首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 647 毫秒
1.
Land spreading nitrogen-rich municipal waste biosolids (NO3-N<256 mg N kg−1 dry weight, NH3-N∼23,080 mg N kg−1 dry weight, Total Kjeldahl N∼41,700 mg N kg−1 dry weight) to human food and non-food chain land is a practice followed throughout the US. This practice may lead to the recovery and utilization of the nitrogen by vegetation, but it may also lead to emissions of biogenic nitric oxide (NO), which may enhance ozone pollution in the lower levels of the troposphere. Recent global estimates of biogenic NO emissions from soils are cited in the literature, which are based on field measurements of NO emissions from various agricultural and non-agricultural fields. However, biogenic emissions of NO from soils amended with biosolids are lacking. Utilizing a state-of-the-art mobile laboratory and a dynamic flow-through chamber system, in-situ concentrations of nitric oxide (NO) were measured during the spring/summer of 1999 and winter/spring of 2000 from an agricultural soil which is routinely amended with municipal waste biosolids. The average NO flux for the late spring/summer time period (10 June 1999–5 August 1999) was 69.4±34.9 ng N m−2 s−1. Biosolids were applied during September 1999 and the field site was sampled again during winter/spring 2000 (28 February 2000–9 March 2000), during which the average flux was 3.6±1.7 ng N m−2 s−1. The same field site was sampled again in late spring (2–9 June 2000) and the average flux was 64.8±41.0 ng N m−2 s−1. An observationally based model, developed as part of this study, found that summer accounted for 60% of the yearly emission while fall, winter and spring accounted for 20%, 4% and 16% respectively. Field experiments were conducted which indicated that the application of biosolids increases the emissions of NO and that techniques to estimate biogenic NO emissions would, on a yearly average, underestimate the NO flux from this field by a factor of 26. Soil temperature and % water filled pore space (%WFPS) were observed to be significant variables for predicting NO emissions, however %WFPS was found to be most significant during high soil temperature conditions. In the range of pH values found at this site (5.8±0.3), pH was not observed to be a significant parameter in predicting NO emissions.  相似文献   

2.
Static chamber method was adopted to measure the surface exchanges of NO and NO2 between three kinds of agricultural lands and the atmosphere during spring–summer period in the Yangtze Delta, China. The average NO fluxes were 20.9, 27.4 and 21.4 ng N m−2 s−1, respectively, for cabbage (CA, cultivation of celery occurred along with cabbage), potato (PO) and soybean (SY) fields. The average NO2 fluxes were −1.12, 0.93 and −0.68 ng N m−2 s−1, respectively, for the cabbage, potato and soybean fields. Apparently, negative linear correlation was found between the NO2 fluxes from the CK plot (tilled conventionally but did not cultivate any seeds) and its ambient concentrations, and the compensation point was calculated to be 0.92 ppbv. The total NO emission from the vegetable lands and SY land in this region during spring–summer period was roughly estimated to be 15.9 Gg N, which accounted for about 11.2% of the estimated value of total NO emissions in the July of 1999 from Chinese agricultural fields.  相似文献   

3.
Micrometeorological measurements and ambient air samples, analyzed for concentrations of NH3, HNO3, NH4+, and NO3, were collected at an alpine tundra site on Niwot Ridge, Colorado. The measured concentrations were extremely low and ranged between 5 and 70 ng N m−3. Dry deposition fluxes of these atmospheric species were calculated using the micrometeorological gradient method. The calculated mean flux for NH3 indicates a net deposition to the surface and indicates that NH3 contributed significantly to the total N deposition to the tundra during the August–September measurement period. Our pre-measurement estimate of the compensation point for NH3 in air above the tundra was 100–200 ng N m−3; thus, a net emission of NH3 was expected given the low ambient concentrations of NH3 observed. Based on our results, however, the NH3 compensation point at this alpine tundra site appears to have been at or below about 20 ng N m−3. Large deposition velocities (>2 cm s−1) were determined for nitrate and ammonium and may result from reactions with surface-derived aerosols.  相似文献   

