首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A kinetic mechanism to predict secondary organic aerosol (SOA) formation from the photo-oxidation of toluene was developed. Aerosol phase chemistry that includes nucleation, gas–particle partitioning and particle-phase reactions as well as the gas-phase chemistry of toluene and its degradation products were represented. The mechanism was evaluated against experimental data obtained from the University of North Carolina (UNC) 270 m3 dual outdoor aerosol smog chamber facility. The model adequately simulates the decay of toluene, the nitric oxide (NO) to nitrogen dioxide (NO2) conversion and ozone formation. It also provides a reasonable prediction of SOA production under different conditions that range from 15 to 300 μg m−3. Speciation of simulated aerosol material shows that up to 70% of the aerosol mass comes from oligomers and polymers depending on initial reactant concentrations. The dominant particle-phase species predicted by the mechanism are glyoxal oligomers, ketene oligomers from the photolysis of the toluene OH reaction product 2-methyl-2,4-hexadienedial, organic nitrates, methyl nitro-phenol analogues, C7 organic peroxides, acylperoxy nitrates and for the low-concentration experiments, unsaturated hydroxy nitro acids.  相似文献   

2.
Decamethyl cyclopentasiloxane (D5) and decamethyl tetrasiloxane (MD2M) were injected into a smog chamber containing fine Arizona road dust particles (95% surface area <2.6 μM) and an urban smog atmosphere in the daytime. A photochemical reaction – gas–particle partitioning reaction scheme, was implemented to simulate the formation and gas–particle partitioning of hydroxyl oxidation products of D5 and MD2M. This scheme incorporated the reactions of D5 and MD2M into an existing urban smog chemical mechanism carbon bond IV and partitioned the products between gas and particle phase by treating gas–particle partitioning as a kinetic process and specifying an uptake and off-gassing rate. A photochemical model PKSS was used to simulate this set of reactions. A Langmuirian partitioning model was used to convert the measured and estimated mass-based partitioning coefficients (KP) to a molar or volume-based form. The model simulations indicated that >99% of all product silanol formed in the gas-phase partition immediately to particle phase and the experimental data agreed with model predictions. One product, D4TOH was observed and confirmed for the D5 reaction and this system was modeled successfully. Experimental data was inadequate for MD2M reaction products and it is likely that more than one product formed. The model set up a framework into which more reaction and partitioning steps can be easily added.  相似文献   

3.
There is an appreciable chemical interaction between SO2 and photochemical smog which depends on the concentration of SO2 and water vapor. The rate of decay of SO2 concentration is greatly increased in the presence of photochemical smog. With 0.75 ppm SO2, a light-scattering aerosol is produced in dry systems and systems at 22 and 55% relative humidity (RH). Aerosol is not observed until after the NO2 peak has been reached and the NO concentration has fallen to a very low value. The formation of aerosol corresponds in time to the region of most rapid decrease in the SO2 profile. In systems at 65% RH or with smaller amounts of SO2, no light scattering is observed, but the percentage of SO2 disappearing is greater. In relatively dry systems the presence of SO2 results in a general slowing down of the photochemical smog reactions. In systems containing water vapor concentrations comparable to those found in the atmosphere, the inhibiting influence of SO2 on the smog reaction is less pronounced. However, the maximum concentration of oxidant produced by the photochemical smog reactions is significantly lower when SO2 is present.  相似文献   

4.
A radiative transfer model and photochemical box model are used to examine the effects of clouds and aerosols on actinic flux and photolysis rates, and the impacts of changes in photolysis rates on ozone production and destruction rates in a polluted urban environment like Houston, Texas. During the TexAQS-II Radical and Aerosol Measurement Project the combined cloud and aerosol effects reduced j(NO2) photolysis frequencies by nominally 17%, while aerosols reduced j(NO2) by 3% on six clear sky days. Reductions in actinic flux due to attenuation by clouds and aerosols correspond to reduced net ozone formation rates with a nearly one-to-one relationship. The overall reduction in the net ozone production rate due to reductions in photolysis rates by clouds and aerosols was approximately 8 ppbv h?1.  相似文献   

