓦斯抽采量和抽采率具有重要意义。  相似文献   

7.
基于格子Boltzmann的非均质采空区瓦斯运移仿真方法   总被引:2,自引:2,他引:0  
瓦斯在采空区内运移造成工作面上隅角瓦斯超限是煤矿安全的重大隐患.为揭示采宅区瓦斯运移规律,提出基于格子Boltzmann的非均质采空区瓦斯运移仿真方法.综放采场采空区是由非均质多孔介质组成的空间,大气和瓦斯混合气体在采空区的流动是非常复杂的具有层流、过度流和紊流的渗流运动.基于修正的Brinkman-Forchheimer-Darey定律,建立非均质采空区瓦斯运移的控制方程组.由于该方程组求解复杂,分别建立瓦斯渗流速度场和瓦斯浓度场的格子Boltzmann模型.通过格子Boltzmann模型的演化,实现采空区瓦斯运移的仿真.模拟实例表明,用该方法进行仿真可以得到任何时刻采空区内任意位置瓦斯和大气混合气体的流动速度和压力以及瓦斯浓度等数据,同时也可以得到采空区流线分布规律、速度变化规律、采空区压力的变化规律和采空区瓦斯运移规律.该方法能将时间、空间和系统行为结合起来,可在直观的条件下完成对地下煤矿采空区瓦斯运移态势的精确分析与模拟,可为揭示综放采场采空区上隅角瓦斯超限的原因提供一种新的方法.  相似文献   

8.
顶板走向高位钻孔瓦斯抽采技术的研究及应用   总被引:1,自引:0,他引:1  
为了解决由于采空区及邻近煤层瓦斯的涌人而造成的工作面上隅角瓦斯超限问题,提出了运用顶板走向高位钻孔瓦斯抽采技术,对采空区及邻近煤层瓦斯进行抽采,进而解决上隅角瓦斯超限问题的方法。利用分源预测法对工作面瓦斯涌出源进行了分析,并理论计算了采空区冒落带和裂隙带的高度范围,结合矿井具体情况,确定了合理的高位钻孔参数,并对作用效果进行了现场考察。研究表明:高位钻孔瓦斯抽采技术,能有效地解决工作面上隅角瓦斯超限问题,降低回风流中瓦斯体积分数,并提高了工作面的推进速度,有效地保证了工作面的安全回采。  相似文献   

9.
针对回采工作面上隅角瓦斯浓度超限问题,提出了回采工作面采空区埋管抽采的方法。以保德煤矿81307工作面为研究对象,运用数值模拟软件COMSOL模拟采空区无抽采和不同抽采参数条件下工作面内瓦斯分布规律,研究埋管抽采参数对上隅角瓦斯浓度的影响规律,确定最佳的采空区埋管抽采参数。同时进行现场抽采参数优化试验,对瓦斯浓度进行监测,研究结果表明:合适的布置间距、抽采负压和抽采流量能够有效解决上隅角瓦斯超限问题,试验期间内,上隅角瓦斯体积分数最大为0.74%,进风流中瓦斯体积分数最大为0.2%,工作面风流中瓦斯体积分数最大为0.45%,回风流中瓦斯体积分数最大为0.5%,均没有超过安全标准。  相似文献   

10.
针对低透气性煤层对拉工作面上隅角瓦斯经常超限的问题,提出了高位钻孔技术,通过实验室相似模拟试验及现场工业性试验,确定了高位钻孔的技术参数。现场应用表明,高位钻孔瓦斯抽采效果显著,对拉工作面绝对瓦斯涌出量由7.342 m3/min降至3.472 m3/min,工作面回风巷瓦斯浓度稳定在0.4%左右,上隅角未发生瓦斯超限现象,工作面瓦斯抽采率达57.7%。  相似文献   

