首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The air quality in a newly built preschool was investigated in a longitudinal study. Typical air contaminants emanating from building materials were determined, their variation over time (0–18 months) was measured, and the influence of the ventilation system (81%–91% recirculation of return air) on contaminant concentrations was studied. Volatile organic compounds were sampled by adsorption on porous polymer, analysed by a GC/FID system, and identified by MS. A spatial build-up in concentration (ppb or μg/m3 levels) is evident for all the organic compounds, as well as for CO2, from the outdoor air, through the ventilation system, and through the rooms to the exhaust air. The longitudinal comparison over time shows that all the organic compounds decline in concentration mainly within the first 6 months of occupancy: 1-butanol 4–14 times, toluene and pentanal + hexanal 2–4 times, while formaldehyde remained at a constant low level of 90 ppb (110 μg/m3). It is difficult to believe that the problems of poor air quality in 100 preschools in Stockholm are caused by the organic compounds alone unless interactions occur. A preschool building needs to be gassed off during the first 6 months after its construction with no recirculation of return air allowed (outdoor air rate approx 4–5 ach). During at least 1–2 additional years, it is desired that the recirculation rate of return air is restricted, perhaps to 50%.  相似文献   

2.
Measurements of indoor atmospheric environment were carried out in a day nursery and a kindergarten, in which natural air infiltration supplied the rooms with only 1–2 m3 fresh air per person and hour under the prescribed occupancy. The exposure situation from the field was duplicated under controlled conditions in a climate chamber. The results indicate unacceptably high concentrations of carbon dioxide, and emphasize the need for more elaborate building design in airtight buildings.  相似文献   

3.
This study investigates the contribution of radon (222Rn)-bearing water to indoor 222Rn in thermal baths. The 222Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM10 and PM2.5) and carbon dioxide (CO2) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m−3 of 222Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which 222Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average 222Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor 222Rn levels were influenced by the 222Rn concentrations in the hot spring water and the bathing times. The average 222Rn transfer coefficients from water to air were 6.2 × 10−4-4.1 × 10−3. The 24-h average levels of CO2 and PM10 in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM2.5. Radon and PM10 levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants.  相似文献   

4.
The WHO Regional Office for Europe organized a working group in Dubrovnik, Yugoslavia, on 26–30 August 1985, which discussed radon as a pollutant affecting indoor air quality. Much of the natural background radiation to which the general public is exposed comes from the decay of 226Ra which produces radon gas and other products. Because radium is a trace element in most rock and soil, indoor concentrations of radon can come from a wide variety of substances, such as building materials and the soil under building foundations. Tap water taken from wells or underground springs may be an additional source. Radon daughter concentrations are considerably higher indoors than outdoors and are of the order of 2–5 Bq m−3 equilibrium equivalent radon (EER) concentration. It has been estimated that current exposure to radon gas could account for as much as 5–15% of all lung cancer deaths. It was recommended that, in general, buildings with concentrations of more than 100 Bq m−3 EER, as an annual average, should be considered for remedial action to lower such concentrations if simple measures are possible.  相似文献   

5.
Radon exhalation from building materials for decorative use   总被引:2,自引:0,他引:2  
Long-term exposure to radon increases the risk of developing lung cancer. There is considerable public concern about radon exhalation from building materials and the contribution to indoor radon levels. To address this concern, radon exhalation rates were determined for 53 different samples of drywall, tile and granite available on the Canadian market for interior home decoration. The radon exhalation rates ranged from non-detectable to 312 Bq m−2 d−1. Slate tiles and granite slabs had relatively higher radon exhalation rates than other decorative materials, such as ceramic or porcelain tiles. The average radon exhalation rates were 30 Bq m−2 d−1 for slate tiles and 42 Bq m−2 d−1 for granite slabs of various types and origins. Analysis showed that even if an entire floor was covered with a material having a radon exhalation rate of 300 Bq m−2 d−1, it would contribute only 18 Bq m−3 to a tightly sealed house with an air exchange rate of 0.3 per hour. Generally speaking, building materials used in home decoration make no significant contribution to indoor radon for a house with adequate air exchange.  相似文献   

