首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
在水厂,以中试模拟滤柱开展了高铁锰氨氮(8~10℃,TFe 6~14mg/L,Mn 0.8~1.5mg/L,NH_4~+-N 2.0~3.0mg/L)地下水净化试验及氧化动力学分析.结果表明,一级曝气+一级过滤、一级曝气+两级过滤工艺均由于溶解氧(DO)不足,对高铁锰氨氮地下水净化失败;曝气生物滤池由于曝气对水流造成紊动,净化效果最差;曝气生物滤池+两级过滤工艺可实现高铁锰氨氮地下水净化,但是运行滤速仅有6.0m/h;两级曝气+两级过滤工艺净化效果最优,可实现高铁锰、氨氮地下水(8~10℃,TFe 17.66mg/L,Mn 1.71mg/L,NH_4~+-N 3.37mg/L)净化,一级和二级滤速分别可达13.25m/h和12.75m/h,且在低温下亦适用,可实现低温高铁高锰高氨氮(5~6℃,TFe 9.72mg/L,Mn 3.29mg/L,NH_4~+-N 3.44mg/L)地下水的净化,一级和二级极限滤速分别为10.0m/h和8.0m/h.氧化动力学分析表明,铁氧化去除遵循一级化学氧化动力学规律,其氧化动力学常数为(1.02~1.18)×10.氨氮和锰的去除均遵循零级酶促反应动力学规律,其氧化动力学常数分别为(0.15~0.83)×10~(-1)和(0.31~1.20)×10~(-1).除铁除锰生物滤池中,铁的氧化去除速率最快,优先完成去除,锰和氨氮完成氧化去除的先后顺序受基质浓度大小影响较大.  相似文献   

2.
溶解氧浓度是影响石英砂表面铁锰复合氧化膜催化氧化去除地下水中高浓度氨氮的关键因素.在中试实验条件下,采用在滤层底部和底部1/3处充氧的方式以满足氧化高浓度氨氮所需的溶解氧浓度.结果表明:充氧后,活性氧化膜对氨氮的去除效果较充氧前的1.5mg/L明显提高.当滤速为8m/h,底部和底部1/3处充氧时,氨氮的最大去除浓度分别提高至3.7,4.3mg/L.由此可知提高溶解氧浓度能充分地发挥活性氧化膜的催化活性,大幅度地提高对氨氮的去除效果.此外,用SEM和EDS对充氧前后氧化膜进行微观表征,发现氧化膜并未发生明显变化.  相似文献   

3.
为探究催化氧化同步去除铁锰氨氮滤池快速启动的影响条件,在不同进水条件下,对挂膜启动阶段滤池去除铁锰氨氮的效果进行了研究.结果表明,化学氧化法挂膜能有效缩短接触氧化滤池的启动时间,28d左右实现同步除铁锰氨氮工艺的快速启动和稳定运行;在挂膜启动阶段,适当增加铁浓度有助于缩短滤料成熟周期,进水氨氮浓度的改变对滤料成熟周期基本无影响;在进水氨氮、锰和铁浓度分别为1.5,2,1mg/L,滤速为4m/h的试验条件下,滤柱可较快的具备除高铁、高锰和高氨氮的能力.本实验条件下滤柱同步除氨氮和锰的浓度上限分别为2.1,2.7mg/L,满足了多数污染地下水的处理需求.  相似文献   

4.
不同铁锰浓度的低温铁锰氨地下水净化中氨氮去除途径   总被引:1,自引:1,他引:0  
张杰  梅宁  刘孟浩  叶雪松  李冬 《环境科学》2020,41(6):2727-2735
在某地下水除铁锰氨氮水厂,以中试滤柱开展了低温(5~6℃)、铁锰氨[Fe(Ⅱ) 0~19.26 mg·L~(-1)、Mn(Ⅱ) 0.52~2.05 mg·L~(-1)和NH~+_4-N 0.37~2.59 mg·L~(-1)]净化工艺实验研究,探究了不同铁锰浓度时氨氮的去除途径.结果表明,当保持进水锰浓度约为0.6 mg·L~(-1),提高进水亚铁浓度时,随着滤层中铁氧化物的增加,通过铁氧化物吸附去除的氨氮比例会升高,通过硝化作用去除的氨氮比例会降低,且吸附作用先于硝化作用.当保持进水亚铁浓度分别约为8 mg·L~(-1)和11 mg·L~(-1),提高进水锰浓度时,通过吸附去除的氨氮比例并没有随着锰氧化物的增加而增加,即氨氮的去除途径几乎未发生改变.其原因是,在滤层前20 cm形成的锰氧化物较少,对此范围内吸附的氨氮影响较小,锰氧化物的生成区域集中在滤层的20 cm以下,而绝大部分氨氮在该区域之前已经通过吸附和硝化作用去除,该区域中的锰氧化物并没有吸附氨氮.  相似文献   

