首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The concentrations and size distributions of low molecular weight dicarboxylic acids in suburban particulate matter collected in early and mid-autumn 2002 and early and mid-summer 2003 in Tainan, Taiwan, were analyzed. PM2.5 contained, on average, 449.3 ng m−3 oxalic acid, 53.0 ng m−3 malic acid, 45.5 ng m−3 maleic acid, 29.6 ng m−3 succinic acid, 20.8 ng m−3 malonic acid, and 11.6 ng m−3 tartaric acid. Bar tartaric acid, concentrations were higher during the day, indicating that these acids are photochemical products. Furthermore, the malonic acid–succinic acid ratio of 0.79 during daytime and 0.60 during nighttime demonstrates that more succinic acid is converted to malonic acid during daytime, and that aerosol dicarboxylic acids predominantly originate from photochemical oxidation during daytime. The concentration peak of oxalic acid occurred in the condensation and droplet modes (0.32–1.0 μm), as did that of sulfate. In early summer, succinic acid, malonic acid, and oxalic acid major concentration peaks occurred at 0.32–0.54 μm, indicative of the relationship created by photochemical decomposition of succinc acid into malonic acid into oxalic acid. This photochemical decomposition accelerated in mid-summer such that most concentration peaks for succinic and malonic acids also occurred at 0.32–1.0 μm. Mid-summer is also the wettest period of the four in Tainan, with 85% RH. As a result of hygroscopic reactions in mid-summer, malonic acid and oxalic acid major concentration peaks shifted from 0.32–0.54 μm or 0.54–1.0 μm to 1.0–1.8 μm, thus extending the range in which these species were found to larger particle sizes, and this shift was highly correlated with a shift in succinic acid size distribution. This latter observation offers additional evidence that succinic acid is photochemically decomposed into malonic acid and oxalic acid and that the presence of malonic and oxalic acids in the wet mid-summer atmosphere is made more obvious via hygroscopic growth. Close correlation between succinic acid and Na+ and succinic acid and NO3 in the coarse mode is related to sea spray.  相似文献   

2.
The PM2.5 concentrations and the size distributions of dicarboxylic acids in Hong Kong were studied. Eleven sets of daily PM2.5 samples were obtained at a downtown sampling site during the period of 5–16 December 2000 using an R&P speciation PM2.5 sampler. About 6–12% of the total oxalic acid was found in the gas phase in some samples. A good correlation between succinate and sulfate (R2=0.88) and a moderate correlation between oxalate and sulfate (R2=0.74) were found. Sampling artifacts of oxalate, malonate and succinate were found to be negligible. A total of 18 sets of 48–96 h size distribution data on dicarboxylic acids, sulfate, nitrate and sodium at an urban site and a rural site from June 2000 to May 2001 were obtained using a Micro-Orifice Uniform Deposit Impactor. Data from both sites show similar size distribution characteristics of the dicarboxylic acids. The condensation mode of oxalate was usually observed at 0.177–0.32 μm. The location of the peak of the droplet mode of oxalate was associated with that of sulfate. When the peak of sulfate in the droplet mode appeared at 0.32–0.54 μm, the peak of oxalate sometimes appeared at 0.32–0.54 μm and sometimes shifted to 0.54–1.0 μm. When the peak of sulfate in the droplet mode appeared at 0.54–1.0 μm, the peak of oxalate sometimes appeared at 0.54–1.0 μm and sometimes shifted to 1.0–1.8 μm. Oxalate, succinate and sulfate found in the droplet mode were attributed to in-cloud formation. The slight shift of the oxalate peak from 0.32–0.54 to 0.54–1.0 μm or from 0.54–1.0 to 1.0–1.8 μm was ascribed to minor oxalate evaporation after in-cloud formation. The maximum peak of malonate sometimes appeared in the droplet mode and sometimes appeared at 3.1–6.2 μm. The formation of malonate is associated to the reactions between sea salt and malonic acid.  相似文献   