6.
Addition of urea-based antifreeze admixtures during cement mixing can make it possible to produce concrete cement in construction of buildings in cold weather; this, however, has led to increasing indoor air pollution due to continuous transformation and emission from urea to gaseous ammonia in indoor concrete wall. It is believed that ammonia is harmful to human body and exposure to ammonia can cause some serious symptoms such as headaches, burns, and even permanent damage to the eyes and lungs. In order to understand the emission of ammonia from indoor concrete wall in civil building and assess the health risk of people living in these buildings, the experimental pieces of concrete wall were first prepared by concreting cement and urea-based antifreeze admixtures to simulate the indoor wall in civil building in this work. Then environmental chamber was adopted for studying the effect of temperature, relative humility and air exchange rate on emission of ammonia from experimental pieces of concrete wall. Also the field experiment was made at selected rooms in given civil buildings. Exposure and potential dose of adult and children exposed to indoor/outdoor ammonia in summer and in winter are calculated and evaluated by using Scenario Evaluation Approach. The results indicated that high air exchange rate leads to decreased ammonia concentration, and elevation of temperature causes increasing ammonia concentration and volatilizing rate in chamber. The complete emission of ammonia from the wall containing urea-based antifreeze admixtures needs more than 10 years in general. Ventilating or improving air exchange can play a significant role in reducing ammonia concentration in actual rooms in field experiments. Urea-based antifreeze admixtures in concrete wall can give rise to high exposure and potential dose, especially in summer. Generally, adults have a high potential dose than children, while children have personal average dose rate beyond adults in the same conditions.  相似文献   

7.
An emission model for indoor volatile organic compounds (VOCs) based on mass balance considerations has been presented and validated under steady state conditions. Comparison were made for the measured and predicted concentrations of 37 selected VOCs and TVOC through a case intervention study on the filters of the ventilation system in a new commercial air-conditioned office building. The intervention involved replacing media filters with electronic and carbon filtration. TVOC and 37 compounds selected for their health and comfort impact, representation of major chemical classes that occur in indoor air and their utility as markers of pollution sources were studied. The concentration levels predicted by the model were compared with actual measurements. Twenty-five target compounds and the TVOC were adequately described by the model where the measured concentrations were in agreement with the predicted concentrations. Modeling of the remaining 12 compounds was found to be affected by the emission rates that were occupant related.  相似文献   

8.
A series of experiments were conducted to investigate the suitability of activated carbon cloth (ACC) strips for diffusive sampling of volatile organic compounds in air without using a membrane. Experiments were carried out in an environmental chamber and in an indoor air environment. The monitors were analyzed qualitatively by liquid extraction and gas chromatography-mass spectrometry and quantitatively by gas chromatography with a flame ionization detector. It was shown that ACC monitors can provide satisfactory quantitative data for a wide variety of volatile organic compounds in indoor air ranging in concentration from 1 mg/m3 to 0.02 g/m3. It was also observed that the absence of a membrane does not affect the linearity of the sampling rate. In addition, a packaging system has been developed that allows samples to be sent out and returned to the laboratory for analysis by mail. Recycling, a convenient procedure of exposure, delivery, and return by postal service, as well as simple analysis all show that this passive sampler substantially reduces the cost of monitoring, thus demonstrating its benefits in the determination of contamination sources within both large industrial sites or any other building where such an analysis may be required.  相似文献   

9.
A chronic exposure study was initiated to determine the effects of diesel exhaust on the health of experimental animals. For this purpose, test atmospheres of clean air (control) or freshly diluted diesel exhaust at concentrations of 250, 750, and 1500 μg/m3 were supplied to four 12.6 m3 inhalation chambers which housed rats and guinea pigs. Diesel aerosol size and concentration, as well as chamber temperature and relative humidity, were continually monitored and controlled to maintain the exposure dose levels and an environment of 22±2°C and 50%±20% relative humidity. The concentrations of CO and NOx were found to be 5.8±1.0 mg/m3 and 7.9±1.0 mg/m3 above ambient in the chamber containing 1500 μg/m3 of particulate. Animals were supplied from the chambers, on a random basis, for both intramural and extramural studies throughout the exposure period. The experiment ran uninterrupted for over twelve months with mean diesel particle mass concentrations within 2% of the target values.  相似文献   