5.
李冬  曹瑞华  杨航  王艳菊  吕赛赛  张杰 《环境科学》2018,39(3):1264-1271
在某生物除铁除锰水厂,以中试模拟滤柱开展了硝化耦合CANON的铁锰氨生物净化工艺启动与运行试验,并分析了氨氮转化去除路径.结果表明,生物除铁除锰滤池历经164 d驯化培养,可实现硝化耦合CANON去除氨氮并稳定运行,特征值ΔNH+4-N/ΔNO-3-N为1.49,生物滤柱对Fe(Ⅱ)、Mn(Ⅱ)和NH+4-N的氧化去除量分别为(9.87±1.17)、(2.25±0.06)和(1.51±0.06)mg·L-1.基于氮素守恒和溶解氧(DO)守恒分析,通过CANON过程去除的氨氮质量分数为33.48%~38.87%,氨氮去除量与实际需氧量的平均比例为1∶3.79~1∶3.94.温度越低,氨氮经CANON过程去除的质量分数越低.  相似文献   

6.
为实现低温(5~6℃)高铁锰氨氮[TFe:9~15mg/L,Fe2+:6~12mg/L,Mn2+:0.8~1.2mg/L,NH3-N:0.9~1.4mg/L]地下水的生物同步净化,以水厂实地滤柱进行实验.结果表明,在该种水质下,以1.0,3.0m/h滤速启动生物滤柱,分别历经128,91d启动成功.铁和氨氮自启动之初出水即合格,锰的去除仍然是滤池成熟的决定性因素.溶解氧(DO)充足条件下,净化所需滤层厚度随氨氮浓度的升高而加厚,氨氮极限去除浓度为1.60mg/L.进水DO不足是限制氨氮继续提升的主要因素.滤速越大,锰的去除量越少,净化所需滤层越厚,滤柱极限运行滤速为8.0m/h.沿程分析发现,铁和锰的氧化去除存在显著分级,铁和氨氮在滤层内可同步氧化去除,锰的高效氧化去除区间相对滞后.  相似文献   

7.
为了实现东北地区低温(5~6℃)高铁、锰、氨氮(TFe:9~15mg/L,Fe2+:6~12mg/L,NH3-N:1.4~2.0mg/L,Mn2+:1.4~2.0mg/L)地下水的净化及解决同层净化中运行稳定性差、出水锰超标的问题,在水厂净化车间开展“两级曝气+两级过滤”工艺启动研究,采用差滤速和同滤速2种启动方式分别启动两级生物净化工艺.结果表明,2种启动方式分别在106,59d启动成功.同滤速启动可以有效的缩短两级生物净化的启动时间,铁、锰、氨氮去除负荷可达110.69,18.80,19.54g/(m2·h),沿程分析发现,铁在一级滤柱的60cm处即被去除至痕量;85.08%的氨氮在一级滤柱中去除,沿程各段去除均匀,14.92%的氨氮在二级滤柱中去除;锰的去除率和氧化活性去除区位受滤速及进水氨氮浓度影响较大,33.72%的锰在一级滤柱中去除,66.28%的锰在二级滤柱中去除,锰的去除仍然是滤池成熟的决定性因素.  相似文献   

