首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To investigate the effects of vehicle impact velocity and front-end structure on the dynamic responses of child pedestrians, an extensive parametric study was carried out using two child mathematical models at 6 and 15 years old. The effect of the vehicle impact velocity was studied at 30, 40, and 50 km/h in terms of the head linear velocity, impact angle, and head angular velocity as well as various injury parameters concerning the head, chest, pelvis, and lower extremities. The variation of vehicle front-end shape was determined according to the shape corridors of modern vehicles, while the stiffness characteristics of the bumper, hood edge, and hood were varied within stiffness corridors obtained from dynamic component tests. The simulation results show that the vehicle impact speed is of great importance on the kinematics and resulting injury severity of child pedestrians. A significant reduction in all injury parameters can be achieved as the vehicle impact speed decreases to 30 km/h. The head and lower extremities of children are at higher injury risks than other body regions. Older children are exposed to higher injury risks to the head and lower leg, whereas younger ones sustain more severe impact loads to the pelvis and upper leg. The results from factorial analysis indicate that the hood-edge height has a significant effect on the kinematics and head impact responses of children. A higher hood edge could reduce the severity of head impact for younger children, but aggravate the risks of head injury for older ones. A significant interaction exists between the bumper height and the hood-edge height on the head impact responses of younger child. Nevertheless, improving the energy absorption performance of the hood seems effective for mitigating the severity of head injuries for children.  相似文献   

2.
3.
Objective: This study aimed at investigating the effects of vehicle impact velocity, vehicle front-end shape, and pedestrian size on injury risk to pedestrians in collisions with passenger vehicles with various frontal shapes. Method: A series of parametric studies was carried out using 2 total human model for safety (THUMS) pedestrian models (177 and 165?cm) and 4 vehicle finite element (FE) models with different front-end shapes (medium-size sedan, minicar, one-box vehicle, and sport utility vehicle [SUV]). The effects of the impact velocity on pedestrian injury risk were analyzed at velocities of 20, 30, 40, and 50?km/h. The dynamic response of the pedestrian was investigated, and the injury risk to the head, chest, pelvis, and lower extremities was compared in terms of the injury parameters head injury criteria (HIC), chest deflection, and von Mises stress distribution of the rib cage, pelvis force, and bending moment diagram of the lower extremities. Result: Vehicle impact velocity has the most significant influence on injury severity for adult pedestrians. All injury parameters can be reduced in severity by decreasing vehicle impact velocities. The head and lower extremities are at greater risk of injury in medium-size sedan and SUV collisions. The chest injury risk was particularly high in one-box vehicle impacts. The fracture risk of the pelvis was also high in one-box vehicle and SUV collisions. In minicar collisions, the injury risk was the smallest if the head did not make contact with the A-pillar. Conclusion: The vehicle impact velocity and vehicle front-end shape are 2 dominant factors that influence the pedestrian kinematics and injury severity. A significant reduction of all injuries can be achieved for all vehicle types when the vehicle impact velocity is less than 30?km/h. Vehicle designs consisting of a short front-end and a wide windshield area can protect pedestrians from fatalities. The results also could be valuable in the design of a pedestrian-friendly vehicle front-end shape. [Supplementary materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention for the following free supplemental resource: Head impact conditions and injury parameters in four-type vehicle collisions and validation result of the finite element model of one-box vehicle and minicar. ].  相似文献   