5.
Aerosols in the Mexico City atmosphere can have a non-negligible effect on the ultraviolet radiation field and hence on the formation of photochemical smog. We used estimates of aerosol optical depths from sun photometer observations in a detailed radiative transfer model, to calculate photolysis rate coefficients (JNO2) for the key reaction NO2+→NO+O (λ<430 nm). The calculated values are in good agreement with previously published measurements of JNO2at two sites in Mexico City: Palacio de Minerı́a (19°25′59″N, 99°07′58″W, 2233 masl), and IMP (19°28′48″N, 99°11′07″W, 2277 masl) and in Tres Marias, a town near Mexico City (19°03′N, 99°14′W, 2810 masl). In particular, the model reproduces very well the contrast between the two urban sites and the evidently much cleaner Tres Marias site. For the measurement days, reductions in surface JNO2 by 10–30% could be attributed to the presence of aerosols, with considerable uncertainty due largely to lack of detailed data on aerosol optical properties at ultraviolet wavelengths (esp. the single scattering albedo). The potential impact of such large reductions in photolysis rates on surface ozone concentrations is illustrated with a simple zero-dimensional photochemical model.  相似文献   

6.
In a companion paper by Hu et al. [2007. A kinetic mechanism for predicting secondary organic aerosol formation from toluene oxidation in the presence of NOx and natural sunlight. Atmospheric Environment, doi:10.1016/j.atmosenv.2007.04.025], a kinetic mechanism was developed from data generated in the University of North Carolina's (UNC) 270 m3 dual outdoor aerosol smog chamber, to predict secondary organic aerosol (SOA) formation from toluene oxidation in the atmosphere. In this paper, experimental data sets from European Photoreactor (EUPHORE), smog chambers at the California Institute of Technology (Caltech), and the UNC 300 m3 dual-outdoor gas phase chamber were used to evaluate the toluene mechanism. The model simulates SOA formation for the ‘low-NOx’ and ‘mid-NOx’ experiments from EUPHORE chambers reasonably well, but over-predicts SOA mass concentrations for the ‘high-NOx’ run. The model well simulates the SOA mass concentrations observed from the Caltech chambers. Experiments with the three key toluene products, 1,4-butenedial, 4-oxo-2-pentenal and o-cresol in the presence of oxides of nitrogen (NOx) are also simulated by the developed mechanism. The model well predicts the NOx time–concentration profiles and the decay of these two carbonyls, but underestimates ozone (O3) formation for 4-oxo-2-pentenal. It well simulates SOA formation from 1,4-butenedial but overestimates (possibly due to experimental problems) the measured aerosol mass concentrations from 4-oxo-2-pentenal. The model underestimates SOA production from o-cresol, mostly due to its under-prediction of o-cresol decay. The effects of varying temperature, relative humidity, glyoxal uptake, organic nitrate yields, and background seed aerosol concentrations, were also investigated.  相似文献   

7.
In urban atmospheres hydrocarbons promote the conversion of NO to NO2 under the influence of sunlight, ultimately giving rise to photochemical smog. The conversion results from a long chain process with HO radicals as the chain carrier. If this chain could be interrupted by suitable radical traps, the formation of photochemical smog would be inhibited. In this paper we report the results of studies using phenol, benzaldehyde, and aniline as inhibitors. Mixtures containing 16 mTorr C3H6, 8 mTorr NO, ~85 Torr 02, and the addi tives were irradiated at 25°C. The NO2 pressure was monitored photometrically. In the absence of additive, the NO2 pressure first increases with irradiation time reaching a maximum conversion corresponding to 70% of the NO at 1 2 minutes. As the radiation time is lengthened, the NO2 pressure drops. With the additive present, the formation of NO2 is delayed. The time to reach the maximum percent conversion of NO to N02 becomes 20, 22, 31, and 40 minutes respectively, for 13 mTorr C6H5OH, 2 mTorr C6H5CHO, 8 mTorr C6H5CHO, and 4.1 mTorr C6H5NH2 added. The problems and possibilities of adding inhibitors to the atmosphere to control air pollution are discussed.  相似文献   

