首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
研究了7种常用的人工甜味剂〔安赛蜜、三氯蔗糖、糖精、甜蜜素、纽甜、阿斯巴甜和NHDC(新橙皮苷二氢查耳酮)〕在污水处理厂及自来水厂的分布. 7种人工甜味剂在污水处理厂进水中均被检出,质量浓度为6.4~31 671.0 ng/L. 安赛蜜、三氯蔗糖、糖精、甜蜜素在污水处理厂的出水中被检出,质量浓度为32.4~11 204.0 ng/L. 这些甜味剂将随污水处理厂的出水排放而进入水环境. 安赛蜜、三氯蔗糖、糖精、甜蜜素、纽甜在自来水厂进水中被检出,质量浓度为低于定量限~579.4 ng/L,其中前4种在自来水中被检出,质量浓度为23.3~504.2 ng/L. 沉淀、絮凝、氯化消毒作用对人工甜味剂没有明显的去除作用. 生物降解能有效去除糖精、甜蜜素、阿斯巴甜、纽甜和NHDC,但对安赛蜜和三氯蔗糖去除率不高,去除率均小于20%.   相似文献   

2.
1,4-二烷污染的生物修复效果很大程度上取决于其降解菌的活性和数量.本研究在前期获得1,4-二烷高效降解菌Xanthobacter flavus DT8的基础上,研究了该菌的扩大培养方法,并制备了易于贮藏和运输的固态菌剂,考察了菌剂的性能.实验结果表明,菌株X. flavus DT8可在富营养培养基中培养,较优的培养基配方为:Na2HPO4·12H2O 1.0 g·L-1,NH4Cl 1.0 g·L-1,MgSO4·7H2O 0.2 g·L-1,酵母粉5.0 g·L-1,蛋白胨1.0 g·L-1,丙酮酸钠1.0 g·L-1,pH 7.0~7.2.X. flavus DT8经发酵罐中扩大培养后,以草炭、硅藻土为载体,经进一步固态发酵制备了固态菌剂,微生物含量为2.17×1011 CFU·g-1,对1,4-二烷的降解效果明显优于活菌液.该菌剂具有良好的贮藏稳定性,4℃保藏90 d后对100 mg·L-1的1,4-二烷48 h内去除率为63%;同时具有良好的底物广谱性,对醇类、苯系物和醚类物质也有很好的降解能力.  相似文献   

3.
为探究不同初始浓度诺氟沙星对地下水反硝化过程中NO3--N和NO2--N降解的影响,选取以乙酸钠为电子供体,硝酸盐为电子受体驯化的反硝化细菌进行厌氧反硝化批实验研究,从反硝化细菌生长特性和反硝化酶活性等方面揭示诺氟沙星对反硝化过程的影响机制.结果表明,浓度为10 μg·L-1和100 μg·L-1的诺氟沙星对反硝化细菌的生长及NO3--N降解均有抑制作用,100 μg·L-1诺氟沙星对NO3--N降解的抑制程度更大,抑制率为77.3%;且100 μg·L-1诺氟沙星减少了NO2--N积累,最大积累量降低了67.9%.诺氟沙星初始浓度大于10 μg·L-1时抑制了硝酸盐还原酶活性,在此过程中,亚硝酸盐还原酶活性在一定程度上有所增强.反硝化酶活性与NO3--N及NO2--N降解规律相符.因此,诺氟沙星对反硝化酶活性的控制作用是其影响反硝化过程的主要原因.  相似文献   