3.
In August 2003 during the anticipated month of the 2008 Beijing Summer Olympic Games, we simultaneously collected PM10 and PM2.5 samples at 8, 100, 200 and 325 m heights up a meteorological tower and in an urban and a suburban site in Beijing. The samples were analysed for organic carbon (OC) and elemental carbon (EC) contents. Particulate matter (PM) and carbonaceous species pollution in the Beijing region were serious and widespread with 86% of PM2.5 samples exceeding the daily National Ambient Air Quality Standard of the USA (65 μg m−3) and the overall daily average PM10 concentrations of the three surface sites exceeding the Class II National Air Quality Standard of China (150 μg m−3). The maximum daily PM2.5 and PM10 concentrations reached 178.7 and 368.1 μg m−3, respectively, while those of OC and EC reached 22.2 and 9.1 μg m−3 in PM2.5 and 30.0 and 13.0 μg m−3 in PM10, respectively. PM, especially PM2.5, OC and EC showed complex vertical distributions and distinct layered structures up the meteorological tower with elevated levels extending to the 100, 200 and 300 m heights. Meteorological evidence suggested that there exist fine atmospheric layers over urban Beijing. These layers were featured by strong temperature inversions close to the surface (<50 m) and more stable conditions aloft. They enhanced the accumulation of pollutants and probably caused the complex vertical distributions of PM and carbonaceous species over urban Beijing. The built-up of PM was accompanied by transport of industrial emissions from the southwest direction of the city. Emissions from road traffic and construction activities as well as secondary organic carbon (SOC) are important sources of PM. High OC/EC ratios (range of 1.8–5.1 for PM2.5 and 2.0–4.3 for PM10) were found, especially in the higher levels of the meteorological tower suggesting there were substantial productions of SOC in summer Beijing. SOC is estimated to account for at least 33.8% and 28.1% of OC in PM2.5 and PM10, respectively, with higher percentages at the higher levels of the tower.  相似文献   

4.
Fine particulate matter (PM2.5) was sampled at 5 Spanish locations during the European Community Respiratory Health Survey II (ECRHS II). In an attempt to identify and quantify PM2.5 sources, source contribution analysis by principal component analysis (PCA) was performed on five datasets containing elemental composition of PM2.5 analysed by ED-XRF. A total of 4–5 factors were identified at each site, three of them being common to all sites (interpreted as traffic, mineral and secondary aerosols) whereas industrial sources were site-specific. Sea-salt was identified as independent source at all coastal locations except for Barcelona (where it was clustered with secondary aerosols). Despite their typically dominant coarse grain-size distribution, mineral and marine aerosols were clearly observed in PM2.5. Multi-linear regression analysis (MLRA) was applied to the data, showing that traffic was the main source of PM2.5 at the five sites (39–53% of PM2.5, 5.1–12.0 μg m−3), while regional-scale secondary aerosols accounted for 14–34% of PM2.5 (2.6–4.5 μg m−3), mineral matter for 13–31% (2.4–4.6 μg m−3) and sea-salt made up 3–7% of the PM2.5 mass (0.4–1.3 μg m−3). Consequently, despite regional and climatic variability throughout Spain, the same four main PM2.5 emission sources were identified at all the study sites and the differences between the relative contributions of each of these sources varied at most 20%. This would corroborate PM2.5 as a useful parameter for health studies and environmental policy-making, owing to the fact that it is not as subject to the influence of micro-sitting as other parameters such as PM10. African dust inputs were observed in the mineral source, adding on average 4–11 μg m−3 to the PM2.5 daily mean during dust outbreaks. On average, levels of Al, Si, Ti and Fe during African episodes were higher by a factor of 2–8 with respect to non-African days, whereas levels of local pollutants (absorption coefficient, S, Pb, Cl) showed smaller variations (factor of 0.5–2).  相似文献   

5.
About 60 rainwater samples were collected at west Los Angeles, California in 1981–1984 and were analyzed for C1–C9 monocarboxylic acids (0.33–79 μM, average (av.) 13±15 μM), C2–C10 dicarboxylic acids (2.9–51 μM, av. 7.5±14 μM) and C1–C4 aldehydes (0.85–28 μM, av. 9.2±11 μM). Distributions of monocarboxylic acids show a predominance of formic (average concentration: 6.5 μM) and acetic (av. 5.6 μM) acids followed by propionic acid (av. 0.44 μM). Oxalic acid is the dominant diacid (av. 3.9 μM) followed by succinic acid (av. 1.0 μM). Formaldehyde (av. 6.9 μM) is the dominant aldehyde, with the next most abundant, acetaldehyde, being minor (av. 0.65 μM). For select rain samples described in this paper, were found to comprise monocarboxylic acids 0.9–12.3% (av. 4.4±3.4%), diacids comprise 1.2–9.5% (av. 4.2±3.3%) and aldehydes comprise 0.2–6.2% (av. 2.1±2.2%) of total organic carbon (TOC, 2.0–18.6 mg C l−1; av. 9.8±5.4 mg C l−1). Annual rain fluxes of monocarboxylic acids and aldehydes during 1982–1983 were calculated to be 0.24 and 0.11 g m−2 yr−1, respectively, with an annual estimated wet deposition in the Los Angeles Basin of 3120 and 1430 tons, respectively. These fluxes are equivalent to 2500 times of the acids and 2.5 times of the aldehydes emitted from automobile exhausts in the Los Angeles air basin. This comparison suggests that major portions of the carboxylic acids detected in the rain are not directly emitted from auto-exhausts, but are most likely produced in the atmosphere by gaseous and/or aqueous phase photo-induced reactions.  相似文献   

