首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indian mustard [Brassica juncea (L.) Czern.] transgenics overexpressing ATP sulfurylase (APS plants) were shown previously to have higher levels of total thiols, S, and Se. The present study explores the effect of ATP sulfurylase overexpression on tolerance and accumulation of other metals, both oxyanions and cations, reasoning that some anions may react directly with ATP sulfurylase, while other ions may be bound by its thiol end products. The APS transgenics were compared with wild-type plants with respect to tolerance and accumulation of As, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, V, W, and Zn, supplied individually in agar medium (seedlings) or in hydroponics (mature plants). At the seedling stage, APS transgenics were more tolerant than wild type to As(III), As(V), Cd, Cu, Hg, and Zn, but less tolerant to Mo and V. The APS seedlings had up to 2.5-fold higher shoot concentrations of As(III), As(V), Hg, Mo, Pb, and V, and somewhat lower Cr levels. Mature APS plants contained up to 2.5-fold higher shoot concentrations of Cd, Cr, Cu, Mo, V, and W than wild type. They also contained 1.5- to 2-fold higher levels of the essential elements Fe, Mo, and S in most of the treatments. Mature APS plants showed no differences in metal tolerance compared with the wild type. Overexpression of ATP sulfurylase may be a promising approach to create plants with enhanced phytoextraction capacity for mixtures of metals.  相似文献   

2.
The Stylosanthes hamata SHST1 gene encodes a high-affinity sulfate transporter located in the plasma membrane. In this study the S. hamata SHST1 gene was constitutively expressed in Indian mustard [Brassica juncea (L.) Czern.] to investigate its importance for tolerance and accumulation of various oxyanions that may be transported by SHST1 and for cadmium, which is detoxified by sulfur-rich compounds. The transgenic SHST1 lines SHST1-12C and SHST1-4C were compared with wild-type Indian mustard for tolerance and accumulation of arsenate, chromate, tungstate, vanadate, and cadmium. As seedlings the SHST1 plants accumulated significantly more Cd and W, and somewhat more Cr and V. The SHST1 seedlings were less tolerant to Cd, Mo, and V compared to wild-type plants. Mature SHST1 plants were less tolerant than wild-type plants to Cd and Cr. SHST1 plants accumulated significantly more Cd, Cr, and W in their roots than wild-type plants. In their shoots they accumulated significantly more Cr and somewhat more V and W. Shoot Cd accumulation was significantly lower than in wild-type, and As levels were somewhat reduced. Compared to wild-type plants, sulfur accumulation was enhanced in roots of SHST1 plants but not in shoots. Together these results suggest that SHST1 can facilitate uptake of other oxyanions in addition to sulfate and that SHST1 mediates uptake in roots rather than root-to-shoot translocation. Since SHST1 overexpression led to enhanced accumulation of Cr, Cd, V, and W, this approach shows some potential for phytoremediation, especially if it could be combined with the expression of a gene that confers enhanced metal translocation or tolerance.  相似文献   

3.
The term “phytoremediation” is used to describe the cleanup of heavy metals from contaminated sites by plants. This study demonstrates phytoremediation potential of Indian mustard (Brasicca juncea (L.) Czern. & Coss.) genotypes for chromium (Cr). Seedlings of 10 genotypes were grown hydroponically in artificially contaminated water over a range of environmentally relevant concentrations of Cr (VI), and the responses of genotypes in the presence of Cr, with reference to Cr accumulation, its phytotoxity and anti-oxidative system were investigated. The Cr accumulation potential varied largely among Indian mustard genotypes. At 100 μM Cr treatment, Pusa Jai Kisan accumulated the maximum amount of Cr (1680 μg Cr g−1 DW) whereas Vardhan accumulated the minimum (107 μg Cr g−1 DW). As the tolerance of metals is a key plant characteristic required for phytoremediation purpose, effects of various levels of Cr on biomass were evaluated as the gross effect. The extent of oxidative stress caused by Cr stress was measured as rate of lipid peroxidation. The level of thiobarbituric acid reactive substances (TBARS) was enhanced at all Cr treatments when compared to the control. Inductions of enzymatic and nonenzymatic antioxidants were monitored as metal-detoxifying responses. All the genotypes responded to Cr-induced oxidative stress by modulating nonenzymatic antioxidants [glutathione (GSH) and ascorbate (Asc)] and enzymatic antioxidants [superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR)]. The level of induction, however, differed among the genotypes, being at its maximum in Pusa Jai Kisan and its minimum in Vardhan. Pusa Jai Kisan was grown under natural field conditions with various Cr treatments, and Cr-accumulation capacity was studied. The results confirmed that Pusa Jai Kisan is a hyperaccumulator of Cr and hypertolerant to Cr-induced stress, which makes this genotype a viable candidate for use in the development of phytoremediation technology of Cr-contaminated sites.  相似文献   