4.
建立了白萝卜中4种四环素类抗生素(土霉素、四环素、金霉素、强力霉素)的高效液相色谱测定法.样品用0.02 mol·L-1的氯化镁-柠檬酸混合液提取2次,甲醇提取1次,甲醇提取液浓缩至干后用0.02 mol·L-1的氯化镁与0.02 mol·L-1柠檬酸混合溶液溶解残渣,合并3次提取液过Waters Oasis HLB固相小柱萃取,10 mL甲醇-乙酸乙酯(1:9,V/V)洗脱.以反相C18柱为分离柱,甲醇、乙腈、0.01 mol·L-1草酸与0.01 mol·L-1三氯乙酸为流动相进行梯度洗脱,11 min内分离4种抗生素.结果发现,在0.05~10.00 μg·mL-1范围内,4种抗生素的峰面积与质量浓度的线性关系良好(R2≥0.999),土霉素、四环素、金霉素与强力霉素的定量限(LOQ)分别为2.9、4.3、8.9 和 5.2 μg·kg-1;添加水平分别为10、100、1000 μg·kg-1时,土霉素、四环素、金霉素与强力霉素的回收率分别在78.4%~88.8%、82.8%~92.4%、79.0%~83.0%和74.9%~84.5%之间,变异系数均小于8.9%.本方法成功用于实际样品的测定,结果表明,采集的样品中土霉素、四环素、金霉素和强力霉素的最大含量分别为53、41、79 和91 μg·kg-1.  相似文献   

5.
亚热带丘陵区绿狐尾藻人工湿地处理养猪废水氮磷去向   总被引:3,自引:1,他引:2  
以亚热带丘陵区为研究区,采取野外定位观测的研究方法,选取耐高氮(N)、磷(P)的绿狐尾藻为湿地植物,建立稻草基质池+6级绿狐尾藻表面流湿地系统,湿地总面积1597 m2,水力负荷0.06~0.14 m·d-1,水力停留时间31 d,研究此湿地系统对养猪废水(NH4+-N:535.4~591.09 mg·L-1、TN:682.09~766.96 mg·L-1、TP:57.73~82.29 mg·L-1和COD:918.4~1940.43 mg·L-1)的治理效果,旨在为亚热带高负荷猪废水的生态治理提供参数依据.结果表明,湿地系统对NH4+-N、TN、TP和COD的平均去除率为97.4%、97.1%、91.0%和90.2%,其中以CW1累积贡献率最大(37.3%、38.4%、43.3%和27.4%).植物N、P吸收量在23.87~79.96 g·m-2和5.34~18.98 g·m-2之间,占湿地N、P去除量的19.1%和20.2%;底泥N、P吸附量在19.17~56.62 g·m-2和10.59~26.62 g·m-2之间,占去除量的19.8%和61.7%.湿地N、P去除率与影响因子间的关系表明,环境因子解释了湿地N、P去除率的79.9%和70.1%.其中,DO是湿地系统N去除的主要因子,底泥P吸附是P去除的关键.  相似文献   

6.
嘉善冬季碳质气溶胶变化特征及其来源解析   总被引:3,自引:3,他引:0  
利用2018年冬季(2018年12月至2019年2月)和2019年冬季(2019年12月至2020年2月)嘉兴市嘉善县善西超级站有机碳(OC)、元素碳(EC)及细颗粒物(PM2.5)浓度数据分析嘉兴嘉善地区碳质气溶胶变化特征及潜在来源区域.结果表明,2018年和2019年冬季OC浓度分别为6.90μg·m-3和5.63μg·m-3,EC浓度分别为2.47μg·m-3和1.57μg·m-3,2019年冬季OC和EC浓度较2018年冬季降幅分别为18.4%和36.4%.利用Minimum R-squared (MRS)方法计算得到2018年和2019年冬季二次有机碳(SOC)分别为1.49μg·m-3和1.97μg·m-3,一次有机碳(POC)浓度分别为5.41μg·m-3和3.66μg·m-3,SOC在OC中占比呈上升趋势,上升31.1个百分点,POC占比变化则相反.值得注意的是,随着PM2.5浓度升高,OC和EC浓度呈上升趋势,最高上升幅度分别为474.7%和408.2%,但在PM2.5中占比却呈下降趋势,OC和EC占比下降幅度分别为6.5个百分点和2.4个百分点;POC对PM2.5的贡献波动不大,仅在150μg·m-3以上有明显降低趋势,SOC对PM2.5的贡献先下降后上升.嘉兴OC和EC潜在源区主要为苏南地区、安徽东南部和浙江北部,且2019年冬季和2018年冬季相比,OC和EC的主要潜在源区贡献浓度分别下降2μg·m-3和6μg·m-3以上,且潜在源区高值区域变小.疫情前受机动车尾气排放和燃煤共同影响,春节和居家隔离期间,因交通管制等原因,机动车排放量减少,燃煤贡献占比上升.  相似文献   