6.
The origin of the daily exceedances of 50 μg PM10 m−3 (daily limit value or DLV of the EU air quality directive) and of an arbitrary daily value (DV) 35 μg PM2.5 m−3 recorded in 2001–2003 in 13 regional background stations of the Iberian Peninsula were interpreted. This was carried out by means of back-trajectory analysis, available PM model outputs, satellite data and meteorological maps. This allows the detection of high PM episodes on a regional scale and the study of their seasonal and geographical variability.The number of exceedances of the PM10 DLV ranged in 2001–2003 from 6 to 41 depending on the monitoring site. For the selected PM2.5 DV, the range of daily exceedances was 0–10 in the study period.The majority of the PM10 (>70% in most stations) and PM2.5 (17–55% in most stations) exceedances in regional background monitoring stations are caused by African dust outbreaks. These exceedances were less frequent in winter than in summer due to: (a) the frequent long range transport of dust in the warm seasons over Iberia, (b) the re-suspension associated with convective atmospheric dynamics, and (c) the relative low rainfall favouring re-suspension and high residence time of PM. Moreover, a regional contribution of secondary aerosols derived from the efficient photochemical transformation of gaseous precursors may coincide with African transport in summer.Episodes with lack of advective conditions caused 2–29% and 20–50% of the PM10 and PM2.5 exceedances. These occurred mainly in summer due to poor renovation of air masses, increased convective re-suspension, dispersion of pollutants towards rural areas and regional re-circulation and aging of air masses which result in the proliferation of secondary inorganic species.Long-range transport of PM from continental Europe caused exceedances (9–40% and 18–38% of the PM10 and PM2.5 exceedances, respectively), only in northern Iberia because, as the European air masses evolve towards the south, the pollutants suffer dispersion/dilution. Local exceedances are associated with the advection of the clean Atlantic air masses, which cannot increase PM levels to a great extent without the influence of a local source of PM. The proportion of local exceedances of PM10 and PM2.5 ranged 6–33% and 17–40%, respectively.  相似文献   

7.
The concentrations of monosaccharide anhydrides (levoglucosan, mannosan, galactosan) in PM1 and PM2.5 aerosol samples were measured in Brno and ?lapanice in the Czech Republic in winter and summer 2009. 56 aerosol samples were collected together at both sites to investigate the different sources that contribute to aerosol composition in studied localities. Daily PM1 and PM2.5 aerosol samples were collected on pre-fired quartz fibre filters.The sum of average atmospheric concentration of levoglucosan, mannosan and galactosan in PM1 aerosol in ?lapanice and Brno during winter was 513 and 273 ng m?3, while in summer the sum of average atmospheric concentration of monosaccharide anhydrides (MAs) was 42 and 38 ng m?3, respectively. The sum of average atmospheric concentration of MAs in PM1 aerosol formed 71 and 63% of the sum of MA concentration in PM2.5 aerosol collected in winter in ?lapanice and Brno, whereas in summer the sum of average atmospheric concentration of MAs in PM1 aerosol formed 45 and 43% of the sum of MA concentration in PM2.5 aerosol in ?lapanice and Brno, respectively.In winter, the sum of MAs contributed significantly to PM1 mass ranging between 1.37% and 2.67% of PM1 mass (Brno – ?lapanice), while in summer the contribution of the sum of MAs was smaller (0.28–0.32%). Contribution of the sum of MAs to PM2.5 mass is similar both in winter (1.37–2.71%) and summer (0.44–0.55%).The higher concentrations of monosaccharide anhydrides in aerosols in ?lapanice indicate higher biomass combustion in this location than in Brno during winter season. The comparison of levoglucosan concentration in PM1 and PM2.5 aerosol shows prevailing presence of levoglucosan in PM1 aerosol both in winter (72% on average) and summer (60% on average).The aerosol samples collected in ?lapanice and Brno in winter and summer show comparable contributions of levoglucosan, mannosan and galactosan to the total amount of monosaccharide anhydrides in both aerosol size fractions. Levoglucosan was the most abundant monosaccharide anhydride with a relative average contribution to the total amount of MAs in the range of 71–82% for PM1 aerosols and 52–79% for PM2.5 aerosols.  相似文献   

