首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This study was conducted in order to investigate the differences observed in source profiles in the urban environment, when chemical composition parameters from different aerosol size fractions are subjected to factor analysis. Source apportionment was performed in an urban area where representative types of emission sources are present. PM10 and PM2 samples were collected within the Athens Metropolitan area and analysed for trace elements, inorganic ions and black carbon. Analysis by two-way and three-way Positive Matrix Factorization was performed, in order to resolve sources from data obtained for the fine and coarse aerosol fractions. A difference was observed: seven factors describe the best solution in PMF3 while six factors in PMF2. Six factors derived from PMF3 analysis correspond to those described by the PMF2 solution for the fine and coarse particles separately. These sources were attributed to road dust, marine aerosol, soil, motor vehicles, biomass burning, and oil combustion. The additional source resolved by PMF3 was attributed to a different type of road dust. Combustion sources (oil combustion and biomass burning) were correctly attributed by PMF3 solely to the fine fraction and the soil source to the coarse fraction. However, a motor vehicle's contribution to the coarse fraction was found only by three-way PMF. When PMF2 was employed in PM10 concentrations the optimum solution included six factors. Four source profiles corresponded to the previously identified as vehicles, road dust, biomass burning and marine aerosol, while two could not be clearly identified. Source apportionment by PMF2 analysis based solely on PM10 aerosol composition data, yielded unclear results, compared to results from PMF2 and PMF3 analyses on fine and coarse aerosol composition data.  相似文献   

2.
At urban areas in south Europe atmospheric aerosol levels are frequently above legislation limits as a result of road traffic and favourable climatic conditions for photochemical formation and dust suspension. Strategies for urban particulate pollution control have to take into account specific regional characteristics and need correct information concerning the sources of the aerosol.With these objectives, the ionic and elemental composition of the fine (PM2.5) and coarse (PM2.5–10) aerosol was measured at two contrasting sites in the centre of the city of Oporto, roadside (R) and urban background (UB), during two campaigns, in winter and summer.Application of Spatial Variability Factors, in association with Principal Component/Multilinear Regression/Inter-site Mass Balance Analysis, to aerosol data permitted to identify and quantify 5 main groups of sources, namely direct car emissions, industry, photochemical production, dust suspension and sea salt transport. Traffic strongly influenced PM mass and composition. Direct car emissions and road dust resuspension contributed with 44–66% to the fine aerosol and with 12 to 55% to the coarse particles mass at both sites, showing typically highest loads at roadside. In fine particles secondary origin was also quite important in aerosol loading, principally during summer, with 28–48% mass contribution, at R and UB sites respectively. Sea spray has an important contribution of 18–28% to coarse aerosol mass in the studied area, with a highest relative contribution at UB site.Application of Spatial Variability/Mass Balance Analysis permitted the estimation of traffic contribution to soil dust in both size ranges, across sites and seasons, demonstrating that as much as 80% of present dust can result from road traffic resuspension.  相似文献   

3.
This study reports the results of an experimental research project carried out in Bologna, a midsize town in central Po valley, with the aim at characterizing local aerosol chemistry and tracking the main source emissions of airborne particulate matter. Chemical speciation based upon ions, trace elements, and carbonaceous matter is discussed on the basis of seasonal variation and enrichment factors. For the first time, source apportionment was achieved at this location using two widely used receptor models (principal component analysis/multi-linear regression analysis (PCA/MLRA) and positive matrix factorization (PMF)). Four main aerosol sources were identified by PCA/MLRA and interpreted as: resuspended particulate and a pseudo-marine factor (winter street management), both related to the coarse fraction, plus mixed combustions and secondary aerosol largely associated to traffic and long-lived species typical of the fine fraction. The PMF model resolved six main aerosol sources, interpreted as: mineral dust, road dust, traffic, secondary aerosol, biomass burning and again a pseudo-marine factor. Source apportionment results from both models are in good agreement providing a 30 and a 33 % by weight respectively for PCA-MLRA and PMF for the coarse fraction and 70 % (PCA-MLRA) and 67 % (PMF) for the fine fraction. The episodic influence of Saharan dust transport on PM10 exceedances in Bologna was identified and discussed in term of meteorological framework, composition, and quantitative contribution.  相似文献   

