首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Oil Pollution Act of 1990 (OPA 90) was largely driven by the catastrophic EXXON VALDEZ tanker spill and several other major tanker spills that followed in 1989. Under the OPA 90 mandate, the US Coast Guard, in partnership with other Federal agencies and industry have implemented a number of initiatives that have significantly enhanced the national oil spill prevention, preparedness and response capability. Declining trends in the volume of oil spilled into US waters indicates that these initiatives are at least in some measure successful.The Coast Guard is now concerned about what the future may hold in terms of oil pollution threats, and prevention, preparedness and response program shortcomings and opportunities in the future. To address this issue, the Coast Guard, in partnership with other National Response Team agencies and industry, is conducting a Broad-Based Programmatic Risk Assessment to develop a comprehensive vision and strategy for the Oil Spill Prevention, Preparedness and Response (OSPPR) Program in the 21st Century. This study will characterize the current and emerging oil spill threats by source category, assess the potential impacts of these threats to define overall risk, and examine the current and projected effectiveness of OSPPR initiatives in minimizing these risks. Key issues, problems and focus areas will be identified and targeted for follow-on risk analysis and management activities by the Coast Guard and agency and industry stakeholders.  相似文献   

2.
In view of the quantity of oil spilled, smaller spills generally receive less attention than headline grabbing incidents such as the “Amoco Cadiz”, “Exxon Valdez”, “Braer” and “Sea Empress”. The latter incidents involve the loss of significant quantities of oil, the establishment of relatively complex spill response management structures and the involvement of significant numbers of personnel and equipment. As such, large spills from tankers have the potential to create problem areas, for example in establishing and maintaining effective communications, logistics and resource management systems.In general terms spill response personnel are well aware that large spills come complete with significant operational and administrative problems, however what may not be so well recognised is that smaller spills also have the potential to present response personnel with their own unique problems.One of the major problems to be overcome when responding to spills in Australia is the “tyranny of distance”. In quite a few responses, Australian oil spill response managers have had to move personnel and equipment thousands of kilometres to provide an effective outcome. This paper outlines a range of problems that have been encountered by Australian personnel over the years. These include health and safety, communications, logistics and equipment issues.For the purpose of this paper a “smaller” spill has been defined as one involving a discharge of less than 1000 tonnes of oil.  相似文献   

3.
Estimates of occurrence rates for offshore oil spills are useful for analyzing potential oil-spill impacts and for oil-spill response contingency planning. With the implementation of the Oil Pollution Act of 1990 (US Public Law 101-380, August 18, 1990), estimates of oil-spill occurrence became even more important to natural resource trustees and to responsible parties involved in oil and gas activities.Oil-spill occurrence rate estimates have been revised based on US Outer Continental Shelf (US OCS) platform and pipeline spill data (1964 through 1999), worldwide tanker spill data (1974 through 1999), and barge spill data for US waters (1974–1999). These spill rates are expressed and normalized in terms of number of spills per volume of crude oil handled. All estimates of spill occurrence rates were restricted to spills greater than or equal to 1000 barrels (159 m3, 159 kl, 136 metric tonnes, 42,000 US gallons).The revisions compared to the previously published rates calculated through 1992 (Anderson and LaBelle, 1994) indicate that estimates for the US OCS platform spill occurrence rates continue to decline, primarily because no spills have occurred since 1980. The US OCS pipeline spill occurrence rates for spills greater than or equal to 1000 barrels remained essentially unchanged. However, the rate for larger OCS pipeline spills (greater than or equal to 10,000 barrels) has decreased significantly. Worldwide tanker spill rates, rates for tanker spills in US waters, and rates for barge spills in US waters decreased significantly. The most recent 15-year estimates for 1985–1999 (compared to rates for the entire data series) showed that rates for US OCS platforms, tankers, and barges continued to decline.  相似文献   