8.
Ambient concentrations of n-alkanes with carbon number ranging from 17 to 36 were determined for PM2.5 samples collected in Taipei city during September 1997–February 1998. The measured concentrations of particulate n-alkanes were in the range of 69–702 ng m−3, considerably higher than the concentration levels observed in Los Angeles and Hong Kong. The concentration distributions of n-alkanes homologues obtained in this study exhibited peaks at C19, C24 or C25. This suggests that fossil fuel utilization, such as vehicular exhaust and lubricant residues, was an important contributor to the Taipei aerosol. Source apportionment of PM2.5 was conducted using carbon preference index (CPI, defined as the ratio of the total concentration of particulate n-alkanes with odd carbon number to that with even carbon number) and U : R ratio (the concentration ratio of unresolved components to resolved components obtained from chromatograms). The low CPI value (0.9–1.9) and high U : R ratio (2.6–6.4) for each sample further confirmed that fossil fuel utilization was the major source of n-alkanes in ambient PM2.5 of Taipei city. Estimates from these results showed that 69–93% of the n-alkanes in PM2.5 of the Taipei aerosol originated from vehicular exhaust. The higher concentration level of particulate n-alkanes in the Taipei aerosol was mainly a result of vehicular emissions.  相似文献   

9.
PM10 levels of the mineral components Si, Al, Fe, Ca, Mg and some trace metals were measured at three different sites in the urban area of Vienna (Austria). Observed trace metal concentrations varied between less than 0.1 ng m?3 (Cd) and approximately 200 ng m?3 (Zn), mineral components showed enhanced concentrations ranging from 0.01 μg m?3 (Ca) to 16.3 μg m?3 (Si). The contribution of the respective mineral oxides to PM10 mass concentrations accounted on average for 26.4 ± 16% (n = 1090) of the PM10 mass, with enhanced rates in spring and autumn (monthly averages of up to 40%) and decreased contributions in the cold season (monthly averages below 10%). The atmospheric occurrence of Al, Ti and Sr could be assigned to crustal sources, whereas for the elements Ba, Ca, Fe, Mg, Mn and V an increased contribution of non-crustal origin was observed. PM10 levels of As, Cd, Co, Cr, Cu, Ni, Pb, Sb, Sn and Zn were predominantly derived from man-made emissions. Intersite comparison indicated that urban PM10 mass concentrations and PM10 levels of As, Pb and Zn were predominantly influenced from the transport of aerosols from outside into the city, whereas for the elements Ba, Mg, Ca, Cu and Fe a distinctly increased impact of local emissions was observed. The contribution of these urban emissions to total PM10 concentrations was estimated by calculating the so-called “urban impact”, which was found to be 32.7 ± 18% (n = 392) in the case of PM10 mass concentrations. The investigated elements accounted on average for 31.3 ± 19% (n = 392) of the observed PM10 mass increase. The mean values for the “urban impacts” of individual elements varied between 25.5% (As) and 77.0% (Ba).  相似文献   

10.
Aqueous OH radical oxidation of methylglyoxal in clouds and wet aerosols is a potentially important global and regional source of secondary organic aerosol (SOA). We quantify organic acid products of the aqueous reaction of methylglyoxal (30–3000 μM) and OH radical (approx. 4 × 10?12 M), model their formation in the reaction vessel and investigate how the starting concentrations of precursors and the presence of acidic sulfate (0–840 μM) affect product formation. Predicted products were observed. The predicted temporal evolution of oxalic acid, pyruvic acid and total organic carbon matched observations at cloud relevant concentrations (30 μM), validating this methylglyoxal cloud chemistry, which is currently being implemented in some atmospheric models of SOA formation. The addition of sulfuric acid at cloud relevant concentrations had little effect on oxalic acid yields. At higher concentrations (3000 μM), predictions deviate from observations. Larger carboxylic acids (≥C4) and other high molecular weight products become increasingly important as concentration increases, suggesting that small carboxylic acids are the major products in clouds while larger carboxylic acids and oligomers are important products in wet aerosols.  相似文献   