4.
The concentrations of trace metals and polycyclic aromatic hydrocarbons (PAHs) adsorbed to total suspended particulate (TSP) and finer fractions of airborne particulate matter (PM) were determined from a site in the centre of Athens (Greece), which is characterized by heavy local traffic and is densely populated, during the winter and summer periods in 2003-2004. Also, we collected and analyzed samples of diesel and gasoline exhaust particles from local vehicles (buses, taxis and private cars) and from chimney exhaust of residential central heating appliances. A seasonal effect was observed for the size distribution of aerosol mass, with a shift to larger fine fractions in winter. The most commonly detected trace metals in the TSP and PM fractions were Fe, Pb, Zn, Cu, Cr, V, Ni and Cd and their concentrations were similar to levels observed in heavily polluted urban areas from local traffic and other anthropogenic emissions. Analysis of 16 PAHs bound to PM showed that they are mostly traffic related. In general, the fine particulate PAHs concentrations were higher than coarse particles. The most common PAHs in PM(10.2) and PM(2.1) were pyrene, phenanthrene, acenapthylene and fluoranthene, which are associated with diesel and gasoline exhaust particles. The results of this study underlined the importance of local emission sources, especially vehicular traffic, central heating and other local anthropogenic emissions. Compared with other big cities, Athens has much higher levels of airborne particles, especially of the finer fractions PM(10) and PM(2.5), correlated with traffic-related air pollution.  相似文献   

5.
In central Switzerland five types of emission sources are mainly responsible for airborne trace metals: traffic, industrial plants burning heavy oil, resuspension of soil particles, residential heatings and refuse incineration plants. The particulate emissions of each of these source types except refuse incineration were sampled using Berner impactors and the mass and elemental size distributions of Cd, Cu, Mn, Pb, Zn, As and Na determined.Cd, Na and Zn are not characteristic for any of these source types. As and Cu, occurring in the fine particle fractions are characteristic for heavy oil combustion, Mn for soil dust and sometimes for heavy and fuel oil combustion and Pb for traffic aerosols. The mass size distributions of aerosols originating from erosion and abrasion processes show a maximum mass fraction in the coarse particle range larger than about 1 μm aerodynamic equivalent diameters (A.E.D.). Aerosols originating from combustion processes show a second maximum mass fraction in the fine particle range below about 0.5μm A.E.D.Scanning electron microscopy combined with an EDS analyzer was used for the morphological characterization of emission and ambient aerosols.  相似文献   

6.
Trees are effective in the capture of particles from urban air to the extent that they can significantly improve urban air quality. As a result of their aerodynamic properties conifers, with their smaller leaves and more complex shoot structures, have been shown to capture larger amounts of particle matter than broadleaved trees. This study focuses on the effects of particle size on the deposition velocity of particles (Vg) to five urban tree species (coniferous and broadleaved) measured at two field sites, one urban and polluted and a second more rural. The larger uptake to conifers is confirmed, and for broadleaves and conifers Vg values are shown to be greater for ultra-fine particles (Dp < 1.0 microm) than for fine and coarse particles. This is important since finer particles are more likely to be deposited deep in the alveoli of the human lung causing adverse health effects. The finer particle fraction is also shown to be transported further from the emission source; in this study a busy urban road. In further sets of data the aqueous soluble and insoluble fractions of the ultra-fines were separated, indicating that aqueous insoluble particles made up only a small proportion of the ultra-fines. Much of the ultra-fine fraction is present as aerosol. Chemical analysis of the aqueous soluble fractions of coarse, fine and ultra-fine particles showed the importance of nitrates, chloride and phosphates in all three size categories at the polluted and more rural location.  相似文献   