4.
The objective was to assess head injury risks and kinematics of adult pedestrians and bicyclists in primary impact to the passenger cars and secondary impact to the ground using real world accident data and computer reconstructions of the accidents. For this purpose, a subsample of 402 pedestrians and 940 bicyclists from the GIDAS database, Germany, was used for the statistical analysis, from which 22 pedestrian and 18 bicyclist accidents were further selected for reconstruction. PC-Crash was used to calculate impact conditions, such as vehicle impact velocity, vehicle kinematic sequence, and thrown distance. These conditions were employed to identify the initial conditions in reconstruction in MADYMO program. A comparable analysis was conducted based on the results from accident analysis and computer reconstructions for the impact configurations and the resulting injury patterns of pedestrians and bicyclists in view of head injury risks. Differences in HIC, head-relative impact velocity, linear acceleration, maximum angular velocity and acceleration, contact force, thrown distance, Wrap Around Distance (WAD), and head contact time were evaluated. Injury risk curves were generated by using a logistic regression model for vehicle impact velocity. The results indicate that bicyclists suffered less severe injuries compared with severity of pedestrian injuries. In the selected samples, the AIS 2+ and AIS 3+ head injury risks for pedestrians are 50% probability at impact speed of 38.87 km/h and 54.39 km/h respectively, while for bicyclists at 53.66 km/h and 58.89 km/h respectively. The findings of high injury risks suggested that in the area with high frequency car-pedestrian accidents, the vehicle speed limit should be 40 km/h, while in the area with high frequency car-cyclist accidents the vehicle speed limit should be 50 km/h.  相似文献   

5.
OBJECTIVE: The aim of this study was to investigate head injuries, injury risks, and corresponding tolerance levels of children in car-to--child pedestrian collisions. METHODS: An in-depth accident analysis was carried out based on 23 accident cases involving child pedestrians. These cases were collected with detailed information about pedestrians, cars, and road environments. All 23 accidents were reconstructed using the MADYMO program with mathematical models of passenger cars and child pedestrians developed at Chalmers University of Technology. The contact properties of the car models were derived from the European New Car Assessment Program (EuroNCAP) subsystem tests. RESULTS: The accident analysis demonstrated that the head was the most frequently and severely injured body part of child pedestrians. Most accidents occurred at impact speeds lower than 40 km/h and 98% of the child pedestrians were impacted from the lateral direction. The initial postures of children at the moment of impact were identified. Nearly half (47%) of the children were running, which was remarkable compared with the situation of adult pedestrians. From accident reconstructions it was found that head impact conditions and injury severities were dependent on the shape and stiffness of the car front, impact velocity, and stature of the child pedestrian. Head injury criteria and corresponding tolerance levels were analyzed and discussed by correlating the calculated injury parameters with the injury outcomes in the accidents. CONCLUSIONS: Reducing head injuries should be set as a priority in the protection of child pedestrians. HIC is an important injury criterion for predicting the risks of head injuries in child pedestrian accidents. The tolerance level of head injuries can have a considerable variation due to individual differences of the child pedestrians. By setting a suitable speed limit and improving the design of car front, the head injury severities of child pedestrians can be reduced.  相似文献   

6.
Truck and bus frontal impacts account for a major proportion of pedestrian fatalities in many less motorized countries. To understand this phenomenon, we have collected injury data on pedestrian impacts with buses and trucks and performed computer simulations to identify critical design parameters at 15–45 km/h impact velocities for further investigation. A male dummy which was scaled to fifty percentile Indian dimensions has been used for simulations using MADYMO. Bumper height, bumper offset and grille inclination affect the pelvis and thorax forces and Head Injury Criterion values critically. Bumper width has less effect. Simulations were performed to optimize for the above–mentioned three parameters. Changes in front geometric parameters reduce injury to the upper body and head below safety limits for the existing force–displacement properties but do not affect leg injuries significantly. Hence bumpers need to be made less stiff. Injury data shows that pedestrians also sustain tibia fractures in bus/truck impacts in apparent low velocity impacts. The computer modeling does not offer adequate explanation for this phenomenon. These simulations confirm that it is theoretically possible to make truck/bus fronts safer for pedestrians in impacts up to 35 km/h.  相似文献   

7.
Objective: A cyclist assumes various cyclic postures of the lower extremities while pushing the pedals in a rotary motion while pedaling. In order to protect cyclists in collisions, it is necessary to understand what influence these postures have on the global kinematics and injuries of the cyclist.

Method: Finite element (FE) analyses using models of a cyclist, bicycle, and car were conducted. In the simulations, the Total Human Model of Safety (THUMS) occupant model was employed as a cyclist, and the simulation was set up such that the cyclist was hit from its side by a car. Three representative postures of the lower extremities of the cyclist were examined, and the kinematics and injury risk of the cyclist were compared to those obtained by a pedestrian FE model. The risk of a lower extremity injury was assessed based on the knee shear displacement and the tibia bending moment.