4.
Emissions of nitric oxide (NO) were determined during late spring and summer 1995 and the spring of 1996 from four agricultural soils on which four different crops were grown. These agricultural soils were located at four different sites throughout North Carolina. Emission rates were calculated using a dynamic flow-through chamber system coupled to a mobile laboratory for in-situ analysis. Average NO fluxes during late spring 1995 were: 50.9±47.7 ng N m−2 s−1 from soil planted with corn in the lower coastal plain. Average NO fluxes during summer 1995 were: 6.4±4.6 and 20.2±19.0 ng N m−2 s−1, respectively, from soils planted with corn and soybean in the coastal region; 4.2±1.7 ng N m−2 s−1 from soils planted with tobacco in the piedmont region; and 8.5±4.9 ng N m−2 s−1 from soils planted with corn in the upper piedmont region. Average NO fluxes for spring 1996 were: 66.7±60.7 ng N m−2 s−1 from soils planted with wheat in the lower coastal plain; 9.5±2.9 ng N m−2 s−1 from soils planted with wheat in the coastal plain; 2.7±3.4 ng N m−2 s−1 from soils planted with wheat in the piedmont region; and 56.1±53.7 ng N m−2 s−1 from soils planted with corn in the upper piedmont region. An apparent increase in NO flux with soil temperature was present at all of the locations. The composite data from all the research sites revealed a general positive trend of increasing NO flux with soil water content. In general, increases in total extractable nitrogen (TEN) appeared to be related to increased NO emissions within each site, however a consistent trend was not evident across all sites.  相似文献   

5.
A water surface sampler (WSS) was employed in combination with greased knife-edge surface deposition plates (KSSs) to measure the vapor phase deposition rates of PCBs to the sampler at an urban site, Chicago, IL. This sampler employed a water circulation system that continuously removed deposited PCBs. Total (gas+particle) and particulate PCB fluxes were collected with the WSS and KSSs, respectively. Gas phase PCB fluxes were then calculated by subtracting the KSS fluxes (particulate) from the WSS fluxes (gas+particle). The calculated gas phase PCB fluxes averaged 830±910 ng m−2d−1. This flux value is, in general, higher than the fluxes determined using simultaneously measured air–water concentrations in natural waters and is in the absorption direction. This difference is primarily because the PCBs were continuously removed from the WSS water keeping the water PCB concentration near zero.Concurrently, ambient air samples were collected using a modified high volume air sampler. The gas phase PCB concentrations ranged between 1.10 and 4.46 ng m−3 (average±SD, 2.29±1.28 ng m−3). The gas phase fluxes were divided by the simultaneously measured gas phase ambient concentrations to determine the overall gas phase mass transfer coefficients (MTCs) for PCBs. The average gas phase overall MTCs (Kg) for each homolog group ranged between 0.22 and 1.32 cm s−1 (0.54±0.47 cm s−1). The average MTC was in good agreement with those determined using similar techniques.  相似文献   

6.
The use of fireworks creates an unusual and distinctive anthropogenic atmospheric pollution event. We report on aerosol samples collected during Las Fallas in Valencia, a 6-day celebration famous for its firework displays, and add comparative data on firework- and bonfire-contaminated atmospheric aerosol samples collected from elsewhere in Spain (Barcelona, L’Alcora, and Borriana) and during the Guy Fawkes celebrations in London. Specific high-profile official firework events during Las Fallas included the afternoon Mascletà and the nightly aerial displays (especially in the climactic final 2 days of the fiesta) and were accompanied by pollution spikes in suspended particles, NO, SO2, and the creation and dispersal of an aerosol cloud enriched in a range of metallic elements. Notable metal aerosol concentration increases recorded during Las Fallas were potassium (from 500 to 5900 ng m−3), aluminium (as Al2O3 from around 600 to 2200 ng m−3), titanium (from 200 to 700 ng m−3), magnesium (from 100 to 500 ng m−3), lead (from 17 to 379 ng m−3), barium (from 39 to 322 ng m−3), strontium (from 3 to 112 ng m−3), copper (from 12 to 71 ng m−3), and antimony (from 1 to 52 ng m−3). Firework-contaminated aerosols of similarly metalliferous composition were also identified at the other monitoring sites, although different sites show variations attributable to other sources such as bonfires and local industry. Unusual levels of the trace elements Ba, Sr and (to a lesser extent) Cu, always in proportions with Ba dominant, along with strongly enhanced K, Pb, and Sb, are identified as being particularly characteristic of firework aerosols. Although firework-related recreational pollution episodes are transient in nature, they are highly concentrated, contribute significantly to total annual metal emissions, and are on average fine enough to be easily inhaled and a health risk to susceptible individuals.  相似文献   