7.
刘妍  杨宁  孙露娜  吴亚君  宋鹏飞  赵耀  娄昆  毛洪钧 《环境科学》2022,43(12):5453-5463
机动车尾气和蒸发排放的VOCs在地下停车场的半密闭环境中不断积累,威胁居民健康.为探究停车场内挥发性有机物(VOCs)浓度水平和变化特征与车队活动水平之间的关系,阐明其对居民健康的影响,选取天津市某居民小区地下停车场,开展了为期9d的VOCs样品采集,利用臭氧生成潜势(OFPs),·OH反应速率(L·OH)和二次有机气溶胶生成潜势(SOAPs)综合评价停车场内VOCs大气反应活性,对人体健康风险进行评价.结果表明:①停车场内VOCs浓度和组分变化主要受车队活动影响,工作日和周末的浓度峰值均与进场和出场车流峰值同步出现,即早晚高峰时段,工作日和周末早高峰浓度分别为(463.76±148.42)μg·m-3和(391.47±135.37)μg·m-3,晚高峰为(334.29±176.57)μg·m-3和(416.20±134.64)μg·m-3.停车场夜间几乎没有车辆活动,但夜间ρ(VOCs)[工作日(320.33±115.57)μg·m-3;周末(364.77±155.32)μg·m-3]仍高于午间[工作日(255.76±103.65)μg·m-3;周末(350.91±108.73)μg·m-3],且夜间时段烯炔烃质量分数明显高于其他时段,这是由于夜间车辆静置时发生昼间排放产生较多的烯烃.②烯炔烃和芳香烃对OFPs和L·OH贡献率最大(84.10%~88.04%),芳香烃对各时间段的SOAPs贡献率最大(98.03%~98.99%),说明芳香烃和烯炔烃的大气反应活性强且广泛存在于机动车源,是提高排放标准、升级油品时需首要考虑降低的关键组分.③健康风险评价结果表明,停车场内VOCs非致癌风险危险指数(HI):0.19~0.55,暂无健康风险.而各时间段致癌风险均超过阈值(1×10-6)1.56~3.11倍,停车场作为居民每天必经场所,应开启机械通风措施保证其中空气流通性.  相似文献   

8.
张凌玉  刘建超  冷阳  陆光华 《环境科学》2021,42(6):3074-3083
罗红霉素(ROX)在水环境中广泛赋存,并产生一定的生态毒理效应.为了进一步认知ROX对水生生物的负面影响,以大型溞为模式生物研究了ROX在生殖、生长及抗氧化系统方面的急慢性毒理效应.结果发现ROX对大型溞的急性毒性等级为Ⅲ级(48h-LC50为60.26 mg·L-1,96h-LC50为39.81 mg·L-1).0.5 μg·L-1和50 μg·L-1的ROX均显著增加了大型溞的产卵胎次,提高了大型溞的产卵总量和每胎产卵量.暴露初期ROX改变了大型溞的性成熟时间,大型溞通过调节产卵胎数和单胎产卵数量,弥补ROX造成的环境胁迫,50 μg·L-1 ROX显著提升了大型溞的内禀增长率.ROX暴露组中大型溞均出现了体长变短、心率失调和游泳活性抑制现象.50 μg·L-1 ROX对POD(过氧化物酶)、CAT(过氧化氢酶)和GSH-Px(谷胱甘肽)的抑制率接近50%,对MDA(丙二醛)的诱导甚至超过100%,造成机体内活性氧蓄积,损伤细胞膜.大型溞通过上调per06表达,增强体内免疫应答,但gstgst-theta表达受到抑制下调,解毒作用减弱,ROX抑制了大型溞jheecraecrbrxrvg1vg2vit-2基因表达,致使保幼激素和甲状腺激素分泌紊乱和卵黄蛋白合成受阻,影响其生长发育和种群稳定.本结果为水环境中ROX对水生生物的生殖和生长及在蛋白水平和基因水平的响应提供了借鉴.  相似文献   