4.
Eichhornia crassipes was tested for its ability to bioconcentrate 8 toxic metals (Ag, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) commonly found in wastewater from industries. Young plants of equal size were grown hydroponically and amended with 0, 0.1, 0.3, 0.5, 1.0, 3.0, and 5.0 mM of each heavy metal individually for 21 days. The test plant had the lowest and the highest tolerance indices for Hg and Zn, respectively. A significant (P ≤ .05) reduction in biomass production was observed in metal treated plants compared with the control. All strace elements accumulated to higher concentrations in roots than in shoots. Trace element concentrations in tissues and the bioconcentration factors (BCF) were proportional to the initial concentration of individual metal in the growth medium and the duration of exposure. From a phytoremediation perspective, E. crassipes is a promising plant species for remediation of natural water bodies and/or wastewater polluted with low levels of Zn, Cr, Cu, Cd, Pb, Ag and Ni.  相似文献   

5.
This paper reviews progress in phytoextraction of soil elements and illustrates the key role of hyperaccumulator plant species in useful phytoextraction technologies. Much research has focused on elements which are not practically phytoextracted (Pb); on addition of chelating agents which cause unacceptable contaminant leaching and are cost prohibitive; and on plant species which offer no useful phytoextraction capability (e.g., Brassica juncea Czern). Nickel phytoextraction by Alyssum hyperaccumulator species, which have been developed into a commercial phytomining technology, is discussed in more detail. Nickel is ultimately accumulated in vacuoles of leaf epidermal cells which prevents metal toxicity and provides defense against some insect predators and plant diseases. Constitutive up-regulation of trans-membrane element transporters appears to be the key process that allows these plants to achieve hyperaccumulation. Cadmium phytoextraction is needed for rice soils contaminated by mine wastes and smelter emissions with 100-fold more soil Zn than Cd. Although many plant species can accumulate high levels of Cd in the absence of Zn, when Cd/Zn>100, only Thlaspi caerulescens from southern France has demonstrated the ability to phytoextract useful amounts of Cd. Production of element-enriched biomass with value as ore or fertilizer or improved food (Se) or feed supplement may offset costs of phytoextraction crop production. Transgenic phytoextraction plants have been achieved for Hg, but not for other elements. Although several researchers have been attempting to clone all genes required for effective hyperaccumulation of several elements, success appears years away; such demonstrations will be needed to prove we have identified all necessary processes in hyperaccumulation.  相似文献   

6.
To predict the availability of metals to plants, it is important to understand both solution- and solid-phase processes in the soil, including the kinetics of metal release from its binding agent (ligand and/or particle). The present study examined the speciation and availability of Zn, Cd, Pb, and Cu in a range of well-equilibrated metal-contaminated soils from diverse sources using several techniques as a basis for predicting metal uptake by plants. Wheat (Triticum aestivum L.) was grown in 13 metal-contaminated soils and metal tissue concentrations (Zn, Cd, Pb, and Cu) in plant shoots were compared with total soil metal concentrations, total soluble metal, and free metal activities (pM2+) in soil pore waters, 0.01 M CaCl2-extractable metal concentrations, E values measured by isotope dilution, and effective metal concentrations, C(E), measured by diffusive gradients in thin films (DGT). In the DGT technique, ions are dynamically removed by their diffusion through a gel to a binding resin, while E values represent the isotopically exchangeable (labile) metal pools. Free metal activities (Zn2+, Cd2+, and Pb2+) in soil pore waters were determined using a Donnan dialysis technique. Plant Zn and Cd concentrations were highly related to C(E), while relationships for Zn and Cd with respect to the other measures of metals in the soils were generally lower, except for CaCl2-extractable Cd. These results suggest that the kinetically labile solid-phase pool of metal, which is included in the DGT measurement, played an important role in Zn and Cd uptake by wheat along with the labile metal in soil solution. Plant Pb concentrations were highly related to both soil pore water concentrations and C(E), indicating that supply from the solid phase may not be so important for Pb. Predictions of Cu uptake by wheat from these soils by the various measures of Cu were generally poor, except surprisingly for total Cu.  相似文献   

