首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Growth characteristics and nutrient uptake kinetics were determined for zooxanthellae (Gymnodinium microadriaticum) in laboratory culture. The maximum specific growth rate (max) was 0.35 d-1 at 27 °C, 12 hL:12 hD cycle, 45 E m-2 s-1. Anmmonium and nitrate uptake by G. microadriaticum in distinct growth phases exhibited Michaelis-Menten kinetics. Ammonium half-saturation constants (Ks) ranged from 0.4 to 2.0 M; those for nitrate ranged from 0.5 to 0.8 M. Ammonium maximum specific uptake rates (Vmax) (0.75 to 1.74 d-1) exceeded those for nitrate (0.14 to 0.39 d-1) and were much greater than the maximum specific growth rate (0.35 d-1), suggesting that ammonium is the more significant N source for cultured zooxanthellae. Ammonium and nitrate Vmax values compare with those reported from freshly isolated zooxanthellae. Light enhanced ammonium and nitrate uptake; ammonium inhibited nitrate uptake which was not reported for freshly isolated zooxanthellae, suggesting that physiological differences exist between the two. Knowledge of growth and nutrient uptake kinetics for cultured zooxanthellae can provide insight into the mechanisms whereby nutrients are taken up in coral-zooxanthelae symbioses.Contribution No. 1515 from the University of Maryland Center for Environmental and Estuarine Studies, Chesapeake Biological Laboratory, Solomons, Maryland 20688-0038, USA  相似文献   

2.
Changes in the saturated uptake kinetics of the limiting nutrient were followed as Thalassiosira pseudonana (Clone 3 H) batch cultures entered ammonium, nitrate, silicate and phosphate starvation. Cultures starved of ammonium or phosphate developed very high specific uptake capacities over a 24 to 48 h starvation period, due to both decreases in cell quota and increases in uptake rates per cell. In particular, the cell phosphorus quota decreased ca. 8-fold during phosphate starvation and specific uptake rates exceeded 100 d-1. In contrast, cultures entering nitrate or silicate starvation underwent little or no further cell division, and the uptake capacity declined during starvation. After 24 to 48 h starvation, an induction requirement for uptake of nitrate or silicate was apparent. These responses are consistent with adaptation to the pattern of supply of these nutrients in the field.  相似文献   

3.
E. Sahlsten 《Marine Biology》1987,96(3):433-439
The uptake rates of the three nitrogen compounds ammonium, nitrate, and urea were measured in the oligotrophic North Central Pacific Gyre in August–September 1985. The measurements were performed by using 15N-labelled substrates and incubating for short-time periods (3 to 4 h) under simulated in situ conditions. Ambient concentrations of the nitrogenous nutrients were generally below 0.10 mol l-1. The average total daily nitrogen uptake rate, integrated over the euphotic zone, was 12.5 mmol N m-2 d-1. Diel studies in the upper water mass resulted in a calculated phytoplankton growth rate of 1.3 d-1. Ammonium was the dominating nutrient, accounting for on the average 54% of the total nitrogen uptake, while urea uptake represented 32% and nitrate 14%. Ammonium uptake rates at a coastal station off the Hawaiian Islands were very close to the rates found at the oceanic station. Organisms <3 m dominated the nitrogen assimilation, being responsible for about 75% of the ammonium uptake. The nitrogen uptake rates in this study seem to be higher than those found by earlier investigations in the area, but correlated well with other productivity measurements performed during the same cruise.  相似文献   