7.
Regional estimates of fluxes of volatile organic compounds (VOCs) are required to improve our understanding of their role in the chemistry of the atmosphere. Flux measurements on such a scale can best be obtained using aircraft-based systems. These systems usually rely on the eddy covariance technique, which requires fast response gas sensors for flux measurement, but such sensors are not available for most organic compounds, therefore, the relaxed eddy-accumulation (REA) technique was selected. An aircraft-based REA sampling system was developed and used to measure isoprene emission over the boreal forest during the 1996 summer. Over a short period in July at the Boreal Ecosystem/Atmosphere Study (BOREAS) southern study area (SSA), the isoprene fluxes ranged from −0.06 to 1.79 μg m-2 s-1, with a mean of 0.59±0.34 μg m-2 s-1, while in August at the BOREAS northern study area (NSA) the isoprene fluxes ranged from 0.00 to 0.26 μg m-2 s-1, with a mean of 0.14±0.09 μg m-2 s-1. In the SSA, the isoprene fluxes over aspen ranged from 0.44 to 1.79 μg m-2 s-1, with a mean of 0.92±0.33 μg m-2 s-1, whereas over black spruce, isoprene fluxes ranged from −0.06 to 0.54 μg m-2 s-1, with a mean of 0.36±0.21 μg m-2 s-1. The isoprene fluxes were exponentially correlated with solar radiation and radiative surface temperature. High correlations between isoprene fluxes and the fluxes of CO2 and latent heat were also observed. Carbon lost through isoprene emissions was about 0.7 and 0.8% of the CO2 assimilation rate for aspen and black spruce, respectively. The results demonstrate that the aircraft-based relaxed eddy-accumulation technique is a promising approach for quantifying the atmosphere–surface exchange of VOCs on a regional scale.  相似文献   

8.
Mercury (Hg) emissions from gasoline, diesel, and liquefied petroleum gas (LPG) vehicles were measured and speciated (particulate, oxidized, and elemental mercury). First, three different fuel types were analyzed for their original Hg contents; 571.1±4.5 ng L−1 for gasoline, 185.7±2.6 ng L−1 for diesel, and 1230.3±23.5 ng L−1 for LPG. All three vehicles were then tested at idling and driving modes. Hg in the exhaust gas was mostly in elemental form (Hg0), and no detectable levels of particulate (Hgp) or oxidized (Hg2+) mercury were measured. At idling modes, Hg concentrations in the exhaust gas of gasoline, diesel, and LPG vehicles were 1.5–9.1, 1.6–3.5, and 10.2–18.6 ng m−3, respectively. At driving modes, Hg concentrations were 3.8–16.8 ng m−3 (gasoline), 2.8–8.5 ng m−3 (diesel), and 20.0–26.9 ng m−3 (LPG). For all three vehicles, Hg concentrations at driving modes were higher than at idling modes. Furthermore, Hg emissions from LPG vehicle was highest of all three vehicle types tested, both at idling and driving modes, as expected from the fact that it had the highest original fuel Hg content.  相似文献   

9.
A few copper and gold smelters in Chile are behind a large fraction of global arsenic emissions, raising concerns for increased concentrations of arsenic in PM10 in Central and Northern Chile. This concern is amplified by the fact that Northern Chile soils and rivers in general are characterized by a high arsenic content. A monitoring and modeling study has been performed to quantify the regional impact of the smelter emissions. Measured atmospheric arsenic concentrations from 2.4 to 30.7 ng m−3 were found at seven rural stations, located tens to hundreds of kilometers away from the nearest smelter. Analyses of topsoil and subsoil samples taken from PM10 monitoring stations revealed levels up to 291 mg kg−1, the highest values found in the northern Atacama desert in Chile. An absolute principal component analysis of selected trace elements in PM10 shows that the regional impact of anthropogenic smelter emissions on airborne arsenic concentrations is more important than the effect of soil dust resuspension. The dominance of the smelter emissions is larger in Central Chile than in the northern parts. The impact of resuspended soil dust on airborne arsenic levels in rural areas was estimated not to exceed 5 ng m−3. The model calculations support the dominant role of anthropogenic emissions and give spatial and temporal variations in atmospheric concentrations consistent with the monitored levels at five of the seven stations. At two of the northernmost stations indications were found of unidentified sources other than the smelters and the resuspended soil dust, contributing to about 5 ng m−3 of total arsenic levels. The study confirms that a strong control or elimination of arsenic emissions from the smelters would lead to arsenic in PM10 levels in Northern and Central Chile comparable to non-polluted areas in other countries.  相似文献   