7.
A new approach for the estimation of trace metal emissions in Vilnius city was implemented, using vertical concentration profiles in the urban boundary layer and road tunnel measurement data. Heavy metal concentrations were examined in fine and coarse particle fractions using a virtual impactor (cut-off size diameter 2.5 μm). Negative vertical concentration gradients were obtained for all metals (Ba, Pb, V, Sb, Zn) and both fractions. It was estimated that the vertical concentration gradient was formed due to emissions from an area of about 12 km2. Road tunnel measurements indicated that trace metal concentrations on fine particles were lower than those on coarse particles, which suggested that re-emitted road dust was highly enriched in trace metal due to historic emissions within the tunnel. Emission rates of different pollutants in the road tunnel were calculated using pollutant concentration differences at the tunnel entrance and exit and traffic flow data. Heavy metal emission rates from the area of Vilnius city were estimated using the vertical gradient of heavy metal concentrations and the coefficient of turbulent mixing, as derived from meteorological measurement data. The emission values calculated by the two different methods coincided reasonably well, which indicated that the main source of airborne trace metals in Vilnius city is traffic. The potential of the vertical concentration gradient method for the direct estimation of urban heavy metal emissions was demonstrated.  相似文献   

8.
Wu SP  Tao S  Liu WX 《Chemosphere》2006,62(3):357-367
The size distributions of 16 polycyclic aromatic hydrocarbons (PAHs) and particle mass less than 10 microm in aerodynamic diameter (Dp) were measured using a nine-stage low-volume cascade impactor at rural and urban sites in Tianjin, China in the winter of 2003-2004. The particles exhibited the trimodal distribution with the major peaks occurring at 0.43-2.1 and 9.0-10.0 microm for both urban and rural sites. The concentrations of the total PAH (sum of 16 PAH compound) at rural site were generally less than those of urban site. Mean fraction of 76.5% and 63.9% of the total PAH were associated with particles of 0.43-2.1 microm at rural and urban sites, respectively. Precipitation, temperature, wind speed and direction were the important meteorological factors influencing the concentration of PAHs in rural and urban sites. The distributions of PAHs concentration with respect to particle size were similar for rural and urban samples. The PAHs concentrations at the height of 40 m were higher than both of 20 and 60 m at urban site, but the mass median diameter (MMD) of total PAH increased with the increasing height. The mid-high molecular weight (278 >or= MW >or= 202) PAHs were mainly associated with fine particles (Dp or=MW >or=178) PAHs were distributed in both of fine and coarse particle. The fraction of PAHs associated with coarse particles (Dp>2.1 microm) decreased with increasing molecular weight. The relatively consistent distribution of PAHs seemed to indicate the similar combustion source of PAHs at both of rural and urban sites. The fine differences of concentration and distribution of PAHs at different levels at urban site suggested that the different source and transportation path of particulate PAHs.  相似文献   

9.
The metropolitan area of Rio de Janeiro is one of the twenty biggest urban agglomerations in the world, with 11 million inhabitants in the metropolitan area, and has a high population density, with 1700 hab. km?2. For this aerosol source apportionment study, the atmospheric aerosol sampling was performed at ten sites distributed in different locations of the metropolitan area from September/2003 to December/2005, with sampling during 24 h on a weekly basis. Stacked filter units (SFU) were used to collect fine and coarse aerosol particles with a flow rate of 17 L min?1. In both size fractions trace elements were analyzed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) as well as water-soluble species by Ion-Chromatography (IC). Also gravimetric analysis and reflectance measurements provided aerosol mass and black carbon concentrations. Very good detection limits for up to 42 species were obtained. Mean annual PM10 mass concentration ranged from 20 to 37 μg m?3, values that are within the Brazilian air quality standards. Receptor models such as principal factor analysis, cluster analysis and absolute principal factor analysis were applied in order to identify and quantify the aerosol sources. For fine and coarse modes, circa of 100% of the measured mass was quantitatively apportioned to relatively few identified aerosol sources. A very similar and consistent source apportionment was obtained for both fine and coarse modes for all 10 sampling sites. Soil dust is an important component, accounting for 22–72% and for 25–48% of the coarse and fine mass respectively. On the other hand, anthropogenic sources as vehicle traffic and oil combustion represent a relatively high contribution (52–75%) of the fine aerosol mass. The joint use of ICP-MS and IC analysis of species in aerosols has proven to be reliable and feasible for the analysis of large amount of samples, and the coupling with receptor models provided an excellent method for quantitative aerosol source apportionment in large urban areas.  相似文献   