4.
The effect of preconditioning nitrogen source and growth rate on the interaction between nitrate and ammonium uptake was determined inThalassiosira pseudonana (Clone 3H). A new method, using cells on a filter (Parslow et al. 1985), allowed continuous measurement of uptake from 0.5 to 9 min after the addition of nitrate, ammonium, or both, with no variation in concentration during the course of the experiment. For each preconditioning N source and growth rate, a series of uptake experiments was conducted, including controls with only nitrate or only ammonium, and others with different combinations of concentrations of nitrate and ammonium. For the first time, preference for ammonium was separated from inhibition of nitrate uptake by ammonium. Ammonium was the preferred N source, i.e. if nitrate and ammonium were presented separately, ammonium uptake rates exceeded nitrate uptake rates. Preference for ammonium varied with both preconditioning N source and growth rate. Inhibition of nitrate uptake by ammonium, determined by comparing nitrate uptake in the presence and absence of ammonium, was observed at ammonium concentrations > 1µM, but was rarely complete. Inhibition of nitrate uptake by ammonium was less in the ammonium-limited culture than in the cultures growing on nitrate, but invariant with growth rate in the nitrate-grown cultures. Below 1µM ammonium, nitrate uptake was often stimulated and rates exceeded those in the controls without ammonium. Ammonium uptake was not inhibited by the presence of nitrate.T. pseudonana fits the classical view of the interaction between nitrate and ammonium uptake in some respects, such as preference for ammonium, and inhibition of nitrate uptake by ammonium concentrations > 1µM. However, at ammonium concentrations typical of most marine environments, nitrate uptake occurs at rapid rates. In other respects, N uptake inT. pseudonana deviates from the classical view in the following ways: (1) stimulation of nitrate uptake by low concentrations of ammonium; (2) lack of inhibition of nitrate uptake by ammonium at low nitrate concentrations; and (3) variation in preference and inhibition with preconditioning, which is markedly different for other species. Because of the apparent enormous species variation in the interaction between nitrate and ammonium uptake and the lack of detailed information for a variety of species, it is difficult to generalize about the effect of ammonium on nitrate uptake, especially in the field, where prior N availability and species composition are not usually addressed.  相似文献   

5.
Porphyra perforata J. Ag. was collected from a rocky land-fill site near Kitsilano Beach, Vancouver, British Columbia, Canada and was grown for 4 d in media with one of the following forms of inorganic nitrogen: NO 3 - , NH 4 + and NO 3 - plus NH 4 + and for 10 d in nitrogen-free media. Internal nitrogen accumulation (nitrate, ammonium, amino acids and soluble protein), nitrate and ammonium uptake rates, and nitrate reductase activity were measured daily. Short initial periods (10 to 20 min) of rapid ammonium uptake were common in nitrogen-deficient plants. In the case of nitrate uptake, initial uptake rates were low, increasing after 10 to 20 min. Ammonium inhibited nitrate uptake for only the first 10 to 20 min and then nitrate uptake rates were independent of ammonium concentration. Nitrogen starvation for 8 d overcame this initial suppression of nitrate uptake by ammonium. Nitrogen starvation also resulted in a decrease in soluble internal nitrate content and a transient increase in nitrate reductase activity. Little or no decrease was observed in internal ammonium, total amino acids and soluble protein. The cultures grown on nitrate only, maintained high ammonium uptake rates also. The rate of nitrate reduction may have limited the supply of nitrogen available for further assimilation. Internal nitrate concentrations were inversely correlated with nitrate uptake rates. Except for ammonium-grown cultures, internal total amino acids and soluble protein showed no correlation with uptake rates. Both internal pool concentrations and enzyme activities are required to interpret changes in uptake rate during growth.  相似文献   

6.
Dark respiration rates were measured and carbon-excretion rates calculated for a nitrate-limited population of the marine chrysophyte Monochrysis lutheri grown in continuous culture at 20°C on a 12 h light-12 h dark cycle of illumination and over a series of 4 growth rates. A significant (P<0.05) positive correlation was found between dark respiration rate and growth rate. From a simple linear fit to the data, the respiration rate at maximum growth rate was estimated to be roughly 10.5% of the maximum gross-carbon-production rate, and more than three times higher than the extrapolated respiration rate at zero net-growth rate. Carbon-excretion rates showed no significant correlation with growth rate, and averaged less than 5% of the maximum gross-carbon-production rate. Mean cell nitrogen to carbon ratios were correlated in a virtually linear manner (r=0.994) with growth rate, and at a given growth rate were consistently higher than nitrogen to carbon ratios for the same species grown on continuous light. A comparison of carbon and nitrogen quotas as a function of growth rate for M. lutheri and other species suggests that the increase of cellular nitrogen at high growth rates under nitrate-limited growth conditions may be associated with the storage of cellular protein or amino acids rather than the presence of an inorganic nitrogen reservoir. The maximum nitrate uptake rate per cell during the day changed very little over the range of growth rates studied, and was comparable to the maximum uptake rate found for cells grown on continuous light. However, the cell nitrogen quota increased steadily with growth rate, causing a reduction in the maximum specific-uptake rate of nitrate during the day at high growth rates. The dark nitrate-uptake capacity of the population was clearly exceeded by the supply rate at the two higher growth rates, leading to a buildup of nitrate during the night which amounted to as much as 21% of the particulate nitrogen in the growth chamber by morning.Hawaii Institute of Marine Biology Contribution No. 478.  相似文献   