8.
The photo-induced degradation of naphthalene, 1,4-naphthoquinone, 1-naphthol and 1-NO2 naphthalene, adsorbed on silica gel, and with the addition of nitrogenous air pollutants e.g. NO2 (as KNO2) was investigated. Results indicate that compounds adsorbed onto a solid carrier are degraded when irradiated with UV light (λ > 290 nm) in the presence of nitrites. The key species initiating the naphthalene degradation is the OH-radical which is generated through the photolysis of NO2. Reaction products identified were 2-formyl-cinnamaldehyde, 1,4-naphthoquinone, nitronaphthol, o-phthaldialdehyde, phthalide and nitronaphthalene. A mass balance between 40–50% was achieved. Under the same irradiation conditions, 1-NO2 naphthalene is mainly degraded by direct photolysis while degradation of 1-naphthol and 1,4-naphthoquinone proceeds via the reaction with OH-radicals. Identified products were hydroxy-nitro-nitroso- and quinones compounds.  相似文献   

9.
The formation of mutagenic nitro-polycyclic aromatic hydrocarbons (NPAHs) 1- and 2-nitrotriphenylene (1- and 2-NTP) via gas-phase OH or NO3 radical-initiated reactions of triphenylene was demonstrated for the first time using a flow reaction system. In contrast with the results of conventional electrophilic nitration, 2-NTP was formed in larger yield than 1-NTP, but this is consistent with the mechanism proposed for gas-phase radical-initiated nitration of PAH. In diesel exhaust particle (DEP) samples, both 1- and 2-NTP were identified and their concentrations determined, as well as 1-nitropyrene (1-NP), which is a representative combustion-derived NPAH: the mean concentrations of 1-NTP, 2-NTP, and 1-NP were 4.7, 1.9, and 32 pmol mgDEP–1, respectively. The mean 2-NTP/1-NTP, 1-NTP/1-NP, and 2-NTP/1-NP ratios in samples of airborne particles collected in a residential area in Osaka, Japan, were>1.55,<0.25, and 0.37, respectively; these values are much higher than those of the DEP samples. This finding indicates that there is another source for airborne NTPs, especially 2-NTP, apart from diesel exhaust. These results strongly suggest that airborne NTPs originate from atmospheric processes such as radical-initiated reactions of triphenylene, and this has a significant influence on the atmospheric occurrence of NTPs.  相似文献   

10.
This study investigates several factors that could influence ozone chemistry occurring in subsonic aircraft plumes in the upper troposphere. The study focuses on uncertainties in gas-phase rate parameters, but also examines the influence of selected heterogeneous reactions, the rate of expansion of the plume, ambient and initial plume concentrations, and the time of emissions. Monte Carlo analysis with Latin hypercube sampling was applied to an expanding box model of an aircraft plume, in order to estimate the sensitivities of O3 perturbations (ΔO3) to uncertainties in rate constants in the RADM2 chemical mechanism. The resulting coefficient of variation in ΔO3 at the end of a 36 h simulation was about 50%. Influential uncertainties in gas-phase rate parameters include those for photolysis of NO2 and HCHO, O3+NO, HO2+NO, and formation of PAN and HNO3. With high background concentrations of non-methane hydrocarbons, uncertainties in rate parameters of reactions involving peroxy radicals from ethene and propene oxidation were also influential. The coefficient of variation for ΔO3 due to uncertainties in emission indices of NOx, CO, and organic compounds was less than 15%. The effects of the heterogeneous reaction of N2O5 leading to HNO3 formation, and hypothesized reactions of HNO3 and NO2 on soot, were also investigated. The results suggest that the latter two reactions could be influential for ΔO3 if published estimates of reaction probabilities and high estimates of soot concentrations in plumes are realistic.  相似文献   