Results: When the knee position of the cyclist was higher than the hood leading edge, the hood leading edge contacted the leg of the cyclist, and the pelvis slid over the hood top and the wrap-around distance (WAD) of the cyclist's head was large. The knee was shear loaded by the hood leading edge, and the anterior cruciate ligament (ACL) ruptured. The tibia bending moment was less than the injury threshold. When the cyclist's knee position was lower than the hood leading edge, the hood leading edge contacted the thigh of the cyclist, and the cyclist rotated with the femur as the pivot point about the hood leading edge. In this case, the head impact location of the cyclist against the car was comparable to that of the pedestrian collision. The knee shear displacement and the tibia bending moment were less than the injury thresholds.

Conclusion: The knee height of the cyclist relative to the hood leading edge affected the global kinematics and the head impact location against the car. The loading mode of the lower extremities was also dependent on the initial positions of the lower extremities relative to the car structures. In the foot up and front posture, the knee was loaded in a lateral shear direction by the hood leading edge and as a result the ACL ruptured. The bicycle frame and the struck-side lower extremity interacted and could influence the loadings on lower extremities.  相似文献   


8.
To evaluate the effect of vehicle type (passenger vehicle vs. light truck vehicle) on crash trajectory and on the consequent source and severity of pedestrian injury, we analyzed data from the Pedestrian Crash Data Study (PCDS), conducted by National Highway Traffic Safety Administration (NHTSA) from 1994 to 1998. While 62% of the adults in PV (passenger vehicle)-related crashes were carried by the vehicle, such pedestrian-vehicle interaction was observed only in 28% of LTV (light truck vehicle)-adult crashes. Being thrown forward or knocked down were the most common (65%) type of pedestrian-vehicle interactions for LTV-adult crashes. For children, 93% of those struck by LTVs and 46% of those struck by PVs were thrown forward or knocked down. For adults, LTVs were more likely than PVs to cause thorax (37% vs. 20%) and abdomen injuries (33% vs. 18%). For children, LTVs were more likely than PVs to cause injuries to the upper extremity (71% vs. 56%) and abdomen (14% vs. 8%). For adults struck by PVs the most common sources of injury were windshield for head injuries (63%), hood surface for thorax (67%), abdomen (58%), spine (30%), and upper extremity (36%) injuries, and bumper for the lower extremity injuries (60%). The leading causes of injury for adult-LTV crashes were ground for head (39%) and upper extremity (37%) injuries, hood edge for thorax (48%) and abdomen (56%) injuries, hood surface for spine injuries (36%), and bumper for lower extremity injuries (45%). For child-PV crashes, ground was the most common source of face (37%) abdomen (83%), spine (43%), and upper extremity injuries (54%). For children hit by LTVs, 52% of face, 67% of abdomen, 100% of spine, and 60% of upper extremity injuries were attributed to ground contacts. Altogether, the major sources of injury were hood surface and windshield for PV-pedestrian crashes and hood surface and hood edge for LTV-pedestrian crashes. Changes in design, such as altering the geometry and stiffness of front-end structures, might be associated with considerable decrease in the frequency and severity of pedestrian injury.  相似文献   

9.
Abstract

Objective: Traffic fatalities among motorcycle users are intolerably high in Thailand. They account for 73% of the total number of road fatalities. Children are also among these victims. To improve countermeasures and design of protection equipment, understanding the biomechanics of motorcycle users under impact conditions is necessary. The objective of this work is to analyze the overall kinematics and injuries sustained by riders and child pillion passengers in various accident configurations.

Methods: Motorcycle accident data were analyzed. Common accident scenarios and impact parameters were identified. Two numerical approaches were employed. The multibody model was validated with a motorcycle crash test and used to generate possible accident cases for various impact conditions specified to cover all common accident scenarios. Specific impact conditions were selected for detailed finite element analysis. The finite element simulations of motorcycle-to-car collisions were conducted to provide insight into kinematics and injury mechanisms.