4.
The Federal Water Pollution Control Act as amended by the Oil Pollution Act of 1990 provides criminal penalties in oil spills that result from criminal activity, gross negligence or willful misconduct on the part of the spiller. Nevertheless, the Department of Justice has seen fit to reach into unrelated legislation to potentially apply strict criminal liability to any oil spill regardless of intent.Strict criminalization of accidental oil spills is demonstrably counterproductive to effective protection of the environment from the effect of spills since it poses a serious impediment to cooperation and coordination by and between those charged by law to respond to them. This impediment is particularly dangerous since it threatens the proper functioning of the inherently sensitive “troika” Unified Command Structure that has evolved in spill response management in response to OPA-90 management requirements.Introduction of strict criminal liability for accidental spills is also particularly troublesome in that it must enlist unrelated law to influence an area that has been addressed specifically by legislation designed for that purpose; legislation that has worked well in the past 30 years to both regulate the target activities while successfully achieving the objective of protecting and improving environment quality.  相似文献   

5.
Lessons learned procuring U.S.$30 500 000 of oil pollution recovery equipment for the United States Coast Guard (USCG) in response to requirements of the Oil Pollution Act of 1990 (OPA-90) are presented. A generic requirements analysis and a selection process useful for making equipment acquisitions and staging site selections are described. Response mission, oil spill threat, response area peculiarities, available resources, equipment capabilities, training requirements and life cycle costs are all factors which must be carefully considered in outfitting a response organization. A method to ensure you obtain quality equipment which meets your functional requirements is outlined. Long range concerns about logistics support, training and maintenance are also important considerations.Leveraging existing resources such as existing USCG vessels, commercial vessels available on short notice for lease and the original oil response equipment inventory of the two USCG Strike Teams proved to be extremely cost effective. Selection of a vessel of opportunity skimming system (VOSS) and outfitting replacement offshore buoy tenders with an on-board spilled oil recovery system (SORS) eliminated the costly option of procuring dedicated pollution response vessels which are generally underutilized as a single mission platform. A first article field and factory acceptance testing program ensured all equipment functioned as specified, eliminating costly errors. This process also provided valuable customer input and significant equipment improvements before production started. Quality assurance testing and Government oversight ensured production units were fabricated properly with specified materials identical to the approved first articles adding reliability to the entire delivered system. Staging equipment at three Strike Teams and 19 sites near existing Coast Guard buoy tenders best used the available personnel and vessel resources adjacent to primary oil spill threat areas.  相似文献   

6.
This paper summarizes the development, field testing and performance evaluation of the Transrec oil recovery system including the Framo NOFO Transrec 350 skimmer and multi-functional oil spill prevention and response equipment and presents performance data, not published before, from full-scale experimental oil spills in the North Sea from 1981 to 1990. The rare data provides useful information for evaluation of mechanical clean-up capabilities and efficiency, in particular, for responders who are using this equipment in many countries around the world.The development of the Transrec oil recovery system represents one of the most comprehensive efforts funded to date by the oil industry in Norway to improve marine and open ocean oil spill response capabilities. The need for improvements was based upon early practical user experience with different oil recovery systems, and test results from experimental oil spills in the North Sea.The result of the development efforts increased: (1) skimmer efficiency from approximately 15–75% (it reached 100% under favorable environmental conditions); (2) oil emulsion recovery rate from approximately 20–300 m3/h; (3) recovery system efficiency from approximately 15–85% in 1.5 m significant wave height; (4) oil emulsion thickness from approximately 15–35 cm; (5) weather-window for mechanical recovery operations from 1.5 to 3.0 m significant wave height; (6) capability for transfer of recovered oil residue to shuttle tankers in up to 4 m significant wave height and 45 knot winds; (7) capability for operations at night.The new Transrec oil recovery system with the special J-configuration virtually eliminated skimming operation downtime, and damage to booms and equipment failures that had been caused by oil spill response vessel (OSRV) problems with maintaining skimming position in the previous three-vessel oil recovery system with the boom towed in U-configuration. The time required to outfit OSRVs dropped from approximately 30–<1 h, reducing time from notification to operation on site by more than 24 h.Improvement in oil recovery resulted in the acceptance of a new oil spill preparedness and response plan. The new plan reduced the need for oil recovery systems from 21 to 14, towing vessels in preparedness from 42 to 18, and personnel on stand-by from 135 to 70, which subsequently reduced the total contingency and operational costs by almost 50%. These cost reductions resulted from lower contingency fees for personnel, fewer towing vessels on stand-by, less expensive open ocean training and exercises, less equipment and reduced storage space to lease, and simplified equipment maintenance.  相似文献   