10.
The purpose of this study was to characterize size distributions of atmospheric polycyclic aromatic hydrocarbons (PAHs) with 4–6 rings at the roadside in Ho Chi Minh City, Vietnam. Ten PAHs (fluoranthene, pyrene, triphenylene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[ghi]perylene and indeno[1,2,3-cd]pyrene) in atmospheric particulate matters (PM) at the roadside were measured in the dry and rainy seasons in 2005 at Ho Chi Minh City, using a low-pressure cascade impactor. The PM were separated into nine fractions by their aerodynamic diameter, i.e. >9.0, 9.0–5.8, 5.8–4.7, 4.7–3.3, 3.3–2.1, 2.1–1.1, 1.1–0.7, 0.7–0.4 and <0.4 μm (a final filter). PAHs were analyzed by high-performance liquid chromatography with fluorescence detection. Total PAHs measured were higher in the rainy season than in the dry season. The mass of coarse particles occupied a higher fraction than that of fine particles in both seasons. Total PAHs were mainly concentrated in particles with aerodynamic diameter smaller than 0.4 μm. The particle size distributions of PAHs investigated were bi-modal with a peak in fine particle mode (<2.1 μm) and another peak in coarse particle mode (>2.1 μm). Generally, 5,6-ring PAHs associated mainly with fine particles and 4-ring PAHs spread out in both fine and coarse particles.  相似文献   

11.
The chemical composition as well as the water uptake characteristics of aerosols was determined in size-segregated samples collected during November 2002 on the Slovenian coast. Major ions, water-soluble organic compounds (WSOC), short-chain carboxylic acids and trace elements were determined in the water-soluble fraction of the aerosol. Total aerosol black carbon (BC) was measured from filter samples. Our results showed that the origin of air masses is an important factor that controls the variation in the size distribution of the main components. Very high concentrations of WSOC as well as higher concentrations of BC were found under mostly continental influence. Besides the main ionic species (SO4(2-), NH4(+), K+) in the finest size fraction (0.17-0.53 microm), the concentration of NO3(-) was also high. The difference between the two different air mass origins is particularly expressed for Cl-, Na+, Mg2+ and Ca2+ determined in particles larger than 1.6 microm. As expected, a very good correlation was found between Na+ and Cl-. A good correlation was found between sea salt elements and elements of crustal origin (Na+, Cl-, Mg2+, Ca2+, Sr). A good relationship between typical anthropogenic tracers (K, V and Pb) was also observed. The mass growth factors, for all size fractions of aerosols collected under continental influence were very low (maximum 2.23 at 94%, 1.6-5.1 microm), while under marine influence the mass growth factors increased significantly with the particle size. At 97% humidity, the mass growth factors were 6.95 for the size fraction 0.53-1.6 microm and 9.78 for larger particles (1.6-5.1 microm).  相似文献   