11.
为实现保护层开采工作面生产过程中瓦斯不超限,在分析工作面瓦斯来源的基础上,提出了保护层开采工作面竖向分层治理瓦斯的思路。根据相似模拟结果,分析了采空区瓦斯流动范围和流动范围内孔隙率、风阻分布特征。采用数值模拟分析了Y型通风、Y型通风+采空区埋管及Y型通风+采空区埋管+高抽巷+高位钻场3种瓦斯治理方式下采空区瓦斯体积分数场,结果表明:采空区瓦斯体积分数在竖直方向和水平方向均具有典型的递变特征,距工作面越远,距煤层越高,瓦斯体积分数越大;合适位置的煤层顶板高抽巷对抽采来自上邻近层的瓦斯具有较好的效果,试验条件下高抽巷抽采瓦斯量达到了总量的36.4%~63.6%;沿充填墙的采空区埋管不能完全拦截下层采空区进入沿空巷的采空区瓦斯,随沿空巷长度增加,瓦斯体积分数增大,建议沿空巷长度控制在250 m范围内。  相似文献   

12.
高抽巷现已被广泛用于治理工作面采动裂隙带及采空区瓦斯,而现场实际实施存在一定经验性,影响了高抽巷的瓦斯治理效果。针对现场高抽巷抽采流量低、工作面瓦斯易超限等问题,为提高高抽巷的瓦斯抽采效果,以余吾煤业为例,通过理论计算、现场考察、数值模拟、抽采效果分析,系统地研究了综放面高抽巷抽采瓦斯的布置层位。研究结果表明:综放面顶板冒落带高度约为18 m,裂隙带高度约为40 m,同时结合现场抽采效果分析,高抽巷宜布置在距煤层顶板40 m,与回风顺槽平距30 m处。研究结论对于综放面高抽巷的合理布置、提高瓦斯抽采效果具有一定的借鉴意义。  相似文献   

13.
下保护层开采卸压瓦斯治理技术研究   总被引:4,自引:0,他引:4  
以潘一东矿1252(1)下保护层首采工作面为研究对象,采用分源预测法对下保护层工作面瓦斯涌出情况进行预测。计算结果表明,1252(1)工作面的瓦斯有六成左右来自上邻近13—1煤层,在本煤层回采期间提出了地面钻井、底抽巷穿层钻孔、高位钻场顶板走向钻孔、沿空留巷充填墙埋管等瓦斯治理方案,抽采率达到90%左右,工作面上隅角完全杜绝瓦斯浓度超限现象,保护范围内的13—1煤层的突出危险性也显著降低。  相似文献   

14.
为了解决三交河煤矿2-512大采高工作面上隅角瓦斯经常超限的难题,运用理论和现场实践进行了分析,分析得出工作面上隅角瓦斯超限的主要原因有:①上隅角是风流汇合处;②顶板跨落;③2#下煤层瓦斯涌入采空区;④地质构造.针对上隅角瓦斯超限问题,提出了高位钻孔抽放裂隙带瓦斯和低位钻孔抽放采空区和冒落带瓦斯的防治措施.现场实践表明,在实施上述措施之后,2-512工作面回风流中瓦斯浓度控制在0.02% ~0.06%,上隅瓦斯浓度由原来的0.8%~3.0%下降到0.8%以下,有效地解决了上隅角瓦斯超限问题,保证了矿井的安全高效生产.  相似文献   

15.
沙曲矿为近距离煤层群开采矿,4#煤层为高瓦斯有突出危险煤层,为防止工作面回采时出现瓦斯超限或发生突出危险,并将瓦斯资源加以有效利用,通过在采前、采中及采后分别实施本煤层、邻近层及采空区瓦斯抽采措施,实现平均瓦斯抽采量分别达12.89m3/min、22 m3/min与10 m3/min。采用沿空留巷Y型通风方式,平均配风量3 300 m3/min,实现风排瓦斯量15~20 m3/min,占涌出量的44%。24207工作面回采时,回风瓦斯体积分数稳定在0.4%~0.6%,未发生上隅角瓦斯超限或煤与瓦斯突出现象,日产量由初期的800 t/d提高至3 600 t/d。  相似文献   