7.
为探讨大宗粮食作物玉米植株各器官中重金属含量的相关性,选择6个玉米品种进行盆栽实验。盆栽试验的土壤来自西南某省铅锌矿区。研究结果表明,(1)6个供试品种植株籽粒中,Ni、Pb、Zn的含量全部超标;部分品种玉米中的Cd含量超标;6个供试品种植株玉米中的Cr、Cu含量全部达标。(2)重金属含量在玉米各器官中存在交互效应;如,供试植株叶片中Cu与Ni、Pb与Zn分别存在显著正相关;在供试植株的叶片和茎秆中,Cd、Pb、Zn三者的含量呈显著性正相关。(3)金属Ni在供试植物茎秆与籽粒中存在交换的情况;金属Pb的含量在供试植株根部与茎秆的差异较大,其可能原因是植株茎秆对铅的吸收达到了饱和上限;金属Zn的含量在植株籽粒与茎秆中的差异较大,主要是因为Zn在玉米植株内的移动性强,且Zn最容易在籽粒中积累。  相似文献   

8.
Phosphate treatments can reduce metal dissolution and transport from contaminated soils. However, diammonium phosphate (DAP) has not been extensively tested as a chemical immobilization treatment. This study was conducted to evaluate DAP as a chemical immobilization treatment and to investigate potential solids controlling metal solubility in DAP-amended soils. Soil contaminated with Cd, Pb, Zn, and As was collected from a former smelter site. The DAP treatments of 460, 920, and 2300 mg P kg-1 and an untreated check were evaluated using solute transport experiments. Increasing DAP decreased total metal transported. Application of 2300 mg P kg-1 was the most effective for immobilizing Cd, Pb, and Zn eluted from the contaminated soil. Metal elution curves fitted with a transport model showed that DAP treatment increased retardation (R) 2-fold for Cd, 6-fold for Zn, and 3.5-fold for Pb. Distribution coefficients (Kd) increased with P application from 4.0 to 9.0 L kg-1 for Cd, from 2.9 to 10.8 L kg-1 for Pb, and from 2.5 to 17.1 L kg-1 for Zn. Increased Kd values with additional DAP treatment indicated reduced partitioning of sorbed and/or precipitated metal released to mobile metal phases and a concomitant decrease in the concentration of mobile heavy metal species. Activity-ratio diagrams indicated that DAP decreased solution Cd, Pb, and Zn by forming metal-phosphate precipitates with low solubility products. These results suggest that DAP may have potential for protecting water resources from heavy metal contamination near smelting and mining sites.  相似文献   

9.
Vegetation that develops spontaneously on metal-contaminated soils presents an opportunity to evaluate both metal bioavailability and the risks posed to biota. The behavior of Cd and Zn in the species of a spontaneously developed woodland, colonizing a canal embankment, has been investigated. Nitric-acid-extractable metal concentrations in the sediment-derived substrate ranged between 5.0 to 376 mg kg(-1)dry wt. Cd and 83.0 to 784 mg kg(-1)dry wt. Zn. The woodland is dominated by Willow (Salix) species. Salix caprea selectively accumulated Cd in all stem tissues, in contrast to S. viminalis, which regulated tissue Cd content. Both species showed an effective regulation of tissue Zn. Cadmium uptake by S. caprea was correlated with differences in soil pH, while Zn uptake was not. There was no relationship between tissue metal concentrations and soil metal nitric acid-extractable concentrations. Other aspects of ecosystem function appeared unaffected by the elevated Cd flux in S. caprea; leaf litter organisms present represented all major groups and there was no accumulation of organic matter. The woodland represents a potentially sustainable option for remediating a low value site with difficult access that does not involve removal of the contaminated material to a landfill or making a permanent inert cover.  相似文献   