7.
Nitrate and ammonium uptake rates were measured for three year-classes of the perennial macrophyte Laminaria groenlandica Rosenvinge, collected from nitrogen-depleted waters in Barkley Sound, British Columbia, Canada, in summer 1981. A time course of uptake rate revealed that ammonium uptake was high during the first hour and then decreased for all three year-classes; the opposite pattern was exhibited for the time course of nitrate uptake rate. Nitrate uptake rate increased linearly with nitrate concentration up to the highest level tested (60 M). The nitrate uptake rate of first-year plants was three times higher than second- and third-year plants; ammonium uptake rates showed similar patterns to those for nitrate. The interaction between nitrate and ammonium was examined for first-year plants. Nitrate and ammonium were taken up simultaneously and uptake rates were identical and equal to uptake rates when only nitrate or ammonium was present in the medium. Therefore, first-year plants are able to take up twice as much inorganic nitrogen per unit time when both nitrate and ammonium are present. First-year plants showed significant diel periodicity in ammonium uptake rates, whereas second- and third-year plants showed no periodicity in nitrate or ammonium uptake rates.  相似文献   

8.
The effects of several environmental variables on net nitrate uptake by the scleractinian coral Diploria strigosa were investigated under controlled flow conditions. D. strigosa exhibited nitrate uptake rates ranging from 1 to 5 nmol cm−2 h−1 at ambient concentrations of 0.1–0.3 μM that are typical of oligotrophic reefs such as Bermuda. Net uptake ceased at approximately 0.045 μM. The uptake was positively correlated with concentration up to a saturation concentration of approximately 3 μM. The uptake was also positively correlated with water velocity at 1 μM, but not at 6 μM, suggesting diffusional limitation at low concentrations and kinetic limitation at higher concentrations. Nitrate uptake by D. strigosa was not affected by light intensity or time of day, but was almost completely inhibited by 48 h exposure to ammonium levels found on many reefs.  相似文献   

9.
In conditions of low water motion (<0.06 ms–1), the availability of essential nutrients to macroalgae, and thus their potential productivity, may be limited by thick diffusion boundary-layers at the thallus surface. The ability of macroalgae to take up nutrients in slow moving water may be related to how their blade morphology affects diffusion boundarylayer thickness. For the giant kelp, Macrocystis integrifolia Bory, morphological measurements indicate that blades of plants from a site exposed to wave action are thick, narrow and have a heavily corrugated surface. In contrast, blades from a site with a low degree of water motion are relatively thin, with few surface corrugations and large undulations along their edges. The aim of our work was to test the hypothesis that morphological features of M. integrifolia blades from a sheltered site allow enhanced inorganic nitrogen uptake at low seawater velocities compared to blades with a wave-exposed morphology. The rate of nitrate and ammonium uptake by morphologically distinct blades of M. integrifolia, from sites that were sheltered from and exposed to wave action, were measured in the laboratory at a range of seawater velocities (0.01 to 0.16 ms–1), between March and May 1993. For both sheltered and exposed blade morphologies, nitrate and ammonium uptake rates increased with increasing seawater velocity, reaching a maximum rate at 0.04 to 0.06 ms–1. Uptake parameters V max (maximum uptake rate) and U 0.37 (the velocity at which the uptake rate is 37% of the maximum rate) were estimated using an exponential decay formula. These parameters were similar for both blade morphologies, at all seawater velocities tested. Additional measurements suggest that the nitrogen status of M. integrifolia blades from wavesheltered and exposed sites were similar throughout the experimental period, and thus nitrogen status did not affect the rate of nitrogen uptake in these experiments. on the basis of these results, we conclude that blade morphology does not enhance nitrogen uptake by M. integrifolia in conditions of low water motion. Potential effects of diffusion boundary-layers on kelp productivity are discussed.  相似文献   

