首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A study was conducted to investigate the accumulation and distribution of arsenic in different fractions of rice grain (Oryza sativa L.) collected from arsenic affected area of Bangladesh. The agricultural soil of study area has become highly contaminated with arsenic due to the excessive use of arsenic-rich underground water (0.070+/-0.006 mg l(-1), n=6) for irrigation. Arsenic content in tissues of rice plant and in fractions of rice grain of two widely cultivated rice varieties, namely BRRI dhan28 and BRRI hybrid dhan1, were determined. Regardless of rice varieties, arsenic content was about 28- and 75-folds higher in root than that of shoot and raw rice grain, respectively. In fractions of parboiled and non-parboiled rice grain of both varieties, the order of arsenic concentrations was; rice hull>bran-polish>brown rice>raw rice>polish rice. Arsenic content was higher in non-parboiled rice grain than that of parboiled rice. Arsenic concentrations in parboiled and non-parboiled brown rice of BRRI dhan28 were 0.8+/-0.1 and 0.5+/-0.0 mg kg(-1) dry weight, respectively while those of BRRI hybrid dhan1 were 0.8+/-0.2 and 0.6+/-0.2 mg kg(-1) dry weight, respectively. However, parboiled and non-parboiled polish rice grain of BRRI dhan28 contained 0.4+/-0.0 and 0.3+/-0.1 mg kg(-1) dry weight of arsenic, respectively while those of BRRI hybrid dhan1 contained 0.43+/-0.01 and 0.5+/-0.0 mg kg(-1) dry weight, respectively. Both polish and brown rice are readily cooked for human consumption. The concentration of arsenic found in the present study is much lower than the permissible limit in rice (1.0 mg kg(-1)) according to WHO recommendation. Thus, rice grown in soils of Bangladesh contaminated with arsenic of 14.5+/-0.1 mg kg(-1) could be considered safe for human consumption.  相似文献   

2.
Xu J  Yang L  Wang Z  Dong G  Huang J  Wang Y 《Chemosphere》2006,62(4):602-607
Pot soil experiments showed that copper (Cu) is highly toxic to rice. Rice grain yields decreased exponentially and significantly with the increase of soil Cu levels. Rice grain yield was reduced about 10% by soil Cu level of 100 mg kg(-1), about 50% by soil Cu level of 300-500 mg kg(-1) and about 90% by soil Cu concentration of 1,000 mg kg(-1). Root was more sensitive to soil Cu toxicity than other parts of rice plant at relatively lower soil Cu levels (less than 300-500 mg kg(-1)), but the growth of whole rice plant was severely inhibited at high soil Cu levels (300-500 mg kg(-1) or above). Cu concentrations in rice grain increased with soil Cu levels below 150-200 mg kg(-1), but decreased with soil Cu levels above 150-200 mg kg(-1), with peak Cu concentration at soil Cu level of 150-20 mg kg(-1). Cu was not distributed evenly in different parts of rice grain. Cu concentration in cortex (embryo) was more than 2-fold that in chaff and polished rice. More than 60% of the Cu in grain was accumulated in polished rice, about 24% in cortex (embryo), and about 12% in chaff. So, about 1/3 of the Cu in rice grain was eliminated after grain processing (chaff, cortex and embryo was removed).  相似文献   

3.
Effect of bound residues of metsulfuron-methyl in soil on rice growth   总被引:3,自引:0,他引:3  
Li ZJ  Xu JM  Muhammad A  Ma GR 《Chemosphere》2005,58(9):1177-1183
A pot experiment was conducted to appraise the hazards of bound residues of metsulfuron-methyl in soil at six levels (0, 0.050, 0.089, 0.158, 0.281, and 0.500 mg kg(-1)) to the growth of four rice varieties (Xiushui 63, Eryou 810, Liangyoupeijiu, and Zhenong 952). The morphological characteristics of rice roots like root number, total length, surface area of rice roots, and rice biomass were determined. The results showed that the bound residues of metsulfuron-methyl in soil impacted the growth of rice. Root number, total length of roots, surface area of roots, and biomass were restrained by bound residues of metsulfuron-methyl in soil. The inhibition rate of root growth increased from 69.46-81.32% to 85.18-95.97% with the increasing of levels of bound residues of metsulfuron-methyl from 0.05 mg kg(-1) to 0.50 mg kg(-1). The number of rice roots could be taken as a sensitive index to screen the rice varieties endurable to bound residues of metsulfuron-methyl in soil and to predict the potential hazards of bound residues of metsulfuron-methyl in soil to rice. The level of bound residues of metsulfuron-methyl in soil causing the root numbers decreased by 50% (IC50) followed the order of Xiushui 63 < Eryou 810 < Liangyoupeijiu < Zhenong 952.  相似文献   