7.
Estimates of occurrence rates for offshore oil spills are useful for analysis of potential oil spill impacts and for oil spill response contingency planning. As the Oil Pollution Act of 1990 (U.S. Public Law 101–380, 18 August 1990) becomes fully implemented, estimates of oil spill occurrence will become even more important to natural resource trustees and to responsible parties involved in oil and gas activities. Oil spill occurrence rate estimates have been revised based on U.S. Outer Continental Shelf platform and pipeline spill data (1964–1992) and worldwide tanker spill data (1974–1992). These spill rates are expressed and normalized in terms of number of spills per volume of crude oil handled. The revisions indicate that estimates for the platform spill occurrence rates declined, the pipeline spill occurrence rates increased, and the worldwide tanker spill occurrence rates remained unchanged. Calculated for the first time were estimates of tanker and barge spill rates for spills occuring in U.S. waters, and spill occurrence rates for spills of North Slope crude oil transported by tanker from Valdez, Alaska. All estimates of spill occurrence rates were restricted to spills greater than or equal to 159 m3 (1000 barrels).  相似文献   

8.
The United States Oil Pollution Act of 1990 (OPA) was enacted to reduce the probability of oil spills in U.S. waters. A key provision of the legislation enables recovery of damages for restoration of injured natural resources and lost services due to oil spills. The National Oceanic and Atmospheric Administration (NOAA) developed regulations that set out a process for determining the appropriate type and scale of restoration actions to accomplish this goal. The restoration plan developed through this process is the basis for an economic claim for natural resource damages. The regulations recognize that various methods, including environmental models, may be used in identifying and quantifying injuries to natural resources and losses of their services and in developing a restoration approach for these injuries. Rather than designating particular assessment measures, NOAA requires each trustee to decide which methodologies are appropriate for each incident, given its particular facts and circumstances. Any procedure chosen must meet the standards in the rule: it must provide information useful for determining restoration needed for an incident, the cost of the method must be commensurate with the quality and quantity of information it is expected to generate, and, of particular significance here, the method must be reliable and valid for the particular incident. This paper describes how methods are selected, how they might be used, and what legal standards would be applied should these methods be used as evidence in litigation.  相似文献   

9.
A cleanup process has been developed to aid in the removal of crude or fuel oil from shorelines using CytoSol “biosolvent” formulation based on vegetable oil methyl esters in combination with bioremediation enhancers. The CytoSol biosolvent dissolves and floats the oil, the oil/biosolvent mixture is rinsed off with ambient temperature water for collection as a consolidated layer with skimmers. The collected oil mixture can be recycled as a burner fuel. Nutrient enhancers in the formulation then stimulate the natural biodegradation of the remaining residual hydrocarbons. This new approach minimizes physical and chemical impacts to marine organisms, cleans oiled surfaces effectively, and allows the oiled ecosystem to recover with less mortality than conventional methods involving hot water, detergents or other chemical cleaners. CytoSol is ideally suited for port facilities and waterfronts dealing with occasional small oil spills and has undergone extensive laboratory testing for the US EPA. In 1997, the CytoSol biosolvent was licensed in the state of California as a shoreline cleaner and set up for commercial distribution.CytoSol biosolvent can extract heavy petroleum (crude, fuel oils) off shoreline habitats, mussel-encrusted breakwaters or pilings, and estuary vegetation. The viscosity of the product tends to limit the penetration of the CytoSol/oil mixture into sand and gravel beaches, allowing more of the dissolved oil to be removed from the shoreline by washing. The product has a low specific gravity (0.87), tends to consolidate oil, and is practically immiscible with water, so it facilitates the recovery of spilled oil with conventional skimming and absorbent boom technologies. Since it is non-volatile and non-flammable, there is little danger of explosion or fire when spraying it inside confined spaces.  相似文献   