11.
Between November 1995 and October 1996, particulate matter concentrations (PM10 and PM2.5) were measured in 25 study areas in six Central and Eastern European countries: Bulgaria, Czech Republic, Hungary, Poland, Romania and Slovak Republic. To assess annual mean concentration levels, 24-h averaged concentrations were measured every sixth day on a fixed urban background site using Harvard impactors with a 2.5 and 10 μm cut-point. The concentration of the coarse fraction of PM10 (PM10−2.5) was calculated as the difference between the PM10 and the PM2.5 concentration. Spatial variation within study areas was assessed by additional sampling on one or two urban background sites within each study area for two periods of 1 month. QA/QC procedures were implemented to ensure comparability of results between study areas. A two to threefold concentration range was found between study areas, ranging from an annual mean of 41 to 98 μg m−3 for PM10, from 29 to 68 μg m−3 for PM2.5 and from 12 to 40 μg m−3 for PM10−2.5. The lowest concentrations were found in the Slovak Republic, the highest concentrations in Bulgaria and Poland. The variation in PM10 and PM2.5 concentrations between study areas was about 4 times greater than the spatial variation within study areas suggesting that measurements at a single sampling site sufficiently characterise the exposure of the population in the study areas. PM10 concentrations increased considerably during the heating season, ranging from an average increase of 18 μg m−3 in the Slovak Republic to 45 μg m−3 in Poland. The increase of PM10 was mainly driven by increases in PM2.5; PM10−2.5 concentrations changed only marginally or even decreased. Overall, the results indicate high levels of particulate air pollution in Central and Eastern Europe with large changes between seasons, likely caused by local heating.  相似文献   

12.
The chemical composition of PM10 and PM2.5 was studied during summer and winter sampling campaigns in South and West Europe (Barcelona, Spain, and Ghent, Belgium). The chemical composition of the PM10 aerosol was markedly different in the two regions, even at similar PM10 levels. The chemical composition of PM2.5 showed more similarities. The contribution of mineral matter was higher in Barcelona (on average 12% of the PM2.5 mass), whereas the contribution from sea salt was higher in Ghent (4% of PM2.5). Volatilisation of NH4+ from the filters (negative artefact) was observed in both regions, although the extent of this artefact showed regional differences (0–4% and 22–38% of the NH4+ mass in Ghent and Barcelona, respectively) and had no impact on the compliance with EU limit values. The number of exceedances of the PM10 limit value and an arbitrary PM2.5 limit of 25 μg m−3 was calculated by subtracting the mineral fraction (natural or anthropogenic in origin) from the bulk PM load, and this resulted in the elimination of the PM10 exceedances in Barcelona, and a reduction of one out of three exceedances in Ghent. The subtraction of sea-salt aerosol had no effect in Barcelona, and it removed one exceedance in each size fraction in Ghent. Exceedances of the PM10 daily limit value in Ghent coincided with back-trajectories originating from Eastern and Southern European regions. The origin of the exceedances in Barcelona during the campaigns was mostly local.  相似文献   