9.
污泥龄及pH值对反硝化除磷工艺效能的影响   总被引:2,自引:1,他引:1  
以SBR成功富集后的反硝化聚磷菌(DPBs)为研究对象,分别考察了污泥龄(SRT,35、25、15 d)及pH值(7.5、8.0、8.5)对反硝化除磷过程的影响.结果表明,SRT从35d缩短至25d,使活性污泥浓度(MLVSS)从2821 mg·L-1降低为2301 mg·L-1,而污泥负荷(F/M,以COD/MLVSS计)从0.256kg·(kg·d)-1增加至0.312 kg·(kg·d)-1,虽然净释磷量及净吸磷量有所下降,但是由于污泥活性的增加,此阶段厌氧释磷、缺氧吸磷及比反硝化速率均达到最高,分别为25.07、15.92及9.45 mg·(g·h)-1,污泥含磷率从4.78%升为5.33%,出水PO43--P浓度保持在0.5 mg·L-1以下,即PO43--P去除率稳定在95%以上;当SRT进一步缩短为15d时,MLVSS低至1448 mg·L-1,污泥中DPBs占聚磷菌(PAOs)的比例从82.4%骤降为65.7%,表明过短的SRT使得DPBs逐渐从系统中流失,此阶段污泥含磷率降至3.43%,释磷、吸磷及比反硝化速率亦出现不同程度的降低.随着pH值的升高(7.5~8.0),厌氧释磷及缺氧吸磷速率也升高,pH值为8.0时分别达到25.86mg·(g·h)-1和16.62 mg·(g·h)-1;当pH超过8.0后,除磷效率快速下降,推测为磷化学沉淀导致.  相似文献   

10.
为研究张掖市城区大气细颗粒物(PM2.5)的污染特征和来源,于2020年9月至2021年7月在张掖市城区的河西学院和湿地博物馆2个采样点进行了PM2.5样品采集,对PM2.5浓度、化学组成(水溶性无机离子、碳质组分和元素)和来源进行分析.结果表明,河西学院和湿地博物馆两个采样点的年均ρ(PM2.5)分别为(73.7±31.8)μg·m-3和(68.1±33.3)μg·m-3,季节浓度均值均呈现春季>冬季>秋季>夏季的变化.河西学院采样点的二次水溶性无机离子(SO42-、NO3-和NH4+)年均值高于湿地博物馆.河西学院采样点的ρ(OC)和ρ(EC)分别为(9.6±5.7)μg·m-3和(2.9±1.6)μg·m-3,湿地博物馆采样点的年均ρ(OC)和ρ(EC)分别为(9.2±5.8)μg·m-3和(2.5±1.3)μg·m-3,河西学院的含碳组分在各季节均高于湿地博物馆.河西学院和湿地博物馆两个采样点的年均二次有机碳(SOC)在OC中的质量分数分别为49.4%和43.7%,表明张掖市存在较为严重的二次污染.河西学院和湿地博物馆两个采样点的元素浓度年均值分别为(6.0±3.5)μg·m-3和(5.8±3.9)μg·m-3,受到人为源的影响,Zn、Ca、Al和Fe等元素浓度水平相对较高.正定矩阵因子分解模型(PMF)结果表明,张掖城区PM2.5的主要贡献源为二次气溶胶(28.0%)、交通源(25.8%)、扬尘源(15.2%)、燃煤源(14.0%)、生物质燃烧和垃圾焚烧源(12.5%)和工艺过程源(4.5%).  相似文献   

11.
浅析了水生植物的特点和生态功能,探讨了水生植物污水治理工艺机制以及优势,分析了该工艺在我国的应用现状和潜力。  相似文献   

12.
农村水环境状况日益恶化,饮用水水源受到严重威胁,供水水源出现不同程度的微污染,农村微污染水源水的污染指标以高锰酸盐指数和氨氮为主.由于农村供水的特殊性,需要研究适合村镇供水实际的微污染原水处理技术,文章重点分析了目前常用的微污染原水净化的技术,从中提出适合农村微污染水源水处理的技术方案.文章经过分析认为,采用强化混凝和强化过滤,吸附预处理和生物预处理是适合农村微污染水源水处理的技术;深度处理通常不适合农村供水.  相似文献   