12.
Atmospheric aerosols were measured in August 1983 on Allegheny Mountain and Laurel Hill in southwestern Pennsylvania. Ambient humidity was observed to influence the coarse to fine particle ratios as determined by dichotomous samplers. This influence is evident in the particle mass and in its component chemical species. The sampling run with the most pronounced mass shift resulted in an apparent loss of 50 % of the fine mass and 66 % of the fine particle sulfur to the coarse fraction. The magnitude of the mass shift appears to be related to the length of time that the aerosol was in a saturated environment and also to the original dry particle size. These observations have serious implications for receptor modeling with dichotomous sampler data whenever only the fine particles are considered.  相似文献   

13.
Concurrent measurements of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) in different size fractions of atmospheric particulate matter are presented for a winter and a summer sampling period. The PCDD/Fs and PAHs were primarily associated with particles of <1.35 μm aerodynamic diameter. The particle size distributions were similar for the compounds within each substance group and, surprisingly, also between the PCDD/Fs and PAHs. Changes in the particle size distribution of particle mass were reflected in the particle size distributions of the PCDD/Fs and PAHs.The data were employed to identify those particle size fractions dominating the wet and dry particle bound deposition of PCDD/Fs and PAHs and, furthermore, to assess the relative contributions of wet and dry deposition to the total particle bound deposition fluxes. The calculations indicate that coarse particles contribute most to the dry deposition while, in contrast, the wet deposition of the PCDD/Fs and PAHs is dominated by fine particles. Furthermore, it is estimated that in Bayreuth wet deposition dominates the total particle bound deposition of PCDD/Fs and PAHs.  相似文献   

14.
Concentrations and chemical composition of the coarse particle fraction (PMc) were investigated at two urban sites in the city of Thessaloniki, Greece, through concurrent sampling of PM10 and PM2.5 during the warm and the cold months of the year. PMc levels at the urban-traffic site (UT) were among the highest found in literature worldwide exhibiting higher values in the cold period. PMc levels at the urban-background site (UB) were significantly lower exhibiting a reverse seasonal trend. Concentration levels of minerals and most trace metals were also higher at the UT site suggesting a stronger impact from traffic-related sources (road dust resuspension, brake and tire abrasion, road wear). According to the chemical mass closure obtained, minerals (oxides of Si, Al, Ca, Mg, Fe, Ti, and K) dominated the PMc profile, regardless of the site and the period, with organic matter and secondary inorganic aerosols (mainly nitrate) also contributing considerably to the PMc mass, particularly in the warm period. The influence of wind speed to dilution and/or resuspension of coarse particles was investigated. The source of origin of coarse particles was also investigated using surface wind data and atmospheric back-trajectory modeling. Finally, the contribution of resuspension to PMc levels was estimated for air quality management perspectives.  相似文献   

15.
Size distribution and selected element concentrations of atmospheric particulate matter (PM) were investigated in the Venice Lagoon, at three sites characterised by different anthropogenic influence. The PM10 samples were collected in six size fractions (10-7.2, 7.2-3.0, 3.0-1.5, 1.5-0.95; 0.95-0.49 and <0.49 μm) with high volume cascade impactors, and the concentration of 17 elements (Al, As, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, V, Zn) was determined by inductively coupled plasma quadrupole mass spectroscopy. More than 1 year of sampling activities allowed the examination of seasonal variability in size distribution of atmospheric particulates and element contents for each site.At all the stations, particles with an aerodynamic diameter <3 μm were predominant, thus accounting for more than 78% of the total aerosol mass concentration. The highest PM10 concentrations for almost all elements were found at the site which is more influenced by industrial and urban emissions. Similarity in size distribution of elements at all sites allowed the identification of three main behavioural types: (a) elements found mainly within coarse particles (Ca, Mg, Na, Sr); (b) elements found mainly within fine particles (As, Cd, Ni, Pb, V) and (c) elements with several modes spread throughout the entire size range (Co, Cu, Fe, K, Zn, Mn).Factor Analysis was performed on aerosol data separately identified as fine and coarse types in order to examine the relationships between the inorganic elements and to identify their origin. Multivariate statistical analysis and assessment of similarity in the size distribution led to similar conclusions on the sources.  相似文献   