10.
Phytoremediation offers an ecologically and economically attractive remediation technique for soils contaminated with polycyclic aromatic hydrocarbons (PAHs). In addition to the choice of plant species, agronomic practices may affect the efficiency of PAH phytoremediation. Inorganic nutrient amendments may stimulate plant and microbial growth, and clipping aboveground biomass might stimulate root turnover, which has been associated with increases in soil microbial populations. To assess the influence of fertilization and clipping on PAH dissipation in a nutrient-poor, aged PAH-contaminated soil, a 14-mo phytoremediation study was conducted using perennial ryegrass (Lolium perenne) as a model species. Six soil treatments were performed in replicate: unplanted; unplanted and fertilized; planted; planted and fertilized; planted and clipped; and planted, clipped, and fertilized. Plant growth, soil PAH concentrations, and the concentrations of total and PAH-degrading microorganisms were measured after 7 and 14 mo. Overall, planting (with nearly 80% reduction in total PAHs) and planting + clipping (76% reduction in total PAHs) were the most effective treatments for increased PAH dissipation after 14 mo. Fertilization greatly stimulated plant and total microbial growth, but negatively affected PAH dissipation (29% reduction in total PAHs). Furthermore, unplanted and fertilized soils revealed a similar negative impact (25% reduction) on PAH dissipation after 14 mo. Clipping did not directly affect PAH dissipation, but when combined with fertilization (61% reduction in total PAHs), appeared to mitigate the negative impact of fertilization on PAH dissipation. Therefore, fertilization and clipping may be included in phytoremediation design strategies, as their combined effect stimulates plant growth while not affecting PAH dissipation.  相似文献   

11.
The toxicity and bioaccumulation of two heavy metals—lead (Pb) and cadmium (Cd)—in a semi-aquatic plant, Colocasia esculenta (L. Schott), from a synthetic heavy metal solution were studied. Young plants of equal size were grown hydroponically in shallow raceways containing Hoagland medium amended with 20, 40, and 60 mg l?1 of Pb and 2, 4, and 6 mg l?1 of Cd. The medium containing heavy metals was allowed to flow through the raceways with a change in influent heavy metal solution on every 5th day. The experiment was continued for 20 days. A set of control raceways—one comprised of nutrient medium with heavy metal supplements, devoid of plants, and another with the plants and nutrient medium having no metal supplement—was also simultaneously run. Chlorosis in the leaves was the prominent toxicity symptom observed due to Pb and Cd on the test plants. A significant decrease in the relative growth, biomass productivity, and total chlorophyll content were noticed in the plants with an increase in concentration of metal supplement in the solution and exposure time. Both metals accumulated to higher concentrations in the roots than in shoots, suggesting that the metals were bound to the root cells and their translocation to the leaves was limited. The results of the 20-day-long experiments indicate that from a phytoremediation perspective, C. esculenta is a promising plant species for remediation of wastewater polluted with lower concentrations of Pb and Cd.  相似文献   

12.
Mahogany, a high biomass fast-growing tropical tree, has recently garnered considerable interest for potential use in heavy metal phytoremediation. This study performed hydroponic experiments with Cd concentration gradients at concentrations of 0, 7.5, 15, and 30 mg L(-1) to identify Cd accumulation and tolerance of mahogany (Swietenia macrophylla) seedlings as well as their potential for phytoextraction. Experimental results indicate that Cd inhibited mahogany seedling growth at the highest Cd exposure concentration (30 mg L(-1)). Nevertheless, this woody species demonstrated great potential for phytoextraction at Cd concentrations of 7.5 and 15 mg L(-1). The roots, twigs, and leaves had extremely large bioaccumulation factors at 10.3-65.1, indicating that the plant extracted large amounts of Cd from hydroponic solutions. Mahogany seedlings accumulated up to 154 mg kg(-1) Cd in twigs at a Cd concentration of 15 mg L(-1). Although Cd concentrations in leaves were <100 mg kg(-1), these concentrations markedly exceed the normal ranges for other plants. Due to the high biomass production and Cd uptake capacity of mahogany shoots, this plant is a potential candidate for remediating Cd-contaminated sites in tropical regions.  相似文献   