10.
Results of an analysis to estimate potential oil outflow from tankers in the event of groundings and collisions is presented. Three baseline tanker types are considered: pre-MARPOL (COW), MARPOL '73 (SBT only), MARPOL '73/'78 (PL/SBT) before and after these tankers have been retrofitted with various combinations of pollution prevention measures. Specifically the analysis examines four tanker sizes, 46 600, 71 000, 152 000 and 268 000 dwt, and various pollution measures — protectively located spaces (PL/spaces) in various ballast arrangements and with clean ballast tanks (CBTs), hydrostatically balanced loading (HBL), probabilistically located HBL, combinations of HBL and PL/spaces, double bottom or double side retrofits, and replacement of the tanker with a double hull vessel. Additionally, oil outflow estimates are presented for a US coastal and an ocean going barge of over 5000 gt with and without PL/spaces, PL/SBT, and HBL. The accidental oil outflow estimates are developed in accordance with probabilistic and deterministic models of IMOs MARPOL Annex I Regulations 13F and 13G. The accidental oil outflow estimates presented in the paper may provide oil spill response and related organizations with information to assist in planning for oil spill response activities.  相似文献   

11.
An intermediate bulk container (IBC) was punctured during its handling, releasing a refined oil product onto land at a large construction site in an environmentally sensitive region of Australia. Understanding and controlling the risks from fuel, oil, and chemical spills on the current project was of critical importance as part of the project's overall approval, and ongoing compliance depended on the project committing to minimizing all chemical and petroleum hydrocarbon spills on the site. The telehandler (forklift) did not pierce the plastic of the IBC directly (as was expected to be the case) but rather one of the tynes caught on the underside of the metal base plate (pallet belly plate), despite numerous controls being in place at the time of spill (to limit the risks of damaging the IBC), revealing a previously unreported mechanism for a fluid spill from handling of petroleum hydrocarbons and related chemicals. The investigation team used a root cause analysis (RCA) technique, based on the fishbone (Ishikawa) diagram, which was undertaken with 12 expert contributors (from the project) to identify the underlying cause: The inspection process was inadequate. This study is a companion to the article published in Winter 2014 in Remediation (Guerin, 2014) covering multiple causes of spills from plant and equipment commonly used on construction and remediation projects. ©2015 Wiley Periodicals, Inc.  相似文献   

12.
The Egyptian national marine oil pollution contingency plan was urgently initiated after the Nabila oil spill in 1982, to provide an estimate of its environmental effects on the Egyptian Red Sea coastal areas and to determine geomorphological features and cuastal processes, together with physical, chemical and biological baseline data for this tropical environment.The ‘Vulnerability Index’ (VI) was applied to evaluate and calibrate the effect of the Nabila oil spill on the Egyptian Red Sea Coastal area. A detailed in situ coastal survey was conducted during two visits in November 1982 and May 1983 to 80 shore sites from Suez to Ras Banas to monitor the oil pollution and to apply the ‘Vulnerability Index’. A comparative assessment of the index over time by comparing it with a quick ground inspection in November 1993 to some sites to evaluate the applicability of this index for oil spills in such environments. In addition, the physical effects of fresh and weathered crude oil and/with dispersant on water filtration by different beaches were preliminary studied.The geomorphological/Vulnerability Index results show that most of the Egyptian Red Sea coastal environments have medium to high vulnerability to immediate and medium term oil spill damage. The oil pollution spread estimated to be 250 km south of the oil spill and about 200 km north of it. The quantity of oil along the shoreline was reduced by about 60% due to natural and authorities clean up. The third survey after 11 years showed that the VI could be used as a predictive tool for assessment of oil spill effects on such tropical environments.  相似文献   