13.
Numerous epidemiological studies have demonstrated the association between particle mass (PM) concentration in outside air and the occurrence of health related problems and/or diseases. However, much less is known about indoor PM concentrations and associated health risks. In particular, data are needed on air quality in schools, since children are assumed to be more vulnerable to health hazards and spend a large part of their time in classrooms.On this background, we evaluated indoor air quality in 64 schools in the city of Munich and a neighbouring district outside the city boundary. In winter 2004–2005 in 92 classrooms, and in summer 2005 in 75 classrooms, data on indoor air climate parameters (temperature, relative humidity), carbon dioxide (CO2) and various dust particle fractions (PM10, PM2.5) were collected; for the latter both gravimetrical and continuous measurements by laser aerosol spectrometer (LAS) were implemented. In the summer period, the particle number concentration (PNC), was determined using a scanning mobility particle sizer (SMPS). Additionally, data on room and building characteristics were collected by use of a standardized form. Only data collected during teaching hours were considered in analysis. For continuously measured parameters the daily median was used to describe the exposure level in a classroom.The median indoor CO2 concentration in a classroom was 1603 ppm in winter and 405 ppm in summer. With LAS in winter, median PM concentrations of 19.8 μg m−3 (PM2.5) and 91.5 μg m−3 (PM10) were observed, in summer PM concentrations were significantly reduced (median PM2.5=12.7 μg m−3, median PM10=64.9 μg m−3). PM2.5 concentrations determined by the gravimetric method were in general higher (median in winter: 36.7 μg m−3, median in summer: 20.2 μg m−3) but correlated strongly with the LAS-measured results. In explorative analysis, we identified a significant increase of LAS-measured PM2.5 by 1.7 μg m−3 per increase in humidity by 10%, by 0.5 μg m−3 per increase in CO2 indoor concentration by 100 ppm, and a decrease by 2.8 μg m−3 in 5–7th grade classes and by 7.3 μg m−3 in class 8–11 compared to 1–4th class. During the winter period, the associations were stronger regarding class level, reverse regarding humidity (a decrease by 6.4 μg m−3 per increase in 10% humidity) and absent regarding CO2 indoor concentration. The median PNC measured in 36 classrooms ranged between 2622 and 12,145 particles cm−3 (median: 5660 particles cm−3).The results clearly show that exposure to particulate matter in school is high. The increased PM concentrations in winter and their correlation with high CO2 concentrations indicate that inadequate ventilation plays a major role in the establishment of poor indoor air quality. Additionally, the increased PM concentration in low level classes and in rooms with high number of pupils suggest that the physical activity of pupils, which is assumed to be more pronounced in younger children, contributes to a constant process of resuspension of sedimented particles. Further investigations are necessary to increase knowledge on predictors of PM concentration, to assess the toxic potential of indoor particles and to develop and test strategies how to ensure improved indoor air quality in schools.  相似文献   

14.
For over one year, the Environmental Protection Commission of Hillsborough County (EPCHC) in Tampa, Florida, operated two dichotomous sequential particulate matter air samplers collocated with a manual Federal Reference Method (FRM) air sampler at a waterfront site on Tampa Bay. The FRM was alternately configured as a PM2.5, then as a PM10 sampler. For the dichotomous sampler measurements, daily 24-h integrated PM2.5 and PM10–2.5 ambient air samples were collected at a total flow rate of 16.7 l min−1. A virtual impactor split the air into flow rates of 1.67 and 15.0 l min−1 onto PM10–2.5 and PM2.5 47-mm diameter PTFE® filters, respectively. Between the two dichotomous air samplers, the average concentration, relative bias and relative precision were 13.3 μg m−3, 0.02% and 5.2% for PM2.5 concentrations (n=282), and 12.3 μg m−3, 3.9% and 7.7% for PM10–2.5 concentrations (n=282). FRM measurements were alternate day 24-h integrated PM2.5 or PM10 ambient air samples collected onto 47-mm diameter PTFE® filters at a flow rate of 16.7 l min−1. Between a dichotomous and a PM2.5 FRM air sampler, the average concentration, relative bias and relative precision were 12.4 μg m−3, −5.6% and 8.2% (n=43); and between a dichotomous and a PM10 FRM air sampler, the average concentration, relative bias and relative precision were 25.7 μg m−3, −4.0% and 5.8% (n=102). The PM2.5 concentration measurement standard errors were 0.95, 0.79 and 1.02 μg m−3; for PM10 the standard errors were 1.06, 1.59, and 1.70 μg m−3 for two dichotomous and one FRM samplers, respectively, which indicate the dichotomous samplers have superior technical merit. These results reveal the potential for the dichotomous sequential air sampler to replace the combination of the PM2.5 and PM10 FRM air samplers, offering the capability of making simultaneous, self-consistent determinations of these particulate matter fractions in a routine ambient monitoring mode.  相似文献   

