首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Nguyen HV  Hur J 《Chemosphere》2011,85(5):782-789
Structural and chemical characteristics of refractory dissolved organic matter (RDOM) from seven different sources (algae, leaf litter, reed, compost, field soil, paddy water, treated sewage) were examined using multiple analytical tools, and they were compared with those of RDOM in a large artificial lake (Lake Paldang, Korea). Treated sewage, paddy water, and field soil were distinguished from the other sources investigated by their relatively low specific UV absorbance (SUVA) values and more pronounced fulvic-like versus humic-like fluorescence of the RDOM samples. Microbial derived RDOM from algae and treated sewage showed relatively low apparent molecular weight and a higher fraction of hydrophilic bases relative to the total hydrophilic fraction. For the biopolymer types, the presence of polyhydroxy aromatics with the high abundance of proteins was observed only for vascular plant-based RDOM (i.e., leaf litter and reed). Molecular weight values exhibited positive correlations with the SUVA and the hydrophobic content among the different RDOM, suggesting that hydrophobic and condensed aromatic structures may be the main components of high molecular weight RDOM. Principal component analysis revealed that approximately 77% of the variance in the RDOM characteristics might be explained by the source difference (i.e., terrestrial and microbial derived) and a tendency of further microbial transformation. Combined results demonstrated that the properties of the lake RDOM were largely affected by the upstream sources of field soil, paddy water, and treated sewage, which are characterized by low molecular weight UV-absorbing and non-aromatic structures with relatively high resistance to further degradation.  相似文献   

2.
Hur J  Lee BM  Shin HS 《Chemosphere》2011,85(8):1360-1367
Microbial degradation-induced changes in the characteristics of dissolved organic matter (DOM), and the subsequent effects on phenanthrene-DOM interactions were investigated based on the microbial incubation of DOM collected from four different sources for 28 d. Partially biodegraded DOM presented higher specific UV absorbance (SUVA), lower protein-like fluorescence, higher humic-like fluorescence, lower aliphatic carbon fraction, and higher hydrophobic neutral fractions compared to the original DOM. Microbial changes in DOM led to an increase in the isotherm nonlinearity as well as the extent of phenanthrene binding. A negative relationship between SUVA and the Freundlich n values was established for the original and the biodegraded DOM, suggesting that aromatic condensed structures may play important roles in providing nonlinear strong binding sites irrespective of microbial degradation. In contrast, there were two separate slopes of the correlations between the percentage of hydrophobic acid (HoA) fraction and the n values for the original and the biodegraded DOM with a higher slope exhibited for the latter, implying that the microbial utilization of oxygen-containing structures in the HoA fractions may contribute to enhancing the associated isotherm nonlinearity.  相似文献   

3.
Selected water quality parameters and spectroscopic characteristics of dissolved organic matter (DOM) were examined during two different seasons for an artificial coastal lake (Shiwha Lake in South Korea), which are affected by seawater exchange due to the operation of a tidal power plant and external organic loadings from the upstream catchments. The coastal lake exhibited much lower concentrations of organic matter and nutrients than the upstream sources. The spectroscopic properties of the lake DOM were easily distinguished from those of the catchment sources as revealed by a lower absorption coefficient, lower degree of humification, and higher spectral slopes. The observed DOM properties suggest that the lake DOM may be dominated by smaller molecular size and less condensed structures. For the lake and the upper streams, higher absorption coefficients and fluorescence peak intensities but lower spectral slopes and humification index were found for the premonsoon versus the monsoon season. However, such seasonal differences were less pronounced for the industrial channels in the upper catchments. Three distinctive fluorophore groups including microbial humic-like, tryptophan-like, and terrestrial humic-like fluorescence were decomposed from the fluorescence excitation-emission matrix (EEM) of the DOM samples by parallel factor analysis (PARAFAC) modeling. The microbial humic-like component was the most abundant for the industrial channels, suggesting that the component may be associated with anthropogenic organic pollution. The terrestrial humic-like component was predominant for the upper streams, and its relative abundance was higher for the rainy season. Our principal component analysis (PCA) results demonstrated that exchange of seawater and seasonally variable input of allochthonous DOM plays important roles in determining the characteristics of DOM in the lake.  相似文献   