11.
Abstract

A photochemical smog model system, the Variable-Grid Urban Airshed Model/Systems Applications International Mesoscale Model (UAM-V/SAIMM), was used to investigate photochemical pollution in the Bangkok Metropolitan Region (BMR). The model system was first applied to simulate a historical photochemical smog episode of two days (January 13-14, 1997) using the 1997 anthropogenic emission database available at the Pollution Control Department and an estimated biogenic emission. The output 1-hr ozone (O3) for BMR, however, did not meet the U.S. Environmental Protection Agency suggested performance criteria. The simulated minimum and maximum O3 values in the domain were much higher than the observations. Multiple model runs with different precursor emission reduction scenarios showed that the best model performance with the simulated 1-hr O3 meeting all the criteria was obtained when the volatile organic compound (VOC) and oxides of nitrogen (NOx) emission from mobile source reduced by 50% and carbon monoxide by 20% from the original database. Various combinations of anthropogenic and biogenic emissions in Bangkok and surrounding provinces were simulated to assess the contribution of different sources to O3 pollution in the city. O3 formation in Bangkok was found to be more VOC-sensitive than NOx-sensitive. To attain the Thailand ambient air quality standard for 1-hr O3 of 100 ppb, VOC emission in BMR should be reduced by 50-60%. Management strategies considered in the scenario study consist of Stage I, Stage II vapor control, replacement of two-stroke by four-stroke motorcycles, 100% compressed natural gas bus, 100% natural gas-fired power plants, and replacement of methyltertiarybutylether by ethanol as an additive for gasoline.  相似文献   

12.
Absolute rate coefficients for the gas-phase reactions of OH radical with 3-methylbutanal (k1), trans-2-methyl-2-butenal (k2), and 3-methyl-2-butenal (k3) have been obtained with the pulsed laser photolysis/laser-induced fluorescence technique. Gas-phase concentration of aldehydes was measured by UV absorption spectroscopy at 185 nm. Experiments were performed over the temperature range of 263–353 K at total pressures of helium between 46.2 and 100 Torr. No pressure dependence of all ki (i = 1–3) was observed at all temperatures. In contrast, a negative temperature dependence of ki (i.e., ki increases when temperature decreases) was observed in that T range. The resulting Arrhenius expressions (±2σ) are: k1(T) = (5.8 ± 1.7)×10?12 exp{(499 ± 94)/T} cm3 molecule?1 s?1, k2(T)=(6.9 ± 0.9)×10?12 exp{(526 ± 42)/T} cm3 molecule?1 s?1, k3(T)=(5.6 ± 1.2)×10?12 exp{(666 ± 54)/T} cm3 molecule?1 s?1.The tropospheric lifetimes derived from the above OH-reactivity trend are estimated to be higher for 3-methylbutanal than those for the unsaturated aldehydes. A comparison of the tropospheric removal of these aldehydes by OH radicals with other homogeneous degradation routes leads to the conclusion that this reaction can be the main homogeneous removal pathway. However, photolysis of these aldehydes in the actinic region (λ > 290 nm) could play an important role along the troposphere, particularly for 3-methyl-2-butenal. This process could compete with the OH reaction for 3-methylbutanal or be negligible for trans-2-methyl-2-butenal in the troposphere.  相似文献   

13.
Both similarities and differences in summertime atmospheric photochemical oxidation appear in the comparison of four field studies: TEXAQS2000 (Houston, 2000), NYC2001 (New York City, 2001), MCMA2003 (Mexico City, 2003), and TRAMP2006 (Houston, 2006). The compared photochemical indicators are OH and HO2 abundances, OH reactivity (the inverse of the OH lifetime), HOx budget, OH chain length (ratio of OH cycling to OH loss), calculated ozone production, and ozone sensitivity. In terms of photochemical activity, Houston is much more like Mexico City than New York City. These relationships result from the ratio of volatile organic compounds (VOCs) to nitrogen oxides (NOx), which are comparable in Houston and Mexico City, but much lower in New York City. Compared to New York City, Houston and Mexico City also have higher levels of OH and HO2, longer OH chain lengths, a smaller contribution of reactions with NOx to the OH reactivity, and NOx-sensitivity for ozone production during the day. In all four studies, the photolysis of nitrous acid (HONO) and formaldehyde (HCHO) are significant, if not dominant, HOx sources. A problematic result in all four studies is the greater OH production than OH loss during morning rush hour, even though OH production and loss are expected to always be in balance because of the short OH lifetime. The cause of this discrepancy is not understood, but may be related to the under-predicted HO2 in high NOx conditions, which could have implications for ozone production. Three photochemical indicators show particularly high photochemical activity in Houston during the TRAMP2006 study: the long portion of the day for which ozone production was NOx-sensitive, the calculated ozone production rate that was second only to Mexico City's, and the OH chain length that was twice that of any other location. These results on photochemical activity provide additional support for regulatory actions to reduce reactive VOCs in Houston in order to reduce ozone and other pollutants.  相似文献   