15.
In June 1996–June 1997 Berner low-pressure impactors were used at an urban and at a rural site in the Helsinki area for sampling ultrafine particles (UFP, PM0.1). Ten sample pairs, each pair measured simultaneously, were collected in the size range of 0.03–15 μm of particle aerodynamic diameter. More than 40 chemical components were measured. Surprisingly, the average UFP mass concentration was higher at the rural site (520 ng/m3) than at the urban site (490 ng/m3). The average chemical composition of UFP was similar at the two sites. The most abundant of the measured components were sulphate (32 and 40 ng/m3 for the urban and rural sites, respectively), ammonium (22 and 25 ng/m3), nitrate (4 and 11 ng/m3) and the Ca2+ ion (5 and 7 ng/m3). The most important metals at both sites were Ca, Na, Fe, K and Zn with concentrations between 0.7 and 5 ng/m3. Of the heavy metals, Ni, V, Cu, and Pb were important with average ultrafine concentrations between about 0.1 and 0.2 ng/m3. Also the organic anions oxalate (urban 2.1 ng/m3 and rural 1.9 ng/m3) and methanesulphonate (1.3 and 1.7 ng/m3) contributed similarly at both sites. The measured species accounted for only about 15–20% of the total ultrafine mass. The fraction that was not measured includes mainly carbonaceous material and water. It was estimated that the amount of water was about 10% (50 ng/m3) and that of carbonaceous material about 70% (350 ng/m3) at both sites. Aitken modes were observed for most components with the average mass mean mode diameters being between about 0.06 and 0.12 μm. The average concentrations in the Aitken mode differed clearly from those in the UFP for several components.The average contribution of ultrafine mass to the fine particle mass (PM2.5) was about 7% at the urban site and 8.5% at the rural site. At both sites the contribution of ultrafine to fine was especially high for Se, Ag, B, and Ni (10–20%) and at the rural site also for Co (20%), Ca2+ (16%) and Mo (11%). Enrichment in the ultrafine particles suggests that local sources may exist for these elements.Aitken modes turned out to be useful indicators of local sources for several components. The Aitken modes of Ba, Ca, Mg and Sr were similar in several samples, suggesting a common local combustion source for these elements, possibly traffic exhaust. Co, Fe, Mo and Ni formed another group of elements often having similar Aitken modes, the likely source being combustion of heavy fuel oil.  相似文献   

16.
This study provides the first comprehensive report on mass concentrations of particulate matter of various sizes, inorganic and organic gas concentrations monitored at three sampling sites in the city of Palermo (Sicily, Italy). It also provides information on the water-soluble species and trace elements. A total of 2054 PM10 (1333) and PM2.5 (721) daily measurements were collected from November 2006 to February 2008. The highest mass concentrations were observed at the urban stations, average values being about two times higher than those at the suburban (control) site. Time variations in PM10 and also PM10–2.5 were observed at the urban stations, the highest concentrations being measured in autumn and winter. CO, NOx, NO2, benzene, toluene and o-xylene concentrations peaked in autumn and winter, a pattern similar to those recorded for PM10 and PM10–2.5 mass levels, indicating the importance of traffic emissions in urban air pollution. 91% and 51% of the benzene measurements exceeded the limit of 5 μg m?3 at the two urban monitoring sites. Trace elements (As, Ba, Cr, Cu, Mo, Pb, Sb) suspected of being introduced into the atmosphere mainly by anthropogenic activities, were highly enriched with respect to local soil. Results indicate that a large fraction of PM10 (31–47% in weight) and PM2.5 (29% in weight) is made up of water-soluble ions. Ammonium sulphate and nitrate particles accounted for 14–29 wt% of particulate matter mass concentrations. Crustal and marine components, combined, account for 41% and 49% in PM2.5 and PM10, respectively. The calculated deficits in Cl- and NH4+ ions suggest that a proportion of these ions are lost, via the formation of gaseous NH4Cl or HCl and NH3.  相似文献   

17.
This study conducted roadside particulate sampling to measure the total suspended particulate (TSP), PM10 (particles <10 μm in aerodynamic diameter) and PM2.5 (particles <2.5 μm in aerodynamic diameter) mass concentration in 11 urbanized and densely populated districts in Hong Kong. One hundred and thirty-three samples were obtained to measure the mass concentrations of TSP, PM10 and PM2.5. According to these results, the TSP, PM10 and PM2.5 mass concentrations varied from 94.85 to 301.63 μg m−3, 67.67 to 142.68 μg m−3 and 50.01 to 125.12 μg m−3, respectively. The PM2.5/PM10 ratio of all samples was 0.82 which ranged from 0.62 to 0.95. The PM levels and PM ratios in metropolitan Hong Kong significantly fluctuated from site-to-site and over time. The PM2.5 mass concentration in different districts corresponding to urban industrial, new town, urban residential and urban commercial were 77.64, 87.50, 106.96 and 88.54 μg m−3, respectively. The PM2.5 level is high in Hong Kong, and for individual sampling, more than 60% daily measurements exceeded the NAAQS. The mass fraction of PM2.5 in PM10 and TSP is relatively high when compared with overseas studies.  相似文献   