16.
Road dust contributes a large percentage of the atmosphere's suspended particles in Taiwan. Three road dust samples were collected from downtown, electrical park, and freeway tunnel areas. A mechanical sieve separated the road dust in the initial stage. Particles > 100 microm were 75%, 70%, and 60% (wt/wt), respectively, of the samples. Those particles < 37 microm were resuspended in another mixing chamber and then collected by a Moudi particle sampler. The largest mass fraction of resuspended road dust was in the range of 1-10 microm. Ultrafine particles (< 1 microm) composed 33.7, 17, and 7.4% of the particle samples (downtown, electrical park, and freeway tunnel, respectively). The road dust compositions were analyzed by inductively coupled plasma (ICP)-atomic emissions spectroscopy and ICP-mass spectrometry. The highest concentration fraction contained more aluminum (Al), iron (Fe), calcium (Ca), and potassium than other elements in the road dust particle samples. Additionally, the sulfur (S) content in the road dust from the electrical park and freeway tunnel areas was 2.1 and 3.4 times the downtown area sample, respectively. The sulfur originated from the vehicle and boiler oil combustion and industrial manufacturing processes. Furthermore, zinc (Zn) concentration in the tunnel dust was 2.6 times that of the downtown and electrical park samples, which can be attributed to vehicle tire wear and tear. Resuspended road dusts (< 10 microm) from the downtown and freeway tunnel areas were principally 2.5-10 microm Al, barium (Ba), Ca, copper (Cu), Fe, magnesium (Mg), sodium (Na), antimony (Sb), and Zn, whereas arsenic (As), chromium (Cr), and nickel (Ni) were predominant in the ultrafine particle samples (< 1 microm). Al, Ba, and Ca are the typical soil elements in coarse particles; and As, and Cr and Ni are the typical fingerprint of oil combustion and vehicle engine abrasion in ultrafine particles. There was a special characteristic of resuspension road dust at electrical park, that is, many elements, including As, Ba, Ca, cadmium, Cr, Cu, Fe, manganese (Mn), Ni, lead (Pb), S, vanadium (V), and Zn, were major in ultrafine particles. These elements should be attributed to the special manufacturing processes of electric products.  相似文献   

17.
The sampling and chemical analysis of the ambient aerosol collected in Denver, CO, for a 40-day period during November and December, 1978 are described in this report. Parameters included 12-hr TSP measurements, 24-hr respirable and inhalable mass measurements, and 4-hr measurements of mass and chemical species (NO3?, SO4 =, NH4 +, organic and elemental carbon as well as 13 chemical elements) in two size fractions i.e., less than 2.5 μm diameter (fine fraction) and larger than 2.5 μm diameter (coarse fraction). On the basis of the chemical analyses, it was possible to account for all particulate mass in both size fractions. In the fine fraction, the major constituents were organic carbon (21.6%), NH4NO3 (20.0%), elemental carbon (15.3%), (NH4)2SO4 (13.6%), and the remainder consisted primarily of soil-like material, lead salts, and adsorbed water. Three quarters of the coarse fraction consisted of soil-like material, with the remainder composed of the same species that dominated the fine fraction.  相似文献   

18.
Measurements of size-resolved particle number concentrations during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) field campaign were made at the Gosan super-site, South Korea. In East Asia, dust and precipitation phenomena play a crucial role in atmospheric environment and climate studies because they are major sources and sinks of atmospheric aerosols, especially in the springtime. Total Ozone Mapping Spectrometer (TOMS) Aerosol Index and backward trajectories are analyzed to investigate the spatial and temporal evolution of dust storms. The size distributions between dust and non-dust periods and times with and without precipitation are compared. In order to understand the temporal evolution of the aerosol size distribution during dust and precipitation events, a simple aerosol dynamics model is employed. The model predicted and observed size distributions are compared with the measured data. The results show that the coarse mode particle number concentrations increase by a factor of 10–16 during dust events. During precipitation, however, particles in the coarse mode are scavenged by impaction mechanism. It is found that the larger particles are more efficiently scavenged. The degree of scavenged particle varies depending on the rainfall rate, raindrop size distribution and aerosol size distribution.  相似文献   