8.
低温高铁锰氨氮地下水生物同池净化   总被引:7,自引:5,他引:2  
李冬  曹瑞华  杨航  王刘煜  张杰  曾辉平 《环境科学》2017,38(12):5097-5105
为实现低温(5~6℃)高铁锰氨氮[TFe 9.0~12.0 mg·L~(-1)、Fe(Ⅱ)6.5~8.0 mg·L~(-1),Mn(Ⅱ)1.9~2.1 mg·L~(-1),NH_4~+-N 1.4~1.7 mg·L~(-1)]地下水生物同池净化,以中试模拟滤柱在某水厂进行了实验研究.结果表明,出水总铁在启动之初即能合格,出水氨氮和锰分别在72 d和75 d实现净化.工艺启动周期受培养温度和原水水质影响较大.滤速越大,锰的极限去除量越低,滤速≥1.0 m·h~(-1)时,锰的极限去除量为3.0 mg·L~(-1).锰是滤速提升的限制因素,工艺极限滤速是4.5m·h~(-1).滤速≤6.0 m·h~(-1)时,氨氮的极限去除量为1.5 mg·L~(-1),且不受滤速影响,溶解氧(dissolved oxygen,DO)不足导致工艺对更高浓度氨氮净化失败.DO充足的条件下,工艺净化所需滤层厚度随锰和氨氮浓度增加而增厚.滤速增大会导致铁锰氨氧化去除区间向滤层深处位移,发生"锰"溶出现象.进一步分析表明,铁和氨氮在滤层内可同步氧化去除;锰的高效氧化去除区间与铁和氨氮的高效氧化去除区间存在明显分级.  相似文献   

9.
贫营养条件下生物除铁除锰滤池生态稳定性研究   总被引:2,自引:2,他引:0  
采用将反冲洗排水回流至生物除铁除锰滤池的方式补给滤层细菌数量、回流可利用营养物质.试验从滤池整体除铁除锰效果、微生态特性及优势细菌数量分布3方面考察滤池的生态稳定性.结果表明,在高滤速(10~13.9 m/h)、高锰浓度(3.5~4.5 mg/L)条件下生物滤池对铁锰的去除率达98.9%以上,滤池具有较强的抗负荷冲击能力.铁、锰氧化细菌为滤层的优势菌群,数量达106数量级,它们既附着在滤料表面上(4.3×106个/mL)形成致密的生物膜,又存在于滤料间(6.5×106个/mL)形成以细菌为主体的悬浮絮体,此絮体对铁锰的彻底去除至关重要.经过近5年的连续运行,在不投加营养盐的前提下生物滤池实现了稳定运行,保持了高除铁除锰效率.  相似文献   

10.
滤速与水质对低温含铁锰氨地下水中氨去除的影响   总被引:2,自引:1,他引:1  
张杰  梅宁  刘孟浩  叶雪松  李冬 《环境科学》2020,41(3):1236-1245
在某除铁锰氨氮地下水水厂,以中试滤柱开展了低温(6~8℃)生物除铁锰硝化耦合CANON[Fe(Ⅱ) 2.91~6.35 mg·L~(-1)、 Mn(Ⅱ) 0.47~0.98 mg·L~(-1)和NH~+_4-N 1.15~2.26 mg·L~(-1)]工艺运行实验,探究滤速与水质对氨氮去除的影响.结果表明,停运1个月的成熟低温铁锰氨生物滤柱以2 m·h~(-1)的滤速经过40 d的培养,成功启动了低温生物除铁锰硝化耦合CANON工艺.在此工艺中当保持进水浓度不变,提升滤速会降低滤柱对氨氮的网捕效率,增加滤层深处的氨氮浓度,提高滤层深处AnAOB对氨氮离子的网捕效率,进而导致水中经CANON作用去除的氨氮增加,而硝化作用去除的氨氮降低;当保持滤速不变,提升进水氨氮浓度会使更高浓度的氨氮进入滤层,增加了氨氮和亚氮共存区域中氨氮的浓度,提高了滤层中AnAOB对氨氮离子的网捕效率,进而导致CANON作用去除的氨氮增加.  相似文献   