13.
This study evaluated the feasibility of conducting in situ burning (ISB) using current technology on post-1967 major oil spills over 10 000 barrels in North America and over 50 000 barrels in South America and Europe. A diverse set of 141 spills representing various combinations of parameters affecting spill responses (e.g., spill size, oil type, weather conditions, sea temperature, and geographic location) were evaluated using four “Phase I” criteria: Distance to populated area, oil weathering, logistics, and weather conditions. In Phase I, a spill that failed to meet one of the four criteria was considered an “unsuccessful” candidate for ISB. In total, 47 of the 141 spills passed the Phase I analysis. The potential effect of the plume on populated areas was the most significant of the four Phase I criteria; 59 of the 141 spills did not pass Phase I because the incident occurred near a sizable city. Spills that met all four criteria were further evaluated using a “Phase II” analysis that applied additional criteria and considered individual spill circumstances to determine if the spill should be rated as a “successful”, “marginal call”, or “unsuccessful” ISB candidate. Fourteen spills were ultimately determined successful in the Phase II analysis, and 12 were designated marginal calls.  相似文献   

14.
This paper discusses the changes in spilled oil properties over time and how these changes affect differential density separation. It presents methods to improve differential density, and operational effectiveness when oil-water separation is incorporated in a recovery system. Separators function because of the difference in density between oil and seawater. As an oil weathers this difference decreases, because the oil density increases as the lighter components evaporate. The density also increases as the oil incorporates water droplets to form a water-in-oil emulsion. These changes occur simultaneously during weathering and reduce the effectiveness of separators. Today, the state-of-the-art technologies have limited capabilities for separating spilled marine oil that has weathered.For separation of emulsified water in an emulsion, the viscosity of the oil will have a significant impact on drag forces, reducing the effect of gravity or centrifugal separation. Since water content in an emulsion greatly increases the clean up volume (which can contain as much as two to five times as much water as the volume of recovered oil), it is equally important to remove water from an emulsion as to remove free water recovered owing to low skimmer effectiveness. Removal of both free water and water from an emulsion, has the potential to increase effective skimming time, recovery effectiveness and capacity, and facilitate waste handling and disposal. Therefore, effective oil and water separation in marine oil spill clean-up operations may be a more critical process than credited because it can mean that fewer resources are needed to clean up an oil spill with subsequent effects on capital investment and basic stand-by and operating costs for a spill response organization.A large increase in continuous skimming time and recovery has been demonstrated for total water (free and emulsified water) separation. Assuming a 200 m3 storage tank, 100 m3 h−1 skimmer capacity, 25% skimmer effectiveness, and 80% water content in the emulsion, the time of continuous operation (before discharge of oil residue is needed), increases from 2 to 40 h and recovery of oil residue from 10 to 200 m3.Use of emulsion breakers to enhance and accelerate the separation process may, in some cases, be a rapid and cost effective method to separate crude oil emulsions. Decrease of water content in an emulsion, by heating or use of emulsion breakers and subsequent reduction in viscosity, may improve pumpability, reduce transfer and discharge time, and can reduce oily waste handling, and disposal costs by a factor of 10. However, effective use of emulsion breakers is dependant on the effectiveness of the product, oil properties, application methods and time of application after a spill.  相似文献   

15.
The fate of oil spilled in coastal zones depends in large part on the interactions with environmental factors existing within a short time of the spill event. In addition to weathering which produces changes in the chemistry of the hydrocarbon stock, physical interactions between oil and suspended particulate matter (SPM), both organic and inorganic, play a role in determining the dispersal and sedimentation rates of the spill. This in turn affects the degradation rate of the oil. This paper provides a comprehensive literature review of the role of oil–particle interactions in removal of petroleum hydrocarbons from the sea surface and provides estimates of the degree to which SPM may augment the deposition of oil. Both field and laboratory observations have shown widely varying rates of oil removal due to particulate interactions. The discussion covers the interaction between oil weathering, injection, sinking, adsorption, microbial processes, flocculation and ingestion by zooplankton, which all contribute to packaging oil and SPM into settling aggregates.  相似文献   