4.
Yan YP  He JY  Zhu C  Cheng C  Pan XB  Sun ZY 《Chemosphere》2006,65(10):1690-1696
A pot experiment with 38 commonly cultured rice cultivars showed that the effect of Cu (100 mg kg(-1)) on rice growth, grain yield and accumulation of Cu in brown rice varied greatly with different cultivars. Although the average Cu concentration in brown rice of the 38 cultivars was significantly increased (P<0.01) compared with the control, in none of the cultivars did Cu concentration in brown rice exceed the maximum permissible limit of 10 mg Cu kg(-1). This suggests that rice grown in Cu-contaminated paddy soil (100 mg Cu kg(-1)) will not adversely affect human health through the food chain. Because of the significant negative correlation between grain weight and Cu concentration in brown rice with the soil Cu treatment, screening for cultivars with low Cu accumulation in brown rice and high grain yield for Cu-contaminated areas is feasible. The present research led to the recommendation of three such cultivars: Jiahua, Zhenxian 866, Zhe 733. The average grain yield under Cu treatment (100 mg Cu kg(-1) soil) was significantly (P<0.01) reduced compared with the control. The decreases or increases of grain yields mainly resulted from the combined effects of the panicles per pot, spikelets per panicle and filled spikelets per panicle under the soil Cu treatment. Furthermore, there were significant (r=0.869, P<0.01) positive correlations between the RC (relative changes) of spikelets per panicle and filled spikelets per panicle under the soil Cu treatment.  相似文献   

5.
This greenhouse experiment evaluated the influence of arsenic uptake by arsenic hyperaccumulator Pteris vittata L. and non-arsenic hyperaccumulator Nephrolepis exaltata L. on arsenic chemistry in bulk and rhizosphere soil. The plants were grown for 8 weeks in a rhizopot with a soil containing 105 mg kg(-1) arsenic. The soil arsenic was fractionated into five fractions with decreasing availability: non-specifically bound (N), specifically bound (S), amorphous hydrous-oxide bound (A), crystalline hydrous-oxide bound (C), and residual (R). P. vittata produced larger plant biomass (7.38 vs. 2.32 mg plant(-1)) and removed more arsenic (2.61 vs. 0.09 mg pot(-1) arsenic) than N. exaltata. Plant growth reduced water-soluble arsenic, and increased soil pH (P. vittata only) in the rhizosphere soil. P. vittata was more efficient than N. exaltata to access arsenic from all fractions (39-64% vs. 5-39% reduction). However, most of the arsenic taken up by both plants was from the A fraction (67-77%) in the rhizosphere soil, the most abundant (61.5%) instead of the most available (N fraction).  相似文献   

6.
This greenhouse experiment evaluated arsenic removal by Pteris vittata and its effects on arsenic redistribution in soils. P. vittata grew in six arsenic-contaminated soils and its fronds were harvested and analyzed for arsenic in October, 2003, April, 2004, and October, 2004. The soil arsenic was separated into five fractions via sequential extraction. The ferns grew well and took up arsenic from all soils. Fern biomass ranged from 24.8 to 33.5 g plant(-1) after 4 months of growth but was reduced in the subsequent harvests. The frond arsenic concentrations ranged from 66 to 6,151 mg kg(-1), 110 to 3,056 mg kg(-1), and 162 to 2,139 mg kg(-1) from the first, second and third harvest, respectively. P. vittata reduced soil arsenic by 6.4-13% after three harvests. Arsenic in the soils was primarily associated with amorphous hydrous oxides (40-59%), which contributed the most to arsenic taken up by P. vittata (45-72%). It is possible to use P. vittata to remediate arsenic-contaminated soils by repeatedly harvesting its fronds.  相似文献   

7.
This study monitored the influence of arsenic-contaminated irrigation water on alkaline soils and arsenic uptake in agricultural plants at field level. The arsenic concentrations in irrigation water ranges from <0.005 to 1.014 mg L(-1) where the arsenic concentrations in the soils were measured from 6.1 to 16.7 mg As kg(-1). The arsenic content in different parts of plants are found in the order of roots>shoots>leaves>edible parts. The mean arsenic content of edible plant material (dry weight) were found in the order of onion leaves (0.55 mg As kg(-1))>onion bulb (0.45 mg As kg(-1))>cauliflower (0.33 mg As kg(-1))>rice (0.18 mg As kg(-1))>brinjal (0.09 mg As kg(-1))>potato (<0.01 mg As kg(-1)).  相似文献   