11.
生物法去除地下水中铁锰的影响因素   总被引:8,自引:1,他引:7  
薛罡  何圣兵  王欣泽 《环境科学》2006,27(1):95-100
分析了生物法除地下水中铁锰的影响因素,曝气后使地下水中DO为7.0~7.5mg/L及pH为6.8~7.0时,生物滤层中的锰氧化菌能够保持较好活性及除锰能力,且工艺能够达到铁锰同除的要求.本研究提出的“成熟滤料移植”生物过滤方法,适合于对Mn2+吸附能力较强的优质锰砂滤层的接种,而对吸附能力较弱的石英砂滤层,只能采用菌量较大的实验室选择性培养基培养、驯化锰氧化菌的接种方式;锰砂和石英砂生物滤层的反冲洗强度分别控制在6~9L/(s·m2)、7~11L/(s·m2)的较低范围时,滤层的微生物相受扰动较小,反冲后铁锰去除能力能在5h内恢复.同时滤层采用1.0~1.2mm的均质滤料,在反冲洗强度较低的情况下过滤周期依然可延长至35~38h.  相似文献   

12.
含铁、锰水源水深度处理工艺的运行实验研究   总被引:9,自引:0,他引:9       下载免费PDF全文
对铁、锰含量较高又存在有机微污染的原水进行深度处理的生产规模的净水厂(规模10m^3/h),进行了运行效能的试验研究。该水厂由射流曝气→砂滤罐→臭氧接触氧化罐→生物活性炭滤罐→木鱼石滤罐→紫外线照射清水箱等处理单元组成。通过曝气充氧-砂滤预处理,去除溶解性的二价铁60%以上,关剩余臭氧的量为0.4mg/L(相应的臭氧投量为:4mg/L)的条件下,经臭氧接触氧化和生物活性炭过滤,在HRT20min时,可去除铁锰高达100%,CODMn的去除率达90%左右。  相似文献   

13.
为了解决煤矿灰岩水铁含量高,较难复用的问题,进行了接触过滤氧化法处理模拟含铁原水的试验研究。结果表明:采用石英砂滤料的接触过滤氧化工艺处理铁含量为2.0mg/L的模拟原水除铁效果明显,当气水比为2.0,pH值为7.5~8.0,停留时间小于2~3min,滤速为12.0m/h时,除铁率可达90%以上,滤后水满足铁含量0.3mg/L的井下复用水质要求,且过滤周期长达36h;同时分析得出最大平均催化氧化速率系数为KFe2+=1.50×1011L3mg-3s-1和除铁拟合曲线方程-Ln(Ct/Co)=-0.0011x2+0.0517x+1.748。  相似文献   

14.
为强化地下水处理中催化氧化除氨氮/锰活性滤料表面膜负载强度,系统研究了风干温度对锰氧化物滤料氧化膜的活性、负载强度及负载量的影响,将不同温度风干的生产性滤料填充滤柱,检测沿滤柱深度的氨氮、锰浓度随时间的变化,分析风干温度对生产滤料活性恢复期、除氨氮锰能力和膜负载强度的影响规律.结果表明,滤料经风干处理可以明显缩短滤柱除氨氮/锰的恢复期,其中除氨氮活性最先恢复的是自然风干和60℃风干滤柱;经过风干处理的滤料氨氮/锰的处理能力明显增强,出水氨氮浓度更稳定,不同风干温度之间的差异不明显;滤料风干能显著增强膜负载强度;滤料在运行过程中,表面膜负载量呈现先减少后增长的趋势,特别是未风干处理滤料的运行初期膜量下降明显.利用XRD测定滤料样品表面锰氧化物的晶体结构,比较不同温度风干的初始滤料发现它们具有相同复杂的晶型.  相似文献   