14.
The city of Santiago, Chile experiences frequent high pollution episodes and as a consequence very high ozone concentrations, which are associated with health problems including increasing daily mortality and hospital admissions for respiratory illnesses. The development of ozone abatement strategies requires the determination of the potential of each pollutant to produce ozone, taking into account known mechanisms and chemical kinetics in addition to ambient atmospheric conditions. In this study, the photochemical formation of ozone during a summer campaign carried out from March 8–20, 2005 has been investigated using an urban photochemical box model based on the Master Chemical Mechanism (MCMv3.1). The MCM box model has been constrained with 10 min averages of simultaneous measurements of HONO, HCHO, CO, NO, j(O1D), j(NO2), 31 volatile organic compounds (VOCs) and meteorological parameters. The O3–NOx–VOC sensitivities have been determined by simulating ozone formation at different VOC and NOx concentrations. Ozone sensitivity analyses showed that photochemical ozone formation is VOC-limited under average summertime conditions in Santiago. The results of the model simulations have been compared with a set of potential empirical indicator relationships including H2O2/HNO3, HCHO/NOy and O3/NOz. The ozone forming potential of each measured VOC has been determined using the MCM box model. The impacts of the above study on possible summertime ozone control strategies in Santiago are discussed.  相似文献   

15.
Based on available literature data of [NO2 ], steady-state [·OH], and ·OH generation rate upon nitrate photolysis in environmental aqueous samples under sunlight, the steady-state [·NO2], could be calculated. Interestingly, one to two orders of magnitude more ·NO2 would be formed in photochemical processes in atmospheric water droplets compared to transfer from the gas phase. The relative importance of nitrite oxidation compared to nitrate photolysis as an ·NO2 source would be higher in atmospheric than in surface waters. The calculated levels of ·NO2 could lead to substantial transformation of phenol into nitrophenols in both atmospheric and surface waters.  相似文献   

16.
The significance of heterogeneous mechanisms in controlling gas-phase NOx (NO, NO2) mixing ratios in polluted urban air, especially during nighttime, is not well established. Several recent studies have suggested that carbon soot can provide an effective surface for mediating the inter conversion among several NOy members. However, a number of such reactions reported in the literature have widely varying reaction probabilities and often conflicting pathways. We evaluated several of these reactions and choose the NO2 conversion to HONO on the surface of soot particles for further analysis with a box photochemical model. These calculations show that the conversion of NO2 to HONO on particle surfaces produces a large, measurable signal (up to several parts per billion) in nighttime HONO mixing ratios. Inclusion of this reaction was also shown to have significant impacts on ozone, OH and HO2 in the polluted planetary boundary layer (PBL). The sensitivity of these results to the different reaction rate probabilities (γ) and particle surface areas was also examined. Results are then evaluated to find the combination of γ and surface areas that would mostly likely occur in the PBL within the limitations of the model.  相似文献   

17.
The formation of secondary organic aerosol from the gas-phase reaction of catechol (1,2-dihydroxybenzene) with ozone has been studied in two smog chambers. Aerosol production was monitored using a scanning mobility particle sizer and loss of the precursor was determined by gas chromatography and infrared spectroscopy, whilst ozone concentrations were measured using a UV photometric analyzer. The overall organic aerosol yield (Y) was determined as the ratio of the suspended aerosol mass corrected for wall losses (Mo) to the total reacted catechol concentrations, assuming a particle density of 1.4 g cm?3. Analysis of the data clearly shows that Y is a strong function of Mo and that secondary organic aerosol formation can be expressed by a one-product gas–particle partitioning absorption model. The aerosol formation is affected by the initial catechol concentration, which leads to aerosol yields ranging from 17% to 86%. The results of this work are compared to similar studies reported in the literature.  相似文献   