10.
Comparative studies of the effects of various air pollutants on lung collagen biosynthesis have been performed. A hitherto unexpected synergism between the oxidant air pollutants ozone or nitrogen dioxide and a respirable-sized aerosol of ammonium sulfate was observed during controlled exposures of rats to these substances. In an assay system, measuring collagen biosynthesis by lung minces prepared from rats exposed for 1 week to either filtered air or to these pollutants gases, dose-response curves to either O3 or NO2 are altered in the presence of 5 mg/m3 of (NH4)2SO4 aerosol. These observations may have broad implications for the appropriate evaluation of laboratory data in the setting of ambient air quality standards and/or the setting of threshold limit values for maintenance of occupational health and safety.  相似文献   

11.
In a 30-m3 test chamber the air pollutants caused by man were measured. Variables were the number of persons and the rate of air change. During 2-h test sessions the temperature, relative humidity, carbon dioxide, and intensity of odors were measured. The relationship between the perceived odor intensities and the concentrations of carbon dioxide-independent of the number of persons and the air change rate—was observed. At air change rates of 12–15 m3/person/h, the carbon dioxide concentration was not higher than 0.15% and the odor intensity was evaluated only as a “slight annoyance.” Higher ventilation rates are necessary if smoking and increased physical activities are done in the rooms.  相似文献   

12.
Fluorotelomer alcohols (FTOH) are important precursors of perfluorinated carboxylic acids (PFCA). These neutral and volatile compounds are frequently found in indoor air and may contribute to the overall human exposure to per- and polyfluorinated alkyl substances (PFAS). In this study air samples of ten workplace environments and a car interior were analysed. In addition, extracts and emissions from selected outdoor textiles were analysed in order to establish their potential contribution to the indoor levels of the above-mentioned compounds.Concentrations of FTOHs measured in air ranged from 0.15 to 46.8, 0.25 to 286, and 0.11 to 57.5 ng/m3 for 6:2, 8:2 and 10:2 FTOHs, respectively. The highest concentrations in air were identified in shops selling outdoor clothing, indicating outdoor textiles to be a relevant source of FTOH in indoor workplace environments. Total amounts of FTOH in materials of outdoor textiles accounted for < 0.8–7.6, 12.1–180.9 and 4.65–105.7 μg/dm2 for 6:2, 8:2 and 10:2 FTOHs, respectively. Emission from selected textiles revealed emission rates of up to 494 ng/h.The measured data show that a) FTOHs are present in indoor textiles (e.g. carpets), b) they are released at ambient temperatures and c) indoor air of shops selling outdoor textiles contains the highest levels of FTOH. Exposure of humans to perfluorooctanoic acid (PFOA) through absorption of FTOH and subsequent degradation is discussed on the basis of indoor air levels. Calculation of indoor air-related exposure using the median of the measured air levels revealed that exposure is on the same order of magnitude as the recently reported dietary intakes for a background-exposed population. On the basis of the 95th percentile, indoor air exposure to PFOA was estimated to exceed dietary exposure. However, indoor air-related intakes of FTOH are far below the tolerable daily intake (TDI) of PFOA, indicating that there is no risk to health, even when assuming an unrealistic complete degradation of FTOH into PFOA.  相似文献   