Results: Global kinematics found when the motorcycle’s front wheel impacts a car (config-MC) highlighted the translation motion of both the rider and passenger toward the impact position. The rider’s trunk impacted the handlebar and the head either impacted the car or missed. The hood constituted the highest head impact occurrence for this configuration. The child mostly impacted the rider’s back. Different kinematics were found when car impacted the lateral side of the motorcycle (config-CM). Upper bodies of both rider and child were laterally projected toward the car front. The windshield constituted the highest proportion of head impacts. The hood and A-pillar recorded a moderate proportion. The rider in finite element simulations with config-MC experienced high rib stress, lung strain, and pressure beyond the injury limit. A high head injury criterion was observed when the head hit the car. However, the simulation with config-CM exhibited high lower extremities stress and lung pressure in both occupants. Hyperextension of the rider’s neck was observed. The cumulative strain damage measure of the child’s brain was higher than the threshold for diffuse axonal injury (DAI).

Conclusions: This study revealed 2 kinematics patterns and injury mechanisms. Simulations with config-MC manifested a high risk of head and thorax injury to the rider but a low risk of severe injury to the child. Thorax injury to the rider due to handlebar impact was only found in simulations with config-MC. However, a high risk of skull, lower extremity, brain, and neck injuries were more pronounced for cases with config-CM. A high risk of DAI was also noticed for the child. In simulations with config-CM the child exhibited a higher risk of severe injury.  相似文献   

10.
In vehicle–pedestrian collisions, lower extremities of pedestrians are frequently injured by vehicle front structures. In this study, a finite element (FE) model of THUMS (total human model for safety) was modified in order to assess injuries to a pedestrian lower extremity. Dynamic impact responses of the knee joint of the FE model were validated on the basis of data from the literature. Since in real-world accidents, the vehicle bumper can impact the lower extremities in various situations, the relations between lower extremity injury risk and impact conditions, such as between impact location, angle, and impactor stiffness, were analyzed. The FE simulation demonstrated that the motion of the lower extremity may be classified into a contact effect of the impactor and an inertia effect from a thigh or leg. In the contact phase, the stress of the bone is high in the area contacted by the impactor, which can cause fracture. Thus, in this phase the impactor stiffness affects the fracture risk of bone. In the inertia phase, the behavior of the lower extremity depends on the impact locations and angles, and the knee ligament forces become high according to the lower extremity behavior. The force of the collateral ligament is high compared with other knee ligaments, due to knee valgus motions in vehicle-pedestrian collisions.  相似文献   

11.
Because of rapid increase in the urban population and hence road traffic, the vehicle–pedestrian crashes are more frequent and have become a major concern in road traffic safety. Though the bumper of a vehicle plays an important role to protect the vehicle body damage in low speed impacts, many bumpers particularly in larger vehicles are too stiff for pedestrian protection and safety. To prevent lower extremity injuries in car–pedestrian collisions, it is important to determine the loadings that car front structures impart on the lower extremities and the mechanisms by which injuries are caused. In the present work, a dynamic legform impactor model is introduced and validated against EEVC/WG17 criteria. The collision mechanism between a GMT bumper and the legform impactor model is investigated numerically using LS-DYNA software. The effect of the height of the impact point of bumper assembly to lower extremity injuries is also investigated. In this paper, it is shown that changing the local stiffness of bumper assembly due to the change in the height of the bumper and distribution of stiffness from upper parts of the bumper assembly to lower parts are the most important parameters in the pedestrian’s leg injuries. As lower extremity injuries are related to the lower bumper height, developing special legform impactors for different countries with different average person height seems essential in investigating the effect of people’s height on lower extremity injuries.  相似文献   