15.
孙楠  谌燕丽  张颖  鲁岩  宋秋霞  李春艳  姜昭 《环境科学》2017,38(3):1028-1037
针对严寒地区特有地理气候条件及制约当前村镇建设与发展的典型问题,以建设绿色低碳、节能环保村镇为目标,研发碳化稻壳-优势铁锰氧化菌耦合工艺净化严寒村镇高铁锰地下水,探究生物滤柱低温快速启动方式;基于接触氧化与生物法,对比分析不同滤速条件下滤柱沿程除铁效能与反应速率,研究生物滤层除铁机制;基于扫描电子显微镜(scanning electron microscope,SEM)、傅立叶红外线光谱(Fourier transform infrared spectroscopy,FTIR)、X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)、拉曼光谱(Raman spectra)、电子顺磁共振(electron paramagnetic resonance,EPR)对运行不同阶段的滤料与反冲洗水泥样表征剖析生物滤层除锰机制.结果表明,优势菌液低滤速-全循环的运行方式使稻壳生物滤层成熟且稳定仅需15 d;稳定运行阶段出水铁、锰、细菌浓度分别低于0.3 mg·L~(-1)、0.1 mg·L~(-1)、100 CFU·m L~(-1),均满足国家生活饮用水卫生标准(GB 5749-2006);除铁机制主要依靠物化作用、辅以生物作用;在滤料成熟阶段与稳定运行初期除锰主要依靠生物作用,稳定运行后期物理化学作用占优势;该研究为严寒村镇Fe~(2+)、Mn~(2+)地下水集中处理应用提供了技术支撑.  相似文献   

16.
低温生物除铁除锰工艺快速启动与滤速的探求   总被引:4,自引:0,他引:4  
为净化低温(5~6℃)高铁高锰这种地下水质,通过水厂实地滤柱实验表明,在该种水质下,适当调整工艺运行的参数能够快速富集铁锰氧化微生物,在120d左右实现生物除铁除锰工艺的快速启动和稳定运行;滤柱启动过程中,对滤层厚度进行了优化,1500mm厚新滤料在启动过程中会导致出水锰超标,而800mm厚成熟生物滤层在6~8m/h滤速下,可完成对铁、锰的深度去除;在此条件下,进行滤速探求的实验研究,最高滤速可达到16.5m/h保证出水铁锰合格,并给出了相应的反冲参数.  相似文献   

17.
为了考察曝气生物活性炭滤池(BACF)深度处理垃圾渗滤液的效能,研究了填料填充度、曝气位置、气水比、水力停留时间和p H等影响因素对滤池去除有机物、氨氮和总氮的影响。结果表明,最佳的工艺运行条件为:填料填充度为80%,底部曝气,气水比为3:1,水力停留时间为8 h,p H为7~8。在最佳工艺条件下运行反应器,COD、氨氮和TN平均去除率分别达到85%、90%和57%,出水可达到实验设定水质要求。BACF具有较强的抗有机负荷能力,进水COD浓度在323至3 000 mg/L之间时,COD去除率稳定在80%。反应器受氨氮冲击负荷影响较大,氨氮进水浓度低于90mg/L时,出水可达到要求。  相似文献   

18.
金盆水库沉积物铁锰释放规律   总被引:2,自引:0,他引:2  
针对分层型水库周期性厌氧问题,金盆水库利用人工强制混合充氧技术补充底部水体溶解氧,抑制沉积物中还原性污染物的释放.但受水库地形地貌的影响,人工强制混合充氧效率存在一定差异性,在曝气系统运行结束后部分较深区域上覆水体溶解氧迅速耗竭,导致污染物的再次释放.为探究铁锰在该条件下的释放规律及扩散强度,选取主库区代表性采样点,对沉积物间隙水及上覆水溶解态铁锰浓度分布进行测定,并计算沉积物-水界面处溶解态铁锰的扩散通量.结果表明,人工强制混合充氧结束后地势较低区域底部水体迅速进入厌氧状态,导致大量溶解态锰释放进入上覆水体,浓度最高达0.42mg·L~(-1);而地势较高区域底部水体短暂进入缺氧状态,之后溶解氧浓度迅速回升,因此底部溶解态锰浓度升高幅度较小,浓度最高为0.17mg·L~(-1).沉积物间隙水-上覆水铁锰浓度分布结果表明,由于铁锰氧化还原电位的差异,溶解态锰相较于铁在厌氧条件下更容易释放进入上覆水体,且不断在表层沉积物及上覆水体中积聚,而溶解态铁的释放不仅受溶解氧的抑制,还受锰氧化物等其他氧化剂的抑制.由扩散通量计算可知,人工强制混合充氧结束后溶解态锰的扩散通量有降低趋势.由质量平衡计算可知,溶解态锰在厌氧层中的积聚不仅与扩散通量有关,还与沉降通量、厌氧层厚度有关,因此厌氧层中铁锰的生物地球化学循环作用有待进一步的研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号