13.
滇池流域水资源与水污染问题   总被引:3,自引:1,他引:3  
滇池水质污染与流域水资源紧缺二者相互影响,相互制约,存在人口机械增长过快,沿岸开发过度,面山水土流失严重和水资源未能优化配置等问题,应从水土保持综合治理,优化配置水资源,控制入湖污染物总量等方面着手,监管,科研,生态恢复并重,逐步解决滇池流域水资源与水污染问题。  相似文献   

14.
阐述了新技术在青海油田污水处理方面的应用。首先分析了原有技术不能将水处理达标的原因,然后针对污水的特性,设计了一套新的处理工艺及相关的水处理药剂。新工艺处理后的水不仅在联合站内达标,而且在注水站及注水井口也达标。新工艺彻底解决了青海油田污水处理方面的问题。  相似文献   

15.
张田媛  谭倩  王淑萍 《环境科学》2019,40(7):3223-3232
开展协同利用清水与再生水的城市供水系统优化研究具有重要的科学意义和广阔的应用前景.为促进城市水资源高效利用,基于多水源转换关系以及再生水生产能力和利用潜力,构建了面向多区域多部门的城市清水与再生水协同利用优化模型,并以水资源严重短缺的北京市为例进行实证研究.设置规划方案基准情景和规划替代方案情景,分别优化了清水与再生水的协同利用方案以及再生水厂群的运行方案.在规划方案基准情景下,再生水占研究区用水总量的32%,分别占农业、工业、环境用水量的60%、30%和42%.海淀区和石景山区再生水供给矛盾将较为突出.相比之下,规划替代方案情景可以获得更高的经济效益,总效益增加6. 21亿元,同时能增加再生水利用量36. 59%、减少清水用量14. 02%.规划替代方案能更加充分地利用现有设施,促进水资源循环利用.此外,还提供了在现有设施条件下,再生水利用量由政策规划值逐渐提升至最佳规模过程中再生水厂群的运行过渡方案.本文建立的研究方法具有较广泛的适用性,可用于解决其它具有再生水利用潜力地区的水资源短缺问题.  相似文献   

16.
研究了粒状滤床生化反应柱对NO_3~-去除特性。结果表明,当容积负荷范围为每日1.92~3.84kg(NO_3~--N)/m~3时,反硝化率为95.7%~100%,相应CH_3OH消耗量为每日4.9~9.8kg/m~3;COD_(Cr)去除负荷为每日7.3~14.6kg/m~3。进水NO_3~-浓度越低,达到完全反硝化所需的C/N值越高;投加的C/N值越高,实际消耗的C/N值越高;当投加的C/N值低时,其消耗的C/N值也低,越接近于理论值(CH_3OH:NO_3~--N=2.47),相应的出水残留有机物也低(COD_(Cr)<10mL);投加的C/N值低于一定值时,NO_3~-将不能全部转化成氮气,此时水中的NO_2~-浓度<1mg/L;反硝化过程导致pH提高,当NO_3~-浓度<40mg/L时,pH<8.5。  相似文献   

17.
浮萍在水体污染治理中的应用   总被引:11,自引:2,他引:11  
对利用浮萍治理受污染的水体进行了介绍,包括浮萍科植物的生物学特性、治理水体污染的特点以及国内外的相关研究状况等.提出了利用浮萍科植物治理受污染水体的前景,同时预测了该领域的应用和研究方向.  相似文献   

18.
提高废水资源化水平推进炼油企业节水减排   总被引:5,自引:0,他引:5  
分析了当前石化行业水资源短缺的现状和加快污水回用进程、提高水资源综合利用水平的必要性和紧迫性,着重介绍了镇海炼化公司在提高水污染防治水平方面所取得的成效,以及在污水回用方面所做的探索性工作。  相似文献   

19.
通过实验室分析,对接触氧化池中4种不同的气水比的处理效果进行了试验,结果表明,当接触氧化池中的气水比达到15:1的时候对水中污染物的去除最为有效。  相似文献   

20.
超临界水氧化法在废水处理中的应用研究   总被引:5,自引:0,他引:5  
韩统昌  林洁 《交通环保》2001,22(6):32-34
论述了超临界水的特性,超临界水氧化法的特点、工艺流程,着重阐述了超临界水氧化法在废水处理中的应用,并指出了目前超临界水氧化法存在的问题及今后发展的方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号