12.
In vehicle-pedestrian collisions, lower extremities of pedestrians are frequently injured by vehicle front structures. In this study, a finite element (FE) model of THUMS (total human model for safety) was modified in order to assess injuries to a pedestrian lower extremity. Dynamic impact responses of the knee joint of the FE model were validated on the basis of data from the literature. Since in real-world accidents, the vehicle bumper can impact the lower extremities in various situations, the relations between lower extremity injury risk and impact conditions, such as between impact location, angle, and impactor stiffness, were analyzed. The FE simulation demonstrated that the motion of the lower extremity may be classified into a contact effect of the impactor and an inertia effect from a thigh or leg. In the contact phase, the stress of the bone is high in the area contacted by the impactor, which can cause fracture. Thus, in this phase the impactor stiffness affects the fracture risk of bone. In the inertia phase, the behavior of the lower extremity depends on the impact locations and angles, and the knee ligament forces become high according to the lower extremity behavior. The force of the collateral ligament is high compared with other knee ligaments, due to knee valgus motions in vehicle-pedestrian collisions.  相似文献   

13.
OBJECTIVE: The current study aims to evaluate the influence of age-related stature on the frequency of body region injury and overall injury severity in children involved in pedestrian versus motor vehicle collisions (PMVCs). METHODS: A trauma registry including the coded injuries sustained by 1,590 1- to 15-year-old pedestrian casualties treated at a level-one trauma center was categorized by stature-related age (1-3, 4-6, 7-9, 10-12, and 13-15 years) and body region (head and face, neck, thorax, abdomen and pelvic content, thoracic and lumbar spine, upper extremities, pelvis, and lower extremities). The lower extremity category was further divided into three sub-structures (thigh, leg, and knee). For each age group and body region/sub-structure the proportion of casualties with at least one injury was then determined at given Abbreviated Injury Scale (AIS) severity levels. In addition, the average and distribution of the Maximum Abbreviated Injury Score (MAIS) and the average Injury Severity Score (ISS) were determined for each age group. The calculated proportions, averages, and distributions were then compared between age groups using appropriate significance tests. RESULTS: The overall outcome showed relatively minor variation between age groups, with the average +/- SD MAIS and ISS ranging from 2.3 +/- 0.9 to 2.5 +/- 1.0 and 8.2 +/- 7.2 to 9.4 +/- 8.9, respectively. The subjects in the 1- to 3-year-old age group were more likely to sustain injury to the head, face, and torso regions than the older subjects. The frequency of AIS 2+ lower extremity injury was approximately 20% in the 1- to 3-year-old group, but was twice as high in the 4- to 12-years age range and 2.5 times as high in the oldest age group. The frequency of femur fracture increased from 10% in the youngest group to 26% in the 4- to 6-year-old group and then declined to 14% in the 10- to 15-years age range. The frequency of tibia/fibula fracture increased monotonically with group age from 8% in the 1- to 3-year-old group to 31% in the 13- to 15-year-old group. CONCLUSIONS: While the overall outcome of child pedestrian casualties appears to be relatively constant across the pediatric stature range considered ( approximately 74-170 cm), subject height seems to affect the frequency of injury to individual body regions, including the thorax and lower extremities. This suggests that vehicle safety designers need not only account for the difference in injury patterns between adult and pediatric pedestrian casualties, but also for the variation within the pediatric group.  相似文献   

14.
OBJECTIVE: The objective of this study was to quantify the occupant response variability due to differences in vehicle and seat design in low-speed rear-end collisions. METHODS: Occupant response variability was quantified using a BioRID dummy exposed to rear-end collisions in 20 different vehicles. Vehicles were rolled rearward into a rigid barrier at 8 km/h and the dynamic responses of the vehicle and dummy were measured with the head restraint adjusted to the up most position. In vehicles not damaged by this collision, additional tests were conducted with the head restraint down and at different impact speeds. RESULTS: Despite a coefficient of variation (COV) of less than 2% for the impact speed of the initial 8 km/h tests, the vehicle response parameters (speed change, acceleration, restitution, bumper force) had COVs of 7 to 23% and the dummy response parameters (head and T1 kinematics, neck loads, NIC, N(ij) and N(km)) had COVs of 14 to 52%. In five vehicles tested multiple times, a head restraint in the down position significantly increased the peak magnitude of many dummy kinematic and kinetic response parameters. Peak head kinematics and neck kinetics generally varied linearly with head restraint back set and height, although the neck reaction moment reversed and increased considerably if the dummy's head wrapped onto the top of the head restraint. CONCLUSIONS: The results of this study support the proposition that the vehicle, seat, and head restraint are a safety system and that the design of vehicle bumpers and seats/head restraint should be considered together to maximize the potential reduction in whiplash injuries.  相似文献   