16.
为解决保德煤矿81505工作面上隅角瓦斯超限问题,选择联巷埋管抽采瓦斯方式进行治理.使用COMSOL模拟软件建立采场物理模型,研究瓦斯埋管抽采前后采空区和工作面O2、CH4体积分数分布、工作面在推进过程中采空区最高温度与工作面风速的关系,分析采空区瓦斯分布和采空区"三带"的变化.结果表明:随瓦斯抽采流量增加,工作面上隅角瓦斯体积分数降低;抽采位置距工作面距离增加,工作面上隅角的瓦斯体积分数降低.根据保德煤矿81505工作面采空区的最短自然发火期,选择抽采流量为40 m3/min,在距工作面40 m处进行瓦斯抽采,工作面上隅角瓦斯体积分数从0.53%降低到0.17%,氧化带宽度从100 m增加到149 m.最后通过现场实践,工作面上隅角瓦斯体积分数降低到0.16%,采空区氧化带的宽度范围为135~150 m,在降低工作面上隅角瓦斯体积分数的同时降低了采空区发生自燃的危险性.  相似文献   

17.
解惑     
凌山矿又闹瓦斯了,采场停了又干,干了又停,哪个月都欠产,到年底,百万吨大矿不知亏了多少呢!年轻的矿长找到了郭总,叫他想想辙儿,要不惜代价,群策群力,降伏威胁矿工生命安全的瓦斯。  相似文献   

18.
为了解决五阳煤矿3#煤层采掘工作面瓦斯涌出量大、瓦斯超限、抽采效果差等问题,提出了深孔预裂爆破预抽煤层瓦斯的治理方法,并在试验矿井7603采煤工作面进行了现场试验;同时确定了五阳煤矿深孔预裂爆破的钻孔布置参数,并对爆破前后的抽采瓦斯浓度、抽采量进行现场考察分析。现场实践表明,深孔预裂爆破能够有效提高煤层的透气性、瓦斯抽采浓度和抽采量,减少抽采时间,为矿井开展深孔预裂爆破预抽瓦斯技术措施提供实践经验和技术支持。  相似文献   

19.
《吉林劳动保护》2013,(9):16-16
<正>第四条:必须做到瓦斯抽采达标,防突措施到位,监控系统有效,瓦斯超限立即撤人,严禁违规作业。瓦斯不治,矿无宁日。加强瓦斯的防治,是煤矿安全生产的重中之重。近年来,国家出台了一系列促进瓦斯防治工作的政策措施,确立了先抽后采、监测监控、以风定产的瓦斯治理方针,着力构建"通风可靠、抽采达标、监控有效、管理到位"的煤矿瓦斯综合治理工作体系。瓦斯抽采达标是指应当进行瓦斯抽采的矿井建立完善的瓦斯抽采系统并运行正常、管理严格;做到应抽尽抽、多措并举、抽掘采平衡;矿井瓦斯抽采率、抽采区域煤层瓦斯压力及含量等指标符合有关法律法规、行业规范的要求;瓦  相似文献   

20.
为解决借鉴埋管抽采技术经验或仅依据采空区瓦斯分布模拟来确定以孔代巷瓦斯抽采技术布孔间距可靠性不高的问题,以腾晖矿2-105工作面为试验区,先模拟不同布孔位置的采空区瓦斯浓度分布;再模拟采空区流场情况;根据采空区瓦斯浓度分布和流线轨迹变化趋势分析钻孔对上隅角瓦斯的影响,以此来确定以孔代巷瓦斯抽采布孔间距;最后将模拟确定的布孔间距应用到2-105工作面以孔代巷瓦斯抽采的现场试验中,并将现场数据与模拟结果进行对比验证。结果表明:通过模拟所确定的布孔间距能保证上隅角瓦斯体积分数一直被控制在0. 8%以下,解决了2-105工作面上隅角瓦斯超限问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号