8.
The acquaintance of arsenic concentrations in rice grain is vital in risk assessment. In this study, we determined the concentration of arsenic in 282 brown rice grains sampled from Hainan Island, China, and discussed its possible relationships to the considered soil properties. Arsenic concentrations in the rice grain from Hainan Island varied from 5 to 309 μg/kg, with a mean (92 μg/kg) lower than most published data from other countries/regions and the maximum contaminant level (MCL) for Asi in rice. The result of correlation analysis between grain and soil properties showed that grain As concentrations correlated significantly to soil arsenic speciation, organic matter and soil P contents and could be best predicted by humic acid bound and Fe-Mn oxides bound As fractions. Grain arsenic rises steeply at soil As concentrations lower than 3.6 mg/kg and gently at higher concentrations.  相似文献   

9.
Burning seaweed to produce kelp, valued for its high potash and soda content, was formerly a significant industry in remote coastal areas of Scotland and elsewhere. Given the high concentrations of arsenic in seaweeds, up to 100 mg kg(-1), this study investigates the possibility that the kelp industry caused arsenic contamination of these pristine environments. A series of laboratory-scale seaweed burning experiments was conducted, and analysis of the products using HPLC ICP-MS shows that at least 40% of the arsenic originally in the seaweed could have been released into the fumes. The hypothesis that the burning process transforms arsenic from low toxicity arsenosugars in the original seaweeds (Fucus vesiculosus and Laminaria digitata) to highly toxic inorganic forms, predominantly arsenate, is consistent with As speciation analysis results. A field study conducted on Westray, Orkney, once a major centre for kelp production, shows that elevated arsenic levels (10.7+/-3.0 mg kg(-1), compared to background levels of 1.7+/-0.2 mg kg(-1)) persist in soils in the immediate vicinity of the kelp burning pits. A model combining results from the burning experiments with data from historical records demonstrates the potential for arsenic deposition of 47 g ha(-1) year(-1) on land adjacent to the main kelp burning location on Westray, and for arsenic concentrations exceeding current UK soil guideline values during the 50 year period of peak kelp production.  相似文献   

10.
Total arsenic withdrawn by the four shallow tubewells, used for agricultural irrigation in the arsenic-affected areas of Murshidabad district per year is 6.79 kg (mean: 1.79 kg, range: 0.56-3.53 kg) and the mean arsenic deposition on land per year is 5.02 kg ha(-1) (range: 2-9.81 kg ha(-1)). Mean soil arsenic concentrations in surface, root of plants, below ground level (0-30 cm) and all the soils, collected from four agricultural lands are 14.2 mg/kg (range: 9.5-19.4 mg/kg, n = 99), 13.7 mg/kg (range: 7.56-20.7 mg/kg, n = 99), 14.8 mg/kg (range: 8.69-21 mg/kg, n = 102) and 14.2 mg/kg (range: 7.56-21 mg/kg, n = 300) respectively. Higher the arsenic in groundwater, higher the arsenic in agricultural land soil and plants has been observed. Mean arsenic concentrations in root, stem, leaf and all parts of plants are 996 ng/g (range: <0.04-4850 ng/g, n = 99), 297 ng/g (range: <0.04-2900 ng/g, n = 99), 246 ng/g (range: <0.04-1600 ng/g, n = 99) and 513 ng/g (range: <0.04-4850 ng/g, n = 297) respectively. Approximately 3.1-13.1, 0.54-4.08 and 0.36-3.45% of arsenic is taken up by the root, stem and leaf respectively, from the soil.  相似文献   

11.
In the present study, potential health risks posed to human population from Ropar wetland and its vicinity, by consumption of inorganic arsenic (i-As) via arsenic contaminated rice grains and groundwater, were assessed. Total arsenic (t-As) in soil and rice grains were found in the range of 0.06–0.11 mg/kg and 0.03–0.33 mg/kg, respectively, on dry weight basis. Total arsenic in groundwater was in the range of 2.31–15.91 μg/L. i-As was calculated from t-As using relevant conversion factors. Rice plants were found to be arsenic accumulators as bioconcentration factor (BCF) was observed to be >1 in 75% of rice grain samples. Further, correlation analysis revealed that arsenic accumulation in rice grains decreased with increase in the electrical conductivity of soil. One-way ANOVA, cluster analysis and principal component analysis indicated that both geogenic and anthropogenic sources affected t-As in soil and groundwater. Hazard index and total cancer risk estimated for individuals from the study area were above the USEPA limits of 1.00 and 1.00 × 10?6, respectively. Kruskal-Wallis H test indicated that groundwater intake posed significantly higher health risk than rice grain consumption (χ 2(1) = 17.280, p = 0.00003).  相似文献   