15.
A sizeable proportion of adult pedestrians involved in vehicle-versus-pedestrian accidents suffer head injuries, some of which can lead to lifelong disability or even death. To understand head injury mechanisms, in-depth accident analyses and accident reconstructions were conducted. A total of 120 adult pedestrian accident cases from the GIDAS (German in-depth accident study) database were analyzed, from which 10 were selected for reconstruction. Accident reconstructions initially were performed using multi-body system (MBS) pedestrian and car models, so as to calculate head impact conditions, like head impact velocity, head position and head orientation. These impact conditions then were used to set the initial conditions in a simulation of a head striking a windshield, using finite element (FE) head and windshield models. The intracranial pressure and stress distributions of the FE head model were calculated and correlated with injury outcomes. Accident analysis revealed that the windshield and its surrounding frames were the main sources of head injury for adult pedestrians. Reconstruction results indicated that coup/contrecoup pressure, Von Mises and shear stress were important physical parameters to estimate brain injury risks.  相似文献   

16.
For the evaluation of pedestrian protection, the European Enhanced Vehicle-Safety Committee Working Group 17 report is now commonly used. In the evaluation of head injuries, the report takes into account only the hood area of the vehicle. But recent pedestrian accident data has shown the injury source for head injury changing to the windshield and A-pillar from the hood. The head contact points are considered to fall on a parallel to the front shape of the vehicle along the lateral direction, but the rigidity of the outer side construction is different from the center area. The purpose of this study is to consider the reason for the change in injury source for recent vehicle models. The head contact points and contact conditions, speed and angle, are thought to be influenced not only by the vehicle's geometry, but also its construction (rigidity). In this study, vehicle-pedestrian impact simulations were calculated with a finite element model for several hitting positions, including the outer side areas. Full dummy sled tests were conducted to confirm the simulation results. These results show that, for impacts at the outer sides of the vehicle, the head contact points are more rearward than at the vehicle center. In addition, the speed and angle of the head contact were found to be influenced by the pedestrian height.  相似文献   

17.
OBJECTIVE: To determine whether injuries to sub-optimally restrained child occupants in real-world crashes were likely to be preventable by alternative restraint usage practices and to assess the usefulness of crash reconstruction for exploring injury mechanisms in child occupants. METHODS: Real-world crashes in which child occupants sustained significant injuries were reconstructed on a laboratory crash sled using the Hybrid III family of child dummies. Alternative restraint scenarios and cases in which children were not seriously injured were also simulated to compare dummy kinematics and dynamic responses in optimal restraint configurations. RESULTS: Restraint misuse was associated with greater motion of the dummy torso and head during crashes, often allowing contact between the child and the vehicle interior, resulting in injury. Poor pre-crash posture for a child inappropriately restrained in an adult belt appeared to worsen the geometry of the sash (shoulder) belt, resulting in a cervical injury due to direct interaction with the belt. Dynamic dummy data did not appear to discriminate between injury and non-injury cases. CONCLUSIONS: Dummy kinematics suggest that injuries in which inappropriate use and misuse were a factor were less likely if the most appropriate restraint was used correctly. Adequately controlling the head and upper body of the child occupant was seen to prevent undesirable interactions with the vehicle interior and restraint system, which were associated with injury in the real world. Neck forces and moments and injury criteria calculated from these did not predict injury reliably.  相似文献   