13.
Contamination of soil by hazardous substances poses a significant threat to human, environmental, and ecological health. Cleanup of the contaminants using destructive, invasive technologies has proven to be expensive and more importantly, often damaging to the natural resource properties of the soil, sediment, or aquifer. Phytoremediation is defined as the cleanup of contaminated sites using plants. There has been evidence of enhanced polycyclic aromatic hydrocarbons (PAHs) degradation in rhizosphere soils for a limited number of plants. However, research focusing on the degradation of PAHs in the rhizosphere of trees is lacking. The objective of this study was to assess the potential use of trees to enhance degradation of PAHs located in manufactured gas plant-impacted soils. In greenhouse studies with intact soil cores, acenaphthene, anthracene, fluoranthene, naphthalene, and phenanthrene decreased significantly (p < 0.05) in green ash (Fraxinus pennsylvanica Marshall) and hybrid poplar (Populus deltoides x P. nigra DN 34) phytoremediation treatments when compared to the unplanted soil control. Increases in PAH microbial degraders in rhizosphere soil were observed when compared to unvegetated soil controls. In addition, the rate of degradation or biotransformation of PAHs was greatest for soils with black willow (Salix nigra Marshall), followed by poplar, ash, and the unvegetated controls. These results support the hypothesis that a variety of plants can enhance the degradation of target PAHs in soil.  相似文献   

14.
农用地重金属污染长期以来一直是生态环境的热点和难点问题。2017年,对某镇农田土壤重金属污染开展详查,单项污染指数评价结果表明,镉超标率为67.60%(Pi>1),基于内梅罗污染指数法的评价结果显示,57.30%的点位受到不同程度的污染(PN≥1.0);2018年,分别选取钝化修复和植物修复进行中试试验,经钝化修复后土壤有效镉和总镉含量分别平均降低32.73%和5.64%。经超富集植物籽粒笕种植一季修复后,土壤总镉含量降低15%以上。本次中试试验修复效果良好,能为下一阶段的土壤镉污染修复方案的制定和优化提供科学的依据,为全国农用地重金属污染修复提供了有价值的借鉴意义。  相似文献   

15.
农用地重金属污染长期以来一直是生态环境的热点和难点问题。2017年,对某镇农田土壤重金属污染开展详查,单项污染指数评价结果表明,镉超标率为67.60%(Pi>1),基于内梅罗污染指数法的评价结果显示,57.30%的点位受到不同程度的污染(PN≥1.0);2018年,分别选取钝化修复和植物修复进行中试试验,经钝化修复后土壤有效镉和总镉含量分别平均降低32.73%和5.64%。经超富集植物籽粒笕种植一季修复后,土壤总镉含量降低15%以上。本次中试试验修复效果良好,能为下一阶段的土壤镉污染修复方案的制定和优化提供科学的依据,为全国农用地重金属污染修复提供了有价值的借鉴意义。  相似文献   

16.
The levels of zinc accumulated by roots, stems, and leaves of two plant species, Rubus ulmifolius and Phragmites australis, indigenous to the banks of a stream in a Portuguese contaminated site were investigated in field conditions. R. ulmifolius, a plant for which studies on phytoremediation potential are scarce, dominated on the right side of the stream, while P. australis proliferated on the other bank. Heterogeneous Zn concentrations were found along the banks of the stream. Zn accumulation in both species occurred mainly in the roots, with poor translocation to the aboveground sections. R. ulmifolius presented Zn levels in the roots ranging from 142 to 563 mg kg(-1), in the stems from 35 to 110 mg kg(-1), and in the leaves from 45 to 91 mg kg(-1), vs. average soil total Zn concentrations varying from 526 to 957 mg kg(-1). P. australis showed Zn concentrations in the roots from 39 to 130 mg kg(-1), in the stems from 31 to 63 mg kg(-1), and in the leaves from 37 to 83 mg kg(-1), for the lower average soil total Zn levels of 138 to 452 mg kg(-1) found on the banks where they proliferated. Positive correlations were found between the soil total, available and extractable Zn fractions, and metal accumulation in the roots and leaves of R. ulmifolius and in the roots and stems of P. australis. The use of R. ulmifolius and P. australis for phytoextraction purposes does not appear as an effective method of metal removing, but these native metal tolerant plant species may be used to reduce the effects of soil contamination, avoiding further Zn transfer to other environmental compartments.  相似文献   