12.
Inorganic arsenic is a chronic exposure carcinogen. Analysis of UK baby rice revealed a median inorganic arsenic content (n = 17) of 0.11 mg/kg. By plotting inorganic arsenic against total arsenic, it was found that inorganic concentrations increased linearly up to 0.25 mg/kg total arsenic, then plateaued at 0.16 mg/kg at higher total arsenic concentrations. Inorganic arsenic intake by babies (4-12 months) was considered with respect to current dietary ingestion regulations. It was found that 35% of the baby rice samples analysed would be illegal for sale in China which has regulatory limit of 0.15 mg/kg inorganic arsenic. EU and US food regulations on arsenic are non-existent. When baby inorganic arsenic intake from rice was considered, median consumption (expressed as μg/kg/d) was higher than drinking water maximum exposures predicted for adults in these regions when water intake was expressed on a bodyweight basis.  相似文献   

13.
Domkal is one of the 19, out of 26 blocks in Murshidabad district where groundwater contains arsenic above 0.05 mg/l. Many millions of cubic meters of groundwater along with arsenic and other heavy metals are coming out from both the hand tubewells, used by the villagers for their daily needs and shallow big diameter tubewells, installed for agricultural irrigation and depositing on soil throughout the year. So there is a possibility of soil contamination which can moreover affect the food chain, cultivated in this area. A somewhat detailed study was carried out, in both micro- and macrolevel, to get an idea about the magnitude of soil contamination in this area. The mean concentrations (mg/kg) of As (5.31), Fe (6740), Cu (18.3), Pb (10.4), Ni (18.8), Mn (342), Zn (44.3), Se (0.53), Mg (534), V (44.6), Cr (33.1), Cd (0.37), Sb (0.29) and Hg (0.54) in fallow land soils are within the normal range. The mean As (10.7), Fe (7860) and Mg (733) concentrations (mg/kg) are only in higher side whereas Hg (0.17 mg/kg) is in lower side in agricultural land soils, compared to the fallow land soils. Arsenic concentrations (11.5 and 28.0 mg/kg respectively) are high in those agricultural land soils where irrigated groundwater contains high arsenic (0.082 and 0.17 mg/l respectively). The total arsenic withdrawn and mean arsenic deposition per land by the 19 shallow tubewells per year are 43.9 kg (mean: 2.31 kg, range: 0.53-5.88 kg) and 8.04 kg ha(-1) (range: 1.66-16.8 kg ha(-1)) respectively. For the macrolevel study, soil arsenic concentration decreases with increase of distance from the source and higher the water arsenic concentration, higher the soil arsenic at any distance. A proper watershed management is urgently required to save the contamination.  相似文献   

14.
Copper contamination in paddy soils irrigated with wastewater   总被引:19,自引:0,他引:19  
Cao ZH  Hu ZY 《Chemosphere》2000,41(1-2):3-6
Copper (Cu) contamination was investigated in paddy soils where Cu-rich wastewater (12 mg Cu/l) was used for irrigation. The results showed that Cu contamination increased the soil Cu content from 17.0 mg Cu/kg in the non-wastewater irrigated soils (NWIS) to 101.2 mg Cu/kg in the wastewater irrigated soils (WIS), and Cu accumulated mostly in the surface layer (0-10 cm) of the paddy soil. The average Cu contents in brown rice, rice hull and rice straw from NWIS were 1.4, 7.3 and 14.5 mg Cu/kg, while those from WIS were 15.5, 133.2, and 101.4 mg Cu/kg, respectively. Correlation analysis revealed that the relationship between the Cu content in the rice straw and the rice hull with the total Cu content of the soil could be described by an exponential function (R2 = 0.921 and 0.831, respectively; P <0.01). Rice plants grown in the WIS showed symptoms of black roots, less effective tiller, etc. Subsequently, the rice yield decreased by 18-25%, compared with that grown in NWIS.  相似文献   

15.
Singh S  Singh JS  Kashyap AK 《Chemosphere》1999,38(1):175-189
Growth of three rice varieties (Heera, Dhala Heera and Narendra-118) and their relationship with methane consumption was investigated under rainfed (dryland) condition. Overall methane flux rates ranged between -0.58 to 1.25 mg m(-2) h(-1) across varieties, treatments, and dates of measurements. Except for two days when soil was saturated, the soil consumed 0.05-0.58 mg CH4 m(-2) h(-1); these rates were inversely related with soil moisture. N-fertilization reduced consumption rates. Although all plant growth parameters, except for number of tillers, exhibited relationship with methane consumption in control plots, only root porosity did so in fertilized plots. Combinations of plant growth characteristics explained 74-92% variability in seasonal CH4 consumption in unfertilized plots. It was concluded that methane consumption by dryland soils was influenced by rice variety, soil moisture and nitrogen fertilization.  相似文献   