18.
IntroductionDue to the diversity of pedestrian-to-ground impact (secondary impact) mechanisms, secondary impacts always result in more unpredictable injuries as compared to the vehicle-to-pedestrian collisions (primary impact). The purpose of this study is to investigate the effects of vehicle frontal structure, vehicle impact velocity, and pedestrian size and gait on pedestrian-to-ground impact injury risk.MethodA total of 600 simulations were performed using the MADYMO multi-body system and four different sizes of pedestrians and six types initial gait were considered and impacted by five vehicle types at five impact velocities, respectively. The pedestrian rotation angle ranges (PRARs) (a, b, c, d) were defined to identify and classify the pedestrian rotation angles during the ground impact.ResultsThe PRARs a, b, and c were the ranges primarily observed during the pedestrian landing. The PRAR has a significant influence on pedestrian-to-ground impact injuries. However, there was no correlation between the vehicle velocity and head injury criterion (HIC) caused by the secondary impact. In low velocity collisions (20, 30 km/h), the severity of pedestrian head injury risk caused by the secondary impact was higher than that resulting from the primary impact.ConclusionsThe PRARs defined in this study are highly correlated with the pedestrian-to-ground impact mechanism, and can be used to further analyze the pedestrian secondary impact and to predict the head injury risk.Practical applicationsTo reduce the pedestrian secondary impact injury risk, passive and active safety countermeasures should be considered together to prevent the pedestrian's head-to-ground impacts, particularly in the low-velocity collisions.  相似文献   

19.
In accidents involving sports utility vehicles (SUVs), injuries to pedestrian leg, knee ligaments, and femur are likely to occur. Therefore, the European Enhanced Vehicle Safety Committee proposed two subsystem test methods for evaluation of SUV bumper aggressiveness. Such evaluation can be conducted by means of either a legform impactor (evaluation of risk of knee and tibia injury), or an upper legform impactor (evaluation of risk of thigh and pelvis injury) test. Each of these two test methods has its own injury criteria and injury acceptance levels. Therefore, the first objective of this research is to clarify any differences between the test results obtained when evaluating SUV bumper aggressiveness by means of these two impactors. The second objective is to determine whether or not a legform impactor can be applied to estimate the risk of femur fracture, and if an upper legform impactor can be used to estimate the risk of knee ligament injury. The present results indicate the test method using an upper legform impactor yields higher ratios of injury criteria to the relevant EEVC/WG17 injury acceptance levels than by using a legform impactor. Thus, the upper legform impactor test rates an SUV bumper as more aggressive than the legform impactor test. The present study suggests the lower leg acceleration obtained by the legform impactor can be used to adequately assess the risk of femur fracture, when evaluating the aggressiveness of an SUV bumper using proposed injury acceptance levels reported in the literature. Similarly, the impact force obtained by the upper legform impactor can be used to assess the risk of cruciate ligament injury.  相似文献   

20.
OBJECTIVE: Various test procedures have been suggested for assessing the protection afforded by child restraints (CRS) in lateral collisions. Analyses of real world crashes can be used to identify relevant characteristics of the child, restraint, collision, and injury mechanisms that should be incorporated into the design of the test procedures as well as in the design of related ATDs and injury metrics. The objective of this work is to use in-depth crash investigations of children restrained in CRS in side impacts to elucidate specific sources and mechanisms of injuries and explore the role of crash severity variables such as magnitude and location of intrusion and specific impact angle. METHODS: Real world crashes involving children restrained in forward facing CRS in side impacts were analyzed from Partners for Child Passenger Safety, an on-going child specific crash surveillance system in which insurance claims are used to identify cases. In-depth crash investigations using standardized protocols were used to calculate the crash severity and determine the mechanisms and sources of the injuries sustained. RESULTS: Cases of 32 children restrained in CRS in 30 side impact crashes were examined. Twenty-five percent sustained AIS 2+ injuries. The most common injuries sustained by children restrained in CRS in side impact crashes were to the face, head, and lower extremity. Characteristics of the crashes that appeared related to injury were intrusion that entered the child's occupant space or caused an interior part of the vehicle to enter the child's occupant space, forward component of the crash, and the rotation of the CRS, restrained by a seat belt, towards the side of the impact. CONCLUSIONS: The ability to assess the injury potential in a laboratory setting for the body regions of common injury, the head, face, and lower extremity, must be explored. Characteristics of a regulatory-based test procedure to assess injury risk should include a frontal component to the crash and intrusion into the occupant's seating position. Design enhancements of the CRS should address rotation during lateral impacts. These results provide guidance to current efforts to design and regulate these restraints for the safety of child passengers in side impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号