10.
PM2.5 aerosols were collected in Nanjing, a typical mega-city in China, during summer and winter 2004 and were characterized for aromatic and cyclic compounds using a GC/MS technique to understand the air pollution problem. They include polycyclic aromatic hydrocarbons (PAHs), hopanes, phthalates and hydroxy-PAHs (OH-PAHs). PAHs, hopanes and OH-PAHs presented higher concentrations in winter (26–178, 3.0–18, and 0.013–0.421 ng m−3, respectively) than in summer (12–96, 1.6–11, and 0.029–0.171 ng m−3, respectively) due to an enhanced coal burning for house heating and atmospheric inversion layers developed in the cold season. In contrast, phthalates are more abundant in summer (109–368 ng m−3, average 230 ng m−3) than in winter (33–390 ng m−3, average 170 ng m−3) due to an enhanced evaporation from plastics during the hot season and the subsequent deposition on the pre-existing particles. Generally, all the identified compounds showed higher concentrations in nighttime than in daytime due to inversion layers and increased emissions from heavy-duty trucks at night. PAHs, hopanes and phthalates in Nanjing aerosols are 5–100 times more abundant than those in Los Angeles, USA, indicating a serious air pollution problem in the city. Concentrations of OH-PAHs are 1–3 orders of magnitude less than their parent PAHs and comparable to those reported from other international cities. Source identification using diagnostic ratios of the organic tracers suggests that PAHs in Nanjing urban area are mainly derived from coal burning, whereas hopanes are more attributable to traffic emissions.  相似文献   

11.
A dynamic soil enclosure was used to characterise monoterpene emissions from 3 soil depths within a Picea sitchensis (Sitka spruce) forest. In addition, a dynamic branch enclosure was used to provide comparative emissions data from foliage. In all cases, limonene and α-pinene dominated monoterpene soil emissions, whilst camphene, β-pinene and myrcene were also present in significant quantities. α-Phellandrene, 3-carene and α-terpinene were occasionally emitted in quantifiable amounts whilst cymene and cineole, although tentatively identified, were always non-quantifiable. Total daily mean monoterpene emission rates, normalised to 30°C, varied considerably between soil depths from 33.6 μg m−2 h−1 (range 28.3–38.4) for undisturbed soil, to 13.0 μg m−2 h−1 (8.97–16.4) with uppermost layer removed, to 199 μg m−2 h−1 (157–216) with partially decayed layer removed, suggesting that the surface needle litter was the most likely source of soil emissions to the atmosphere. Relative monoterpene ratios did not vary significantly between layers. Foliar monoterpenes exhibited a similar emission profile to soils with the exceptions of camphene and 3-carene whose contributions decreased and increased, respectively. Emission rates from foliage, normalised to 30°C were found to have a daily mean of 625 ng g−1 dw h−1 (299–1360). On a land area basis however, total soil emissions were demonstrated to be relatively insignificant to total emissions from the forest ecosystem.  相似文献   

12.
Depending on the operating conditions and the age of the converter, mean platinum emissions ranged from 7 to 123 ng m-3 corresponding to emission factors between 9 and 124 ng km-1. There were no statistically significant differences between the four converter brands tested. The data from new (12–90 ng km-1) and old catalytic converters (9–26 ng km-1) installed on a medium-powered gasoline engine (1.8 l 66 kW) showed a tendency towards decreasing platinum emission with increasing use. The platinum emissions increased with rising simulated speed and exhaust temperature. The lowest mean emission from new converters (12 ng km-1) was found at a constant speed of 80 km h-1, the highest (90 ng km-1) at 130 km h-1. Using the US72 or the US72-EUDC test cycles the emission factors were higher (37 or 19 ng km-1) than at 80 km h-1 indicating that additional mechanical or thermal impacts enhance the platinum abrasion at cycle conditions. After installing catalytic converters tested with the 1.8 l engine on a smaller engine (1.4 l 44 kW), the platinum emissions measured at the US72 cycle and a high-speed condition (140 km h-1) were only 9 and 22 ng km-1, respectively. Platinum is almost exclusively emitted bound to aluminum oxide particles where (depending on the driving conditions) 43–74% of these emitted particles had aerodynamic diameters >10 μm. The alveolar fraction (<3 μm) was between 11 and 26% (1.8 l engine) and between 21 and 36% (1.4 l engine). If at all, soluble platinum is emitted in only very small quantities (⩽1%).  相似文献   