13.
Volatile organic compounds (VOCs) are the major pollutants in indoor air, which significantly impact indoor air quality and thus influencing human health. A long-term exposure to VOCs will be detrimental to human health causing sick building syndrome (SBS). Photocatalytic oxidation of VOCs is a cost-effective technology for VOCs removal compared with adsorption, biofiltration, or thermal catalysis. In this paper, we review the current exposure level of VOCs in various indoor environment and state of the art technology for photocatalytic oxidation of VOCs from indoor air. The concentrations and emission rates of commonly occurring VOCs in indoor air are presented. The effective catalyst systems, under UV and visible light, are discussed and the kinetics of photocatalytic oxidation is also presented.  相似文献   

14.
Radon measurements were performed in secondary schools in the Oke-Ogun area, South-west, Nigeria, by solid state nuclear track detectors (SSNTDs). About seventy CR-39 detectors were distributed in 35 high schools of the Oke-Ogun area. The CR-39 detectors were exposed in the schools for 3 months and then etched in NaOH 6 N solution at 90 °C for 3 h. The tracks were counted manually at the microscope and the radon concentration was determined at the Radioactivity Laboratory, Department of Physics, University of Trieste, Trieste, Italy. The overall average radon concentration in the surveyed area was 45 ± 27 Bq m−3. The results indicate no radiological health hazard. The research also focused on parameters affecting radon concentrations such as the age of the building in relation to building materials and floor number of the classrooms. The results show that radon concentrations in ground floors are higher than in upper floors.  相似文献   

15.
Oxidants of significance to human health include ozone, nitrogen dioxide, and peroxyacetylnitrate. All of these compounds are involved in complex photochemical reactions which makes quantification and prediction of their individual health effects difficult. Ozone causes trauma to lung tissues and interferes with enzyme systems in the lungs and other tissues causing a broad range of symptoms. Measurable health impacts can occur at concentrations as low as 390 μg/m3. Acute effects of ozone exposure are reversible at normal urban concentrations (80–120 μg/m3). A special problem of concern, however, is increased susceptibility to infectious diseases contracted through the lungs. Nitrogen dioxide also causes trauma to lung tissues and interferes with enzyme systems. Measurable impacts can occur at concentrations as low as 100 μg/m3, but recovery is rapid and it is not known whether repeated exposures at this level have cumulative effects or predispose the lungs to permanent damage. Chronic exposure of laboratory animals to higher nitrogen dioxide levels can cause emphysema-like conditions and reduction in resistance to respiratory infection. Epidemiological studies of children in houses with gas stoves confirm the finding of reduced resistance to respiratory infection. The U.S. EPA estimates that health effects may occur in young children exposed to concentrations in excess of 280 to 560 μg/m3 one-hour average. These concentrations occur routinely in houses having gas stoves. Peroxyacetylnitrate is a powerful eye irritant in photochemical smog. Other health effects are similar to those of ozone, but less important because of the relatively low concentrations of this pollutant compared to other oxidants.  相似文献   

16.
A statistical model was developed using satellite remote sensing data and meteorological parameters to evaluate the effectiveness of air pollution control measures during the 2008 Beijing Olympic Games. Custom satellite retrievals under hazy conditions were included in the modeling dataset to represent the air pollution levels more accurately. This model explained 70% of the PM2.5 variability during the modeling period from June to October 2008. Using this tool, we estimate that the aggressive emission reduction measures alone effectively lowered PM2.5 levels by 20–24 μg/m3 or 27–33% on average during the Games period, which is substantially greater than those reported previously. Since parameters required to develop this model are readily available in most cities of the world, it can be quickly applied after other major events to evaluate air pollution control policy.  相似文献   