16.
Seedlings of Sonchus oleraceus L. were transplanted to soil supplied with lead acetate at dosages of 0, 800, 1600 and 3200 mg kg(-1) DW. Measures of chlorophyll content, peroxidase (POD) activity, shoot length, biomass and Pb content in the plant tissues were obtained from the experimental plants. With increasing amounts of Pb in the soil, the chlorophyll content, shoot length and biomass decreased, while POD activity and Pb content in the plant tissues increased. At 3200 mg kg(-1) Pb treatment, Pb content in the plant leaf, stem and root were 65.67, 149.82 and 1113.24 mg kg(-1), respectively. Only at 3200 mg kg(-1) Pb treatment did chlorophyll content, shoot length and biomass significantly increase by 18, 15 and 44%, respectively, while POD decreased by 39% over the control. The potential of applying this species in phytoremediation of Pb contaminated roadside soils and thus restoration of the roadside vegetation are discussed.  相似文献   

17.
Rice can be a major contributor to dietary arsenic exposure because of the relatively high total arsenic concentration compared to other grains, especially for people whose main staple is rice. This study employed in vitro gastrointestinal fluid digestion to determine bioaccessible or gastrointestinal fluid extractable arsenic concentration in rice. Thirty-one rice samples, of which 60 % were grown in the United States, were purchased from food stores in New York City. Total arsenic concentrations in these samples ranged from 0.090 ± 0.004 to 0.85 ± 0.03 mg/kg with a mean value of 0.275 ± 0.161 mg/kg (n = 31). Rice samples with relatively high total arsenic (>0.20 mg/kg, n = 18) were treated by in vitro artificial gastrointestinal fluid digestion, and the extractable arsenic ranged from 53 % to 102 %. The bioaccessibility of arsenic in rice decreases in the general order of extra long grain, long grain, long grain parboiled, to brown rices.  相似文献   

18.
Rice can be a major contributor to dietary arsenic exposure because of the relatively high total arsenic concentration compared to other grains, especially for people whose main staple is rice. This study employed in vitro gastrointestinal fluid digestion to determine bioaccessible or gastrointestinal fluid extractable arsenic concentration in rice. Thirty-one rice samples, of which 60 % were grown in the United States, were purchased from food stores in New York City. Total arsenic concentrations in these samples ranged from 0.090 ± 0.004 to 0.85 ± 0.03 mg/kg with a mean value of 0.275 ± 0.161 mg/kg (n = 31). Rice samples with relatively high total arsenic (>0.20 mg/kg, n = 18) were treated by in vitro artificial gastrointestinal fluid digestion, and the extractable arsenic ranged from 53 % to 102 %. The bioaccessibility of arsenic in rice decreases in the general order of extra long grain, long grain, long grain parboiled, to brown rices.  相似文献   

19.
Finzgar N  Lestan D 《Chemosphere》2006,63(10):1736-1743
The feasibility of a novel EDTA-based soil heap leaching method with treatment and reuse of extractants in a closed process loop was evaluated on a laboratory scale. Ozone and UV irradiation were used for oxidative decomposition of EDTA-metal complexes in extractants from Pb (1243 mg kg(-1)) and Zn (1190 mg kg(-1)) contaminated soil. Released metals were absorbed in a commercial metal absorbent Slovakite. Six-consecutive additions of 2.5 mmol kg(-1) EDTA (total 15 mmol kg(-1) EDTA) removed 49.6 +/- 0.6% and 19.7 +/- 1.7% of initial total Pb and Zn from soil (4.6 kg) packed in 22 cm high columns. The efficiency of extraction was similar to small-scale simulations of heap leaching (15 0 g of soil), where EDTA used in the same manner removed 49.7 +/- 1.0% and 13.7 +/- 0.4% of Pb and Zn. The new heap leaching method produced discharge extractant with fairly low final concentrations of Pb, Zn and EDTA (1.98 +/- 2.17 mg l(-1), 4.55 +/- 2.36 mg l(-1), and 0.05 +/- 0.04 mM, respectively), which could presumably be reduced even further with continuation of treatment. The results of our study indicate that for soils contaminated primarily with Pb, treating the EDTA extractants with ozone/UV and reuse of extractants enables efficient soil heap leaching with very little or no wastewater generation, easy control over emissions, and lowers the requirements for process water.  相似文献   

20.
Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapán Valley range from 4 to 14 700 mg As kg(-1). Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg(-1) only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号