17.
Using a soil column experiment, we compared the effect of a single dose and weekly additions of ethylenediaminetetraacetic acid (EDTA) and ethylenediaminedissuccinate (EDDS) on the uptake of Pb, Zn, and Cd by Chinese cabbage [Brassica rapa L. subsp. pekinensis (Lour.) Hanelt], and on the leaching of heavy metals through the soil profile. The analysis of plant material revealed that both chelates increased the concentrations of Pb and, to a lesser extent, also of Zn and Cd in the leaves of the test plant. The most effective applications were single doses of 10 mmol EDTA and EDDS kg(-1) soil, which caused the concentrations of Pb in the shoots to increase 94.2- and 102.3-fold, respectively, relative to the control. The same dose of EDTA increased the concentration of Zn and Cd in the leaves 4.3- and 3.8-fold and of EDDS 4.7- and 3.5-fold, respectively. In treatments with weekly additions and lower concentrations of both chelates, EDTA was more effective than EDDS in increasing the plant uptake of Pb. In soil columns treated with weekly additions of 10 mmol kg(-1) EDTA, on average 22.7, 7.0, and 39.8% of initial total Pb, Zn, and Cd in the soil were leached through the soil profile. The same amount of EDDS caused much lower leaching of Pb and Cd--only 0.8 and 1.5% of initial total concentrations. Leaching of Zn, 6.2% of the total concentration, was comparable with the EDTA treatment. A biotest with red clover (Trifolium pratense L.) indicated a greater phytotoxic effect of EDTA than EDDS addition. EDDS was also less toxic to soil fungi, as determined by phospholipid fatty acid (PLFA) analysis, and caused less stress to soil microorganisms, as indicated by the trans to cis PLFA ratio. Chelate addition did not prevent the development of arbuscular mycorrhiza on red clover.  相似文献   

18.
通过2年的定点调查,研究了湘中某工业区附近农田土壤、糙米中重金属含量状况;并对重金属在水稻植株中的含量分布,以及影响糙米中重金属含量的土壤因素进行了探讨。  相似文献   

19.
Heavy metal pollution of soil has been recognized as a major factor impeding soil microbial processes. From this perspective, we studied responses of the soil biological activities to metal stress simulated by soil amendment with Zn, Pb, and Cd chlorides. The amounts of heavy metal salts added to five metal-polluted soils and four nonpolluted soils were selected to match the total metal concentrations typically found in polluted soils of the Silesia region of Poland. From the perspective of soil quality, metal mobility in amended soils could not be described by simple functions of pH or organic matter. Reaction of Pb with the soil caused strong immobilization with less than 1% of the Pb amendment recovered by 0.01 M CaCl2 extractions. Immobilization of Cd was also significant, whereas immobilization of the Zn amendment was much weaker than that of Cd or Pb. The Zn amendment had substantial inhibitory effect on soil dehydrogenase, acid and alkaline phosphatase, arylsulfatase, urease, and nitrification potential. Generally, Cd and Pb had limited or stimulatory effect on most of these biological activities, with an exception of Pb strongly inhibiting soil urease. The effect of the metal amendments on biological activities could not be satisfactorily accounted for by metal toxicity because no strong relationship was observed between extractable metal content and the degree of inhibition. The Zn amendment had a significant effect on soil pH, resulting in confounding effects of pH and Zn toxicity on activities. Metal amendment experiments seem to be of limited utility for meaningful assessment of metal contamination effects on soil quality.  相似文献   

20.
Heavy metal accumulation by the halophyte species Mediterranean saltbush   总被引:1,自引:0,他引:1  
To identify Cd- and Zn-accumulating plants exhibiting a high growth rate, seeds from the halophyte species Mediterranean saltbush (Atriplex halimus L.) were collected on a heavy-metal-contaminated site in southeastern Spain (Llano del Beal, Cartagena). Seedlings from this ecotype were exposed for 3 wk to 0.1 mM Cd or Zn in a nutrient solution in a fully controlled environment. All plants remained alive and no significant growth inhibition was recorded until the end of the experiment. Mean Cd and Zn accumulation in aerial parts was 830 and 440 mg kg(-1), respectively, and the rate of metal translocation even increased with the duration of stress exposure. Resistance to heavy metals in this species may be partly linked to precipitation of Cd in oxalate crystals in the stems. A Cd-induced decrease in glutathione concentration also suggests that phytochelatins overproduction may occur in these conditions. We conclude that Mediterranean saltbush, which is able to produce up to 5 Mg dry matter ha(-1) yr(-1), may be an effective species for phytoextraction and should be tested for this purpose in field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号