10.
A nitrogen-deficient batch culture of the marine diatom Skeletonema costatum, when resupplied with a mixture of nitrate and ammonium, showed an initial enhanced nitrate uptake rate leading to a large internal concentration (pool) of nitrate. Following this initial nitrate uptake event, nitrate uptake ceased, and nitrate assimilation was inhibited until the ammonium present was used. At this point, nitrate uptake resumed and nitrate assimilation began. No internal ammonium pool was observed during nitrate utilization, but a large nitrate pool remained throughout the utilization of external nitrate. The internal nitrate pool decreased rapidly after exhaustion of nitrate from the culture medium, but growth of cellular particulate nitrogen continued for about 24 h. A mathematical simulation model was developed from these data. The model cell consisted of a nitrate pool, ammonium pool, dissolved organic nitrogen pool, and particulate nitrogen. It was found that simple Michaelis-Menten functions for uptake and assimilation gave inadequate fit to the data. Michaelis-Menten functions were modified by inclusion of inhibitory and stimulatory feedback from the internal pools to more accurately represent the observed nutrient utilization.  相似文献   

11.
The interaction between nitrate and ammonium uptake was examined as a function of preconditioning growth rate and nitrogen source by adding nitrate, ammonium, or both to nitrogen-sufficient,-deficient, and-starvedSkeletonema costatum (Grev.) Cleve and nitrogen-deficientChaetoceros debilis Cleve. By simultaneously measuring the internal accumulation of intermediates of nitrogen assimilation and the rates of nitrogen assimilation, the metabolic control of nitrogen uptake could be assessed. After the simultaneous addition of nitrate and ammonium to culture, both nitrate and ammonium uptake rates were decreased in comparison with the rates observed when each was added alone, although nitrate uptake was usually decreased more than ammonium uptake. Since both nitrate and ammonium uptake rates vary with time, preconditioning growth conditions, nitrogen sources present, and species, it was necessary to use several different indices to quantify inhibition. In general, ammonium inhibition of nitrate uptake inS. costatum was greatest in cultures preconditioned to ammonium and those at low growth rates, whereas ammonium uptake was inhibited most in cultures preconditioned to nitrate. In nitrogen-deficientC. debilis, nitrate uptake was more inhibited by ammonium, but uptake returned to normal rates more quickly than inS. costatum, whereas inhibition of ammonium uptake was similar. These results explain why the interaction between nitrate and ammonium uptake in the field can be so variable. Inhibition of uptake is not controlled by internal ammonium or total amino acids, nor is it related to the inability to reduce nitrate. Instead, inhibition must be determined in part by the external concentration of nitrogen compounds and in part by some intermediate(s) of nitrogen assimilation present inside the cell.Bigelow Laboratory Contribution No. 82022  相似文献   

12.
Abstract

The uptake and distribution of phenanthrene, a typical polycyclic aromatic hydrocarbon, in plant tissues of Aegiceras corniculatum and Avicennia marina and the relationship with nutrient (nitrate, ammonium, and soluble reactive phosphorus) availability were investigated. After 12?h of exposure, enhancements in the concentration of nitrate and soluble reactive phosphorus markedly decreased the residual level of phenanthrene in roots, while the addition of ammonium significantly increased the residual concentration. Due to the similar enzymatic degradation potential between treatment groups, the variation of phenanthrene concentration in mangrove roots may result from the H+/phenanthrene cotransport at the root surface that was influenced by nutrient uptake. Moreover, both nitrate and soluble reactive phosphorus amendments significantly increased translocation of phenanthrene from roots to leaves, which likely resulted from the change of hydraulic conductivity in mangrove plants triggered by different nutrient availability.  相似文献   

13.
Fucus distichus L. was collected near Vancouver, Canada, in late fall and early winter, 1981. The effects of the forms of nitrogen (nitrate, ammonium or urea) and periodic exposure to air on growth, rhizoid development and nitrogen uptake in germlings was investigated. Gamete release, fertilization, germination and germling growth had no requirement for a specific form of nitrogen. Periodic exposure to air increased secondary rhizoid development twofold. Nitrate and ammonium uptake rates of the germlings were higher than for the mature thalli (20 to 40 times for nitrate and 8 times for ammonium), while the halfsaturation constant (K s) values for nitrate were similar (1 to 5 M). The germlings showed saturable uptake kinetics but the mature thalli did not. When germlings were exposed to air it caused a 70% decrease in nitrate uptake, but not change in ammonium