17.
Urban air quality and real human exposure to chemical environmental stressors is an issue of high scientific and political interest. In an effort to find innovative and inexpensive means for air quality monitoring, the ability of car engine air filters (CAFs) to act as efficient samplers collecting street level air, to which people are exposed to, was tested. In particular, in the case of taxis, air filters are replaced after regular distances, the itineraries are almost exclusively urban, cruising mode is similar and, thus, knowledge of the air flow can provide with an integrated city air sample. The present pilot study focused on polycyclic aromatic hydrocarbons (PAHs), the most important category of organic pollutants associated with traffic emissions. Concentrations of ΣPAHs in CAFs ranged between 650 and 2900 μg CAF 1, with benzo[b]fluoranthene, benzo[k]fluoranthene and indeno[123-cd]pyrene being the most abundant PAHs. Benzo[a]pyrene (BaP) ranged between 110 and 250 μg CAF 1, accounting regularly for 5–15% of the total carcinogenic PAHs. The CAF PAH loads were used to derive road-level atmospheric PAH concentrations from a standard formula relating to the CAF air flow. Important parameters/assumptions for these estimates are the cruising speed and the exposure duration of each CAF. Based on information obtained from the garage experts, an average ‘sampled air volume’ of 48,750 m3 per CAF was estimated, with uncertainty in this calculation estimated to be about a factor of 4 between the two extreme scenarios. Based on this air volume, ΣPAHs ranged between 13 and 56 ng m 3 and BaP between 2.1 and 5.0 ng m 3, suggesting that in-traffic BaP concentrations can be many times higher than the limit values set by the UK (0.25 ng m 3) and the European Union (1.0 ng m 3), or from active sampling stations normally cited on building roof tops or far from city centres.Notwithstanding the limitations of this approach, the very low cost, the continuous availability of very high amounts of “sample”, and the “retroactivity” render it very useful and complementary to existing passive sampling techniques. This approach yields estimated air concentrations that reflect the pollutant concentrations to which taxi drivers, pedestrians, cyclists and road-related professionals are exposed.  相似文献   

18.
Methods, standards, and regulations that are aimed to reduce indoor air pollution from building materials are critically reviewed. These are classified as content control and emission control. Methods and standards can be found in both of these two classes. In the regulation domain, only content control is enforced in some countries and some regions, and asbestos is the only building material that is banned for building use. The controlled pollutants include heavy metals, radon, formaldehyde, and volatile organic compounds (VOCs). Emission rate control based upon environment chamber testing is very much in the nature of voluntary product labeling and ranking, and this mainly targets formaldehyde and VOC emissions. It is suggested that radon emission from building materials should be subject to similar emission rate control. A comprehensive set criteria and credit-awarding scheme that encourages the use of low-emission building material is synthesized, and how this scheme can be practiced in building design is proposed and discussed.  相似文献   

19.
The presence of selected volatile organic compounds (VOCs) including aromatic, aliphatic compounds and low molecular weight carbonyls, and a target set of phthalates were investigated in the interior of 23 used private cars during the summer and winter. VOC concentrations often exceeded levels typically found in residential indoor air, e.g. benzene concentrations reached values of up to 149.1 µg m− 3. Overall concentrations were 40% higher in summer, with temperatures inside the cars reaching up to 70 °C. The most frequently detected phthalates were di-n-butyl-phthalate and bis-(2-ethylhexyl) phthalate in concentrations ranging from 196 to 3656 ng m− 3.  相似文献   

20.
Burning candles and incense generate particulate matter (PM) that produces poor indoor air quality and may cause human pulmonary problems. This study physically characterised combustion particles collected in a church during services. In addition, the emissions from five types of candles and two types of incense were investigated using a combustion chamber. The plasmid scission assay was used to determine the oxidative capacities of these church particles. The corresponding risk factor (CRf) was derived from the emission factor (Ef) and the oxidative DNA damage, and used to evaluate the relative respiratory exposure risks. Real-time PM measurements in the church during candle–incense burning services showed that the levels (91.6 μg/m3 for PM10; 38.9 μg/m3 for PM2.5) exceeded the European Union (EU) air quality guidelines. The combustion chamber testing, using the same environmental conditions, showed that the incense Ef for both PM10 (490.6–587.9 mg/g) and PM2.5 (290.1–417.2 mg/g) exceeded that of candles; particularly the PM2.5 emissions. These CRf results suggested that the exposure to significant amounts of incense PM could result in a higher risk of oxidative DNA adducts (27.4–32.8 times) than tobacco PM. The generation and subsequent inhalation of PM during church activities may therefore pose significant risks in terms of respiratory health effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号