18.
Atmospheric transport of trace elements has been found to be an important pathway for their input to the ocean. TSP, PM10, and PM2.5 aerosol samples were collected over the Northern South China Sea in two cruises in 2003 to estimate the input of aerosol from continent to the ocean. About 23 elements and 14 soluble ions in aerosol samples were measured. The average mass concentration of TSP in Cruise I in January (78 μg m−3) was ∼twice of that in Cruise II in April (37 μg m−3). Together with the crustal component, heavy metals from pollution sources over the land (especially from the industry and automobiles in Guangzhou) were transported to and deposited into the ocean. The atmospheric MSA concentrations in PM2.5 (0.048 μg m−3 in Cruise I and 0.043 μg m−3 in Cruise II) over Northern South China Sea were comparable to those over other coastal regions. The ratio of non-sea-salt (NSS)-sulfate to MSA is 103-655 for Cruise I and 15-440 for Cruise II in PM2.5 samples, which were much higher than those over remote oceans. The estimated anthropogenic sulfate accounts for 83–98% in Cruise I and 63–95% in Cruise II of the total NSS-sulfate. Fe (II) concentration in the aerosols collected over the ocean ranged from 0.1 to 0.9 μg m−3, accounting for 16–82% of the total iron in the aerosol, which could affect the marine biogeochemical cycle greatly.  相似文献   

19.
A study of carbonaceous particulate matter (PM) was conducted in the Middle East at sites in Israel, Jordan, and Palestine. The sources and seasonal variation of organic carbon, as well as the contribution to fine aerosol (PM2.5) mass, were determined. Of the 11 sites studied, Nablus had the highest contribution of organic carbon (OC), 29%, and elemental carbon (EC), 19%, to total PM2.5 mass. The lowest concentrations of PM2.5 mass, OC, and EC were measured at southern desert sites, located in Aqaba, Eilat, and Rachma. The OC contribution to PM2.5 mass at these sites ranged between 9.4% and 16%, with mean annual PM2.5 mass concentrations ranging from 21 to 25 ug m?3. These sites were also observed to have the highest OC to EC ratios (4.1–5.0), indicative of smaller contributions from primary combustion sources and/or a higher contribution of secondary organic aerosol. Biomass burning and vehicular emissions were found to be important sources of carbonaceous PM in this region at the non-southern desert sites, which together accounted for 30%–55% of the fine particle organic carbon at these sites. The fraction of measured OC unapportioned to primary sources (1.4 μgC m?3 to 4.9 μgC m?3; 30%–74%), which has been shown to be largely from secondary organic aerosol, is relatively constant at the sites examined in this study. This suggests that secondary organic aerosol is important in the Middle East during all seasons of the year.  相似文献   

20.
Multi-year hourly measurements of PM2.5 elemental carbon (EC) and organic carbon (OC) from a site in the South Bronx, New York were used to examine diurnal, day of week and seasonal patterns. The hourly carbon measurements also provided temporally resolved information on sporadic EC spikes observed predominantly in winter. Furthermore, hourly EC and OC data were used to provide information on secondary organic aerosol formation. Average monthly EC concentrations ranged from 0.5 to 1.4 μg m?3 with peak hourly values of several μg m?3 typically observed from November to March. Mean EC concentrations were lower on weekends (approximately 27% lower on Saturday and 38% lower on Sunday) than on weekdays (Monday to Friday). The weekday/weekend difference was more pronounced during summer months and less noticeable during winter. Throughout the year EC exhibited a similar diurnal pattern to NOx showing a pronounced peak during the morning commute period (7–10 AM EST). These patterns suggest that EC was impacted by local mobile emissions and in addition by emissions from space heating sources during winter months. Although EC was highly correlated with black carbon (BC) there was a pronounced seasonal BC/EC gradient with summer BC concentrations approximately a factor of 2 higher than EC. Average monthly OC concentrations ranged from 1.0 to 4.1 μg m?3 with maximum hourly concentrations of 7–11 μg m?3 predominantly in summer or winter months. OC concentrations generally correlated with PM2.5 total mass and aerosol sulfate and with NOx during winter months. OC showed no particular day of week pattern. The OC diurnal pattern was typically different than EC except in winter when OC tracked EC and NOx indicating local primary emissions contributed significantly to OC during winter at the urban location. On average secondary organic aerosol was estimated to account for 40–50% of OC during winter and up to 63–73% during summer months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号