13.
Fine particle (PM2.5) samples were collected, using a charcoal diffusion denuder, in two urban areas of Chile, Santiago and Temuco, during the winter and spring season of 1998. Molecular markers of the organic aerosol were determined using GC/MS. Diagnostic ratios and molecular tracers were used to investigate the origin of carbonaceous aerosols. As main sources, road and non-road engine emissions in Santiago, and wood burning in Temuco were identified. Cluster analysis was used to compare the chemical characteristics of carbonaceous aerosols between the two urban environments. Distinct differences between Santiago and Temuco samples were observed. High concentrations of isoprenoid (30–69 ng m−3) and unresolved complex mixture (UCM) of hydrocarbons (839–1369 ng m−3) were found in Santiago. High concentrations of polynuclear aromatic hydrocarbons (751±304 ng m−3) and their oxygenated derivatives (4±2 ng m−3), and of n-alk-1-enes (16±13 ng m−3) were observed in Temuco.  相似文献   

14.
Air–water exchange fluxes of polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured in air and water samples from two sites on the Kenting coast, located at the southern tip of Taiwan, from January to December 2010. There was no significant difference in the total PAH (t-PAH) concentrations in both gas and dissolved phases between these two sites due to the less local input which also coincided to the low levels of t-PAH concentration; the gas and dissolved phases averaged 1.29 ± 0.59 ng m?3 and 2.17 ± 1.19 ng L?1 respectively. The direction and magnitude of the daily flux of PAHs were significantly influenced by wind speed and dissolved PAH concentrations. Individual PAH flux ranged from 627 ng m?2 d?1 volatilization of phenanthrene during the rainy season with storm–water discharges raising dissolved phase concentration, to 67 ng m?2 d?1 absorption of fluoranthene during high wind speed periods. Due to PAH annual fluxes through air–water exchange, Kenting seawater is a source of low molecular weight PAHs and a reservoir of high molecular weight PAHs. Estimated annual volatilization fluxes ranged from 7.3 μg m?2 yr?1 for pyrene to 50 μg m?2 yr?1 for phenanthrene and the absorption fluxes ranged from ?2.6 μg m?2 yr?1 for chrysene to ?3.5 μg m?2 yr?1 for fluoranthene.  相似文献   

15.
Estimates of the atmospheric deposition to Galveston Bay of polycyclic aromatic hydrocarbons (PAHs) are made using precipitation and meteorological data that were collected continuously from 2 February 1995 to 6 August 1996 at Seabrook, TX, USA. Particulate and vapor phase PAHs in ambient air and particulate and dissolved phases in rain samples were collected and analyzed. More than 95% of atmospheric PAHs were in the vapor phase and about 73% of PAHs in the rain were in the dissolved phase. Phenanthrene and napthalene were the dominant compounds in air vapor and rain dissolved phases, respectively, while 5 and 6 ring PAH were predominant in the particulate phase of both air and rain samples. Total PAH concentrations ranged from 4 to 161 ng m−3 in air samples and from 50 to 312 ng l−1 in rain samples. Temporal variability in total PAH air concentrations were observed, with lower concentrations in the spring and fall (4–34 ng m −3) compared to the summer and winter (37–161 ng m−3). PAHs in the air near Galveston Bay are derived from both combustion and petroleum vaporization. Gas exchange from the atmosphere to the surface water is estimated to be the major deposition process for PAHs (1211 μg m− 2 yr− 1), relative to wet deposition (130 μg m−2 yr− 1) and dry deposition (99 μg m−2 yr− 1). Annual deposition of PAHs directly to Galveston Bay from the atmosphere is estimated as 2  t yr−1.  相似文献   

16.
To investigate the characteristics of mercury exchange between soil and air in the heavily air-polluted area, total gaseous mercury (TGM) concentration in air and Hg exchange flux were measured in Wanshan Hg mining area (WMMA) in November, 2002 and July–August, 2004. The results showed that the average TGM concentrations in the ambient air (17.8–1101.8 ng m−3), average Hg emission flux (162–27827 ng m−2 h−1) and average Hg dry deposition flux (0–9434 ng m−2 h−1) in WMMA were 1–4 orders of magnitude higher than those in the background area. It is said that mercury-enriched soil is a significant Hg source of the atmosphere in WMMA. It was also found that widely distributed roasted cinnabar banks are net Hg sources of the atmosphere in WMMA. Relationships between mercury exchange flux and environmental parameters were investigated. The results indicated that the rate of mercury emission from soil could be accelerated by high total soil mercury concentration and solar irradiation. Whereas, highly elevated TGM concentrations in the ambient air can restrain Hg emission from soil and even lead to strongly atmospheric Hg deposition to soil surface. A great amount of gaseous mercury in the heavily polluted atmosphere may cycle between soil and air quickly and locally. Vegetation can inhibit mercury emission from soil and are important sinks of atmospheric mercury in heavily air-polluted area.  相似文献   