19.
Abstract

Road dust contributes a large percentage of the atmosphere’s suspended particles in Taiwan. Three road dust samples were collected from downtown, electrical park, and freeway tunnel areas. A mechanical sieve separated the road dust in the initial stage. Particles >100 μm were 75%, 70%, and 60% (wt/wt), respectively, of the samples. Those particles <37 μm were resuspended in another mixing chamber and then collected by a Moudi particle sampler. The largest mass fraction of resuspended road dust was in the range of 1–10 μm. Ultrafine particles (<1 μm) composed 33.7, 17, and 7.4% of the particle samples (downtown, electrical park, and freeway tunnel, respectively). The road dust compositions were analyzed by inductively coupled plasma (ICP)-atomic emissions spectroscopy and ICP-mass spectrometry. The highest concentration fraction contained more aluminum (Al), iron (Fe), calcium (Ca), and potassium than other elements in the road dust particle samples. Additionally, the sulfur (S) content in the road dust from the electrical park and freeway tunnel areas was 2.1 and 3.4 times the downtown area sample, respectively. The sulfur originated from the vehicle and boiler oil combustion and industrial manufacturing processes. Furthermore, zinc (Zn) concentration in the tunnel dust was 2.6 times that of the downtown and electrical park samples, which can be attributed to vehicle tire wear and tear. Resuspended road dusts (<10 μm) from the downtown and freeway tunnel areas were principally 2.5–10 μm Al, barium (Ba), Ca, copper (Cu), Fe, magnesium (Mg), sodium (Na), antimony (Sb), and Zn, whereas arsenic (As), chromium (Cr), and nickel (Ni) were predominant in the ultrafine particle samples (<1 μm). Al, Ba, and Ca are the typical soil elements in coarse particles; and As, and Cr and Ni are the typical fingerprint of oil combustion and vehicle engine abrasion in ultrafine particles. There was a special characteristic of resuspension road dust at electrical park, that is, many elements, including As, Ba, Ca, cadmium, Cr, Cu, Fe, manganese (Mn), Ni, lead (Pb), S, vanadium (V), and Zn, were major in ultrafine particles. These elements should be attributed to the special manufacturing processes of electric products.  相似文献   

20.
Aerosol particles were collected for 1 year, starting in April 2003, in rural areas of Kanazawa, Ishikawa, Japan to understand the role of Asian dust as a long-range transporter of polycyclic aromatic hydrocarbons (PAHs). Three sampling intervals were designated in this study, namely: (1) Dust period 1 (March 11–19, 2003); (2) Dust period 2 (March 28, 2003–April 9, 2003); and (3) Dust period 3 (April 9, 2004–April 25, 2004). The Asian dust particles are predominantly in the coarse particle size range (2.1–11 μm). PAH analyses were performed separately on both the coarse and fine (<1.1 μm) particle ranges. Seasonal trends in PAH concentrations for coarse and fine particles showed that the Asian dust particles in Dust period 3 contained significant amounts of less-volatile PAHs such as benzo[a]pyrene (BaP) and benzo[g,h,i]perylene (BghiP). A kinetic model developed in this study shows that almost none of these PAHs would be accumulated on Asian dust particles in the atmosphere, due to their extremely slow adsorption rates. These PAHs would have to originate from PAH-polluted soil particles around industrialized areas. Back trajectory analyses suggest that the Asian dust in Dust period 3 came from loess regions around industrialized areas. This indicates that geologic materials play a significant role in the atmospheric circulation of PAHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号