4.
Hur J  Lee BM 《Chemosphere》2011,83(11):1603-1611
The heterogeneity of copper binding characteristics for dissolved organic matter (DOM) fractions was investigated based on the fluorescence quenching of the synchronous fluorescence spectra upon the addition of copper and two-dimensional correlation spectroscopy (2D-COS). Hydrophobic acid (HoA) and hydrophilic (Hi) fractions of two different DOM (algal and leaf litter DOM) were used for this study. For both DOM, fluorescence quenching occurred at a wider range of wavelengths for the HoA fractions compared to the Hi fractions. The combined information of the synchronous and asynchronous maps derived from 2D-COS provided a clear picture of the heterogeneous distribution of the copper binding sites within each DOM fraction, which was not readily recognized by a simple comparison of the changes in the synchronous fluorescence spectra upon the addition of copper. For the algal DOM, higher stability constants were exhibited for the HoA versus the Hi fractions. The logarithms of the stability constants ranged from 4.8 to 6.1 and from 4.5 to 5.0 for the HoA and the Hi fractions of the algal DOM, respectively, depending on the associated wavelength and the fitted models. In contrast, no distinctive difference in the binding characteristics was found between the two fractions of the leaf litter DOM. This suggests that influences of the structural and chemical properties of DOM on copper binding may differ for DOM from different sources. The relative difference of the calculated stability constants within the DOM fractions were consistent with the sequential orders interpreted from the asynchronous 2D-COS. It is expected that 2D-COS will be widely applied to other DOM studies requiring detailed information on the heterogeneous nature and subsequent effects under a range of environmental conditions.  相似文献   

5.
Saadi I  Borisover M  Armon R  Laor Y 《Chemosphere》2006,63(3):530-539
The potential of effluent DOM to undergo microbial degradation was assessed in batch experiments. Effluent samples from Haifa wastewater treatment plant and Qishon reservoir (Greater Haifa wastewater reclamation complex, Israel) were incubated either with effluent or soil microorganisms for a period of 2-4 months and were characterized by dissolved organic carbon contents (DOC), UV(254) absorbance and by fluorescence excitation-emission matrices. Three main fluorescence peaks were identified that can be attributed to humic/fulvic components and "protein-like" structures. During biodegradation, specific fluorescences (F/DOC) of the three peaks were increased at various extents, suggesting selective degradation of non-fluorescing constituents. In some cases increase in the effluent fluorescence (F) was observed thus proposing (i) the formation of new fluorescing material associated with DOM biodegradation and/or (ii) degradation of certain organic components capable of quenching DOM fluorescence. Based on the ratio between fluorescence intensity and UV(254), different biodegradation dynamics for fluorescent DOM constituents as compared with other UV-absorbing molecules was delineated. Overall, about 50% of the total DOM was found to be readily degradable such that residual resistant DOC levels were between 8 and 10 mg l(-1). Enhanced levels of residual DOM in effluent-irrigated soils may contribute to the DOM pool capable of carrying pollutants to groundwater.  相似文献   

6.
Dissolved organic matter (DOM) present in fogwater samples collected in southeastern Louisiana and central-eastern China has been characterized using excitation–emission matrix fluorescence spectroscopy. The goal of the study was to illustrate the utility of fluorescence for obtaining information on the large fraction of organic carbon in fogwaters (typically >40% by weight) that defies characterization in terms of specific chemical compounds without the difficulty inherent in obtaining sufficient fogwater volume to isolate DOM for assessment using other spectroscopic and chemical analyses. Based on the findings of previous studies using other characterization methods, it was anticipated that the unidentified organic carbon fraction would have characteristic peaks associated with humic substances and fluorescent amino acids. Both humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices for the fogwater had similar values to those of soil and sediment porewater. Greater biological character was observed in samples with higher organic carbon concentrations. Fogwaters are shown to contain a mixture of terrestrially- and microbially-derived fluorescent organic material, which is expected to be derived from an array of different sources, such as suspended soil and dust particles, biogenic emissions and organic substances generated by atmospheric processes. The fluorescence results indicate that much of the unidentified organic carbon present in fogwater can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems, though it should be noted that fluorescent signatures representative of DOM produced by atmospheric processing of organic aerosols may be contributing to or masked by humic-like fluorophores.  相似文献   

7.
Beta blockers are widely used pharmaceuticals that have been detected in the environment. Interactions between beta blockers and dissolved organic matter (DOM) may mutually alter their environmental behaviors. To assess this potential, propranolol (PRO) was used as a model beta blocker to quantify the complexation with DOM from different sources using the fluorescence quenching titration method. The sources of studied DOM samples were identified by excitation–emission matrix spectroscopy (EEMs) combined with fluorescence regional integration analysis. The results show that PRO intrinsic fluorescence was statically quenched by DOM addition. The resulting binding constants (log K oc) ranged from 3.90 to 5.20, with the surface-water-filtered DOM samples claiming the lower log K oc and HA having the highest log K oc. Log K oc is negatively correlated with the fluorescence index, biological index, and the percent fluorescence response (P i,n) of protein-like region (P I,n) and the P i,n of microbial byproduct-like region (P II,n) of DOM EEMs, while it is correlated positively with humification index and the P i,n of UVC humic-like region (P III,n). These results indicate that DOM samples from allochthonous materials rich in aromatic and humic-like components would strongly bind PRO in aquatic systems, and autochthonous DOM containing high protein-like components would bind PRO more weakly.  相似文献   

8.
采用三维荧光(EEM)光谱技术,对上海竹园第二污水处理厂改良型AO法组合工艺运行过程中的各种溶解性有机物(DOM)进行分析,并对比研究传统好氧活性污泥法曝气池出水和A/O脱氮工艺硝化池出水DOM的EEM光谱的迁移变化特性.结果表明,各种DOM中主要的荧光物质有类蛋白质(荧光峰A和B)及类腐殖质(荧光峰C),经改良型AO法组合工艺处理后,荧光峰的强度降低了14%~60%,同时类蛋白质和腐殖质的结构也发生了变化;腐殖酸溯源表明DOM中的腐殖酸以微生物代谢产生的带有荧光基团的腐殖酸类为主.  相似文献   

9.
氯消毒对城市污水中DOM的三维荧光特性影响   总被引:2,自引:1,他引:1  
在城市污水二级出水氯消毒过程中,通过对溶解性有机物(DOM)的三维荧光光谱(3DEEM)分析及反应过程中三卤甲烷(THMs)生成量的连续测定,分析各类荧光物质随加氯反应时间的变化规律,探讨其与THMs生成量之间的关系,以此来推测THMs的主要前驱物质。结果表明,加氯后0~6 h内,各反应时间点三维荧光光谱图的等高线的密集程度较原二级出水明显降低,荧光峰的荧光强度减少40%~70%,说明DOM与氯发生反应,芳香构造化程度及不饱程度降低,从而失去荧光特性。其中,简单芳香族蛋白质(酪氨酸类)、腐殖酸类及富里酸类物质在加氯前后荧光强度变化较大,是生成THMs的主要前驱物质。THMs的生成量随反应时间的增加呈现明显的上升趋势,15 min内各类荧光特性有机物的荧光强度减少约50%左右,同时生成了50.17%的THMs。  相似文献   

10.
Zhang T  Lu J  Ma J  Qiang Z 《Chemosphere》2008,71(5):911-921
Fluorescence spectra were applied to investigate the structural changes of four dominant dissolved natural organic matter (DOM) fractions of a filtered river water before and after ozonation and catalytic ozonation. The ozonation and catalytic ozonation with synthetic goethite (FeOOH) and cerium dioxide (CeO(2)) were carried out under normal conditions, i.e. pH 7, reaction time of 10 min, and ozone/DOC ratio of about 1. The fluorescence spectra were recorded at both excitation-emission matrix (EEM) and synchronous scanning modes. EEM results reveal that ozonation of these DOM fractions causes a significant decrease of the aromaticity of humic-like structures and an increase of electron withdrawing groups, e.g., carboxylic groups. The catalysts can further improve the destruction of the humic-like structures in catalytic ozonation. Synchronous spectra reveal that ozonation of hydrophobic acid and hydrophilic acid (HIA) yields a significant amount of by-products with low aromaticity and low molecular weight. Catalytic ozonation enhances substantially the formation of these by-products from HIA and improves the destruction of highly polycyclic aromatic structures for all examined DOM fractions.  相似文献   

11.
For the purpose of investigating the effect of landfill leachate on the characteristics of organic matter in groundwater, groundwater samples were collected near and in a landfill site, and dissolved organic matter (DOM) was extracted from the groundwater samples and characterized by excitation–emission matrix (EEM) fluorescence spectra combined with fluorescence regional integration (FRI) and self-organizing map (SOM). The results showed that the groundwater DOM comprised humic-, fulvic-, and protein-like substances. The concentration of humic-like matter showed no obvious variation for all groundwater except the sample collected in the landfill site. Fulvic-like substance content decreased when the groundwater was polluted by landfill leachates. There were two kinds of protein-like matter in the groundwater. One kind was bound to humic-like substances, and its content did not change along with groundwater pollution. However, the other kind was present as “free” molecules or else bound in proteins, and its concentration increased significantly when the groundwater was polluted by landfill leachates. The FRI and SOM methods both can characterize the composition and evolution of DOM in the groundwater. However, the SOM analysis can identify whether protein-like moieties was bound to humic-like matter.  相似文献   

12.
Different land uses of upstream catchments may affect the quantity and the quality of dissolved organic matter (DOM) in watersheds, but the influence may differ by season. In this study, we examined concentrations and selected spectroscopic properties of DOM and the propensity to form trihalomethanes (THMs) for 19 different middle-sized watersheds across the Han River basin in Korea. Sampling was conducted for non-storm events during pre-monsoon (May) and monsoon seasons (July). The anthropogenic land uses including agricultural and residential areas occupied 2.3 to 49.4 % of the upstream catchments of the watersheds. Non-aromatic, labile, and less condensed DOM structures were more abundant in the monsoon season. Parallel factor analysis (PARAFAC) modeling with fluorescence data demonstrated that a combination of three different fluorescence components could explain the seasonal and the spatial distributions of DOM characteristics. Terrestrial humic-like fluorescence was the most abundant component for all the DOM samples, while protein-like fluorescence became more pronounced for the monsoon season. THM concentrations did not differ between the two seasons. Observed seasonal differences in the concentrations and the characteristics of DOM suggested a greater contribution of groundwater to the streams in watersheds in the monsoon versus the pre-monsoon season. Significant correlations among anthropogenic land use, microbial humic-like fluorescence, and the propensity to form THMs were found only for the pre-monsoon season. Principal component analysis (PCA) demonstrated that, regardless of the season, anthropogenic land uses increased the concentrations of DOM and nutrients but that their effects on the DOM properties were not evident for the monsoon season.  相似文献   

13.

Introduction

Dissolved organic matter (DOM) is the most active component in environmental system and its chemical and structural characteristics most likely influence its biodegradation. Four surface soil (0?C20?cm) and three core sediment samples (0?C10?cm) were collected from Wuliangsuhai Lake. The objectives of this study were to investigate the spectral properties and humification degree of DOM and to determine and discuss comparatively the complexing capacities and stability constants of DOM by Cu (II) in the Hetao region.

Materials and methods

In this study, fluorescence spectra and fluorescence quenching methods were used to evaluate the humification degree of DOM and calculate the complexing capacities and the stability constants between DOM and Cu (II).

Results and discussion

Two defined peaks, at wavelengths of 260??300?nm (peak I) and 300??350?nm (peak II), could be identified for soil DOM at a ???? value of 30?nm. In sediment DOM extracts, a third peak (III) was observed near 364?nm. The results show that there is a significant difference in the structure of DOM because of different sources. The humification degree is significantly higher for soil samples than those of sediment samples. The FT-IR spectra of DOM show that structure in sediment DOM is more functional groups than those in soil DOM. DOM has a stronger Cu binding affinity in soils than in sediment in the Hetao region, which may lead to potentially significant influence on the migration and transformation of Cu (II).  相似文献   

14.
运用紫外可见光吸收光谱与荧光光谱研究乌梁素海沉积物孔隙水中溶解有机质的来源、结构及腐殖化程度。r(A,C)、HIX、SUVA280和SUVA254等被用于表征DOM的腐殖化程度和芳香构化程度及结构,f450/500用于指示DOM的来源。研究结果表明:腐殖化程度最高的点为湖泊东部的W4样点,腐殖化程度最低的为总排干影响区域的W1样点。E253/203表明湖泊入口处沉积物孔隙水中有机质主要为不可取代的芳香环结构。荧光指数f450/500为1.57~1.82之间。总体而言,f450/500的值更接近于1.6,处于2个端源中间,说明乌梁素海DOM中的腐殖质主要来源于陆源输入。相关分析的结果表明, DOM的不同来源对其腐殖化程度产生影响。随着腐殖化值的增大,DOM的来源由生物源向陆源过渡。  相似文献   

15.
An antialgal bacterium, Streptomyces sp. HJC-D1, was applied for the biodegradation of cyanobacterium Microcystis aeruginosa, and the isolation and characterization of dissolved organic matter (DOM) fractions in antialgal products were studied. Results showed the the growth of M. aeruginosa was significantly inhibited by the cell-free filtrate of Streptomyces sp. HJC-D1 with the growth inhibition of 86?±?7 %. The antialgal products were divided using resin adsorbents into the hydrophilic fraction (HPI), hydrophobic acid (HPO-A), transphilic acid (TPI-A), hydrophobic neutral and transphilic neutral, and then the five fractions were analyzed by the 3-D fluorescence spectroscopy, gel permeation chromatography, and Fourier transform infrared spectroscopy. The results indicated that the HPI component was the most abundant DOM fraction in the antialgal products, and its concentration was increased with the increase of cell-free filtrate concentration. The fluorescence peak location and intensity analysis showed that the protein-, fulvic-, and humic-like substances were dominant in the HPI, HPO-A, and TPI-A fractions, and intensities of the relevant fluorescence peaks were stronger in the experimental groups than those of the control groups. It was also found that the number-average molecular weight of DOM fractions ranged from 245 to 1,452 g mol?1, and thereinto organic acids such as HPO-A and TPI-A exhibited lower molecular weights.  相似文献   

16.
Baker A  Elliott S  Lead JR 《Chemosphere》2007,67(10):2035-2043
Fluorescence of organic matter from six contrasting freshwaters was analysed after filtration (1.2 microm and 0.2 microm filter sizes) and pH perturbation (+/-2 pH units from ambient conditions). Two fluorophores were compared in detail: tryptophan-like fluorescence, whose filtration and pH characteristics are relatively poorly understood, and humic-like fluorescence, which is better characterised. Although there was some variability in both fluorophores, the tryptophan-like fluorescence showed the most significant decrease in fluorescence intensity between raw and 1.2 microm filter samples, and a much smaller decrease between 1.2 and 0.2 microm, demonstrating a significant source associated with particulate material as well as a significant <0.2 microm fraction. In contrast, humic-like fluorescence shows little change with filtration, suggesting that the majority of this fluorescence is associated with truly dissolved material. The pH perturbation experiments demonstrate that tryptophan-like fluorescence is less impacted by pH than with filter fraction. For humic-like fluorescence, pH effects are weak and are not as consistent as those reported in the literature for extracted humic substances. pH perturbation of the freshwaters shows a wide range of sample specific pH responses, significantly more variable than that observed in experiments using extracted humic substances and tryptophan standards, demonstrating the natural variability of freshwater dissolved organic matter.  相似文献   

17.
城市生活垃圾填埋初期有机质演化规律研究   总被引:4,自引:1,他引:3  
为阐明生活垃圾填埋初期有机质演化规律,于填埋场打井采集填埋1~3年3个不同时期垃圾样品,用水浸提制备水溶性有机物(DOM)。采用红外光谱、同步荧光光谱及紫外光谱,对浸提液中DOM的结构和演化特征进行了研究。结果显示,生活垃圾中含有脂肪类、蛋白类、糖类及木质素类物质,在填埋初期,有机质中的脂肪类、蛋白质类、糖类及木质素类物质均发生了降解,羧基、氨类及水溶性芳香结构物质减少,DOM分子量降低。研究结果表明,垃圾填埋初期有机质以降解为主。  相似文献   

18.
Kalbitz K  Geyer S  Geyer W 《Chemosphere》2000,40(12):1305-1312
The aim of our study is to test the use of less time-consuming spectroscopic methods applied on original water samples in order to obtain information about DOM composition without any sample preparation. These results were directly compared with results from a conventional isolation and characterization procedure of dissolved humic substances (fulvic acids – FA) isolated from the same water sample. FAs were characterized by UV-, fluorescence-, FTIR spectroscopy and elemental composition. UV absorbance and fluorescence behavior of FAs and original water samples follow the same pattern. A lower UV absorbance and a lower humification index (derived from the synchronous fluorescence spectra) of about 15% is typical for water samples compared to the FAs. We computed linear relationships between properties of the original water sample (UV-, synchronous fluorescence spectra) and the isolated FA (IR absorption, C/N ratio). The application of synchronous fluorescence and UV spectroscopy of aqueous samples has been proved to result in similar information about DOM composition as the characterization of isolated humic substances concerning the content of aromatic structures and the degree of humification.  相似文献   

19.
The relative fluorescence, normalised on dissolved organic carbon (DOC), and a humification index, based on the location of the fluorescence emission spectra, were used to investigate the possible sources of the increase in dissolved organic matter (DOM) when a soil is dried. From these 2 parameters it could be seen that air drying resulted in a minor increase of more humified material in DOM while the effect of oven drying was mainly due to cell lysis.  相似文献   

20.
Metal contents of decomposing leaf blades, leaf sheaths and stems of common reed (Phragmites australis) were monitored by a litter bag method on the sediment of an intertidal brackish marsh in the Scheldt estuary (The Netherlands). On monthly intervals, two litter bags were retrieved from the marsh during 9 months for both leaf blades and sheaths and during 16 months for stems. All samples were dried, weighed and analysed for ash and Cd, Cu, Cr, Ni, Pb and Zn contents. Most concentrations increased considerably during the decomposition. Generally, also a very important net metal inflow into the litter bags could be observed. The inflow was highest for leaf blades. High correlations between ash contents and metal concentrations for leaf blades suggest that the increase of leaf blade metal contents can be due to physicochemical sorption of dissolved metals and an important infiltration of mud particles, which were not removed by rinsing the leaf blades with distilled water preceding the analyses. For stems, smaller amounts of inflowing ash and even outflowing ash amounts were found, which suggests that inflow of inorganic particles is not the major factor determining metal accumulation by stems on medium term. Ergosterol concentrations in stem tissue however proved to be correlated with metal contents, which suggests a significant role of fungal litter colonizers in metal accumulation. For leaf sheaths, the effects of physicochemical sorption, infiltration of mud particles and incorporation by microbial litter colonizers do not seem to be as pronounced as for stems and leaf blades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号