16.
This viewpoint paper considers the potential of offshore burning of oil in the recent Tampa Bay spill as a generic oil spill response option. While the oil spilled might not have been amenable to burning, the physical constraints of the spill and subsequent environmental conditions provide a scenario for future consideration of this option.  相似文献   

17.
Photo-oxidation and Photo-toxicity of Crude and Refined Oils   总被引:2,自引:0,他引:2  
The fate and effects of an oil spill are effected by solar radiation through the action of photo-oxidation and photo-toxicity. Photo-oxidation, an important process in the weathering of oil, produces a variety of oxidized compounds, including aliphatic and aromatic ketones, aldehydes, carboxylic acids, fatty acids, esters, epoxides, sulfoxides, sulfones, phenols, anhydrides, quinones and aliphatic and aromatic alcohols. Some of these compounds contribute to the marine biota toxicity observed after an oil spill. Photo-toxicity occurs when uptake of certain petroleum compounds, e.g. certain polycyclic aromatic hydrocarbons and benzothiophenes, is followed by solar exposure which results in much greater toxicity than after dark uptake. The mechanism of PAH photo-toxicity includes absorbance of solar radiation by the PAH which produces a free radical and this free radical in turn reacts with oxygen to produce reactive oxygen species that can damage DNA and other cellular macromolecules. While most studies on photo-toxicity have been carried out in the laboratory, there are studies showing that water from an oil spill is photo-toxic to bivalve embryos for at least a few days after the spill. Other studies have found that oil contaminated sediments are photo-toxic to several marine invertebrates. More studies are required to determine if marine fauna at an oil spill site are effected by the action of photo-toxicity and photo-oxidation.  相似文献   

18.
Oil/Suspended Particulate Material Interactions and Sedimentation   总被引:1,自引:0,他引:1  
The interactions of physically dispersed oil droplets with suspended particulate material (SPM) can be important for the transport of bulk quantities of spilled crude oil and polycyclic aromatic hydrocarbons (PAH) to subtidal sediments. The literature regarding oil/SPM interactions is reviewed, and results from whole-oil droplet/SPM interaction kinetics and pure-component (Prudhoe Bay crude oil distillate cut) equilibrium partitioning experiments are presented. The effects of oil type, SPM characteristics, and salinity on the interaction rates are examined, and the importance of whole-oil droplet/SPM interactions on particle agglomeration and settling behavior are discussed. Whole-oil droplet/SPM interactions are retarded as oil droplet dispersion into the water column is inhibited by oil viscosity increases due to evaporation weathering and water-in-oil emulsification. Compared to whole oil droplet/SPM interactions, dissolved-component/SPM adsorption is not as significant for transport of individual components to sediments. The information presented in this paper can be used to augment computer-based models designed to predict oil-spill trajectories, oil-weathering behavior, and spilled oil impacts to the marine environment.  相似文献   

19.
20.
An oil spill accident happened in Tokyo Bay on 2 July 1997. About 1500 m3 of crude oil was released on the sea surface from the Japanese tanker Diamond Grace. An oil spill model is applied to simulate the fate of spilled oil. The Lagrangian discrete-parcel method is used in the model. The model considers current advection, horizontal diffusion, mechanical spreading, evaporation, dissolution and entrainment in simulating the oil slick transformation. It can calculate the time evolution of the partition of spilled oil on the water surface, in the water column and the sedimentation on the bottom. A continuous source at constant rate is set up as a tanker off the coast of Yokohama. The grid size is 1 km in the calculation domain. The residual flow simulated by a 3-D hydraulic model and observed wind data are used for advection. The simulated distribution of oil spreading agrees well with observations from satellite remote-sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号