17.
Size-fractionated particles were collected at two sites from July 2004 to April 2006 in Shanghai. The mercury in particles was extracted and divided operationally into four species: exchangeable particulate mercury (EXPM), HCl-soluble particulate mercury (HPM), elemental particulate mercury (EPM) and residual particulate mercury. The total particulate Hg concentration during the study period ranged from 0.07 ng m?3 to 1.45 ng m?3 with the average 0.56 ± 0.22 ng m?3 at site 1, while 0.20 ng m?3–0.47 ng m?3 with the average 0.33 ± 0.09 ng m?3 at site 2, which is far higher than some foreign cities and comparable to some cities with heavy air pollution in China. The Hg mass content also displayed evident size distribution, with higher value in PM1.6–3.7, somewhat higher or lower than the source profile. EXAM was only found in the summer, HPM have higher percentage in summer and fall rather than in winter and spring. The different mercury species showed different correlation to temperature, relative humidity, wind speed. HPM positively depends on temperature at both sites which implies the importance of mercury transformation on particles. In foggy days TPM increased greatly, but HPM didn't vary greatly as anticipated. Instead, RPM gained a distinguished increase. It demonstrated that aqueous reaction and complex heterogenic reactions in droplet might happen in acidic environment. The correlation of mercury with other pollutants including SO2, NO2, CO and PM10 varies with the different mercury forms. Hybrid single-particle lagrangian integrated trajectories (HYSPLIT) model was used to back trace air mass at different representative days and results indicated that transportation from Huabei Plain will increase mercury concentration in winter and fall to some extent. The possible existing compounds and their atmospheric behavior of HPM, EPM and RPM were calculated and the compared to analyze its implication on atmospheric mercury cycle.  相似文献   

18.
Surface–atmosphere mercury fluxes are difficult to measure accurately. Current techniques include dynamic flux chambers and micrometeorological gradient and aerodynamic approaches, all of which have a number of intrinsic problems associated with them. We have adapted conditional sampling (relaxed eddy accumulation), a micrometeorological technique commonly used to measure other trace gas fluxes, to measure surface–air mercury fluxes. Our initial flux measurement campaign over an agricultural soil consisted of two 1-week measurement periods, and was longer in duration than previously reported mercury flux measurement periods. Fluxes during both measurement periods ranged between 190.5 (evolution) and –91.7 ng m−2 h−1 (deposition) with an average evolution of 9.67 ng m−2 h−1. The data showed significant diurnal trends, weakly correlated with shallow soil temperatures and solar radiation. This initial trial run indicates that conditional sampling has much promise for the accurate quantification of both short and long-term mercury fluxes.  相似文献   

19.
20.
An on-line supercritical fluid extraction–liquid chromatography–gas chromatography–mass spectrometry (SFE–LC–GC–MS) method was developed for the analysis of the particulate polycyclic aromatic hydrocarbons (PAHs). The limits of detection of the system for the quantification standards were in the range of 0.25–0.57 ng, while the limits of determinations for filter samples varied from 0.02 to 0.04 ng m−3 (24 h sampling). The linearity was excellent from 5 to 300 ng (R2>0.967). The analysis could be carried out in a closed system without tedious manual sample pretreatment and with no risk of errors by contamination or loss of the analytes. The results of the SFE–LC–GC–MS method were comparable with those for Soxhlet and shake-flask extractions with GC–MS. The new method was applied to the analysis of PAHs collected by high-volume filter in the Helsinki area to study the seasonal trend of the concentrations. The individual PAH concentrations varied from 0.015 to more than 1 ng m−3, while total PAH concentrations varied from 0.81 to 5.68 ng m−3. The concentrations were generally higher in winter than in summer. The mass percentage of the total PAHs in total suspended particulates ranged from 2.85×10−3% in July to 15.0×10−3% in December. Increased emissions in winter, meteorological conditions, and more serious artefacts during the sampling in summer season may explain the concentration profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号