18.
The interference in HNO3 determination due to HNO2 and NOx retention on nylon filters has been evaluated in laboratory and field conditions. Nitrous acid is retained on nylon filters with efficiencies varying from 25% at 12ℓ min−1 to 80% at 2ℓ min−1, yielding NO2 ion. In ambient sampling performed during photochemical smog episodes, NO2 is oxidized to NO3 with conversion factors up to 100%, resulting in a positive bias in HNO3 determination.NO2 reacts heterogeneously with H2O on nylon surfaces according to the reaction 2NO2 + H2O → HNO2 + HNO3 with a removal constant of about 1 × 10−4 ms−1 at a H2O concentration of 20,000 ppm. The resulting nitrite and nitrate are independent of the sampling flow rate, while NO2 concentration, sampling time and exposed nylon surface area play a directly proportional role. Accordingly, the relative interference of NO2 with respect to HNO3 determination is almost negligible for nylon filters, usually run at relatively high flow rates, while it may be significant for nylon denuders, which are characterized by larger exposed surfaces and lower operating flow rates.  相似文献   

19.
During the 1999 summer field season at Summit, Greenland, we conducted several series of experiments to follow up on our 1998 discovery that NOx is released from the sunlit snowpack. The 1999 experiments included measurements of HONO in addition to NO and NO2, and were designed to confirm, for Greenland snow, that the processes producing reactive nitrogen oxides in the snow are largely photochemical. Long duration experiments (up to 48 h) in a flow-through chamber and in the natural snowpack revealed sun-synchronous diurnal variations of all three reactive nitrogen oxides. In a second set of experiments we alternately shaded or exposed snow (again in the natural snowpack and in the chamber) to ambient sunlight for short periods to reduce any temperature changes during variations in light intensity. All three N oxides increased (decreased) very rapidly when sunlit (shaded). In all experiments NO2 was approximately 3-fold more abundant than NO and HONO (which were at similar levels). Higher concentrations of NO3 in the snow resulted in higher mixing ratios of HONO, NO and NO2 in the snow pore air, consistent with our hypothesis that photolysis of NO3 is the source of the reactive N oxides.  相似文献   

20.
The CIT/UCD three-dimensional source-oriented externally mixed air quality model is tested during a severe photochemical smog episode (Los Angeles, 7–9 September 1993) using two different chemical mechanisms that describe the formation of ozone and secondary reaction products. The first chemical mechanism is the secondary organic aerosol mechanism (SOAM) that is based on SAPRC90 with extensions to describe the formation of condensable organic products. The second chemical mechanism is the caltech atmospheric chemistry mechanism (CACM) that is based on SAPRC99 with more detailed treatment of organic oxidation products.The predicted ozone concentrations from the CIT/UCD/SOAM and the CIT/UCD/CACM models agree well with the observations made at most monitoring sites with a mean normalized error of approximately 0.4–0.5. Good agreement is generally found between the predicted and measured NOx concentrations except during morning rush hours of 6–10 am when NOx concentrations are under-predicted at most locations. Total VOC concentrations predicted by the two chemical mechanisms agree reasonably well with the observations at three of the four sites where measurements were made. Gas-phase concentrations of phenolic compounds and benzaldehyde predicted by the UCD/CIT/CACM model are higher than the measured concentrations whereas the predicted concentrations of other aromatic compounds approximately agree with the measured values.The fine airborne particulate matter mass concentrations (PM2.5) predicted by the UCD/CIT/SOAM and UCD/CIT/CACM models are slightly greater than the observed values during evening hours and lower than observed values during morning rush hours. The evening over-predictions are driven by an excess of nitrate, ammonium ion and sulfate. The UCD/CIT/CACM model predicts higher nighttime concentrations of gaseous precursors leading to the formation of particulate nitrate than the UCD/CIT/SOAM model. Elemental carbon and total organic mass are under-predicted by both models during morning rush hour periods. When this latter finding is combined with the NOx under-predictions that occur at the same time, it suggests a systematic bias in the diesel engine emissions inventory. The mass of particulate total organic carbon is under-predicted by both the UCD/CIT/SOAM and UCD/CIT/CACM models during afternoon hours. Elemental carbon concentrations generally agree with the observations at this time. Both the UCD/CIT/SOAM and UCD/CIT/CACM models predict low concentrations of secondary organic aerosol (SOA) (<3.5 μg m−3) indicating that both models could be missing SOA formation pathways. The representation of the aerosol as an internal mixture vs. a source-oriented external mixture did not significantly affect the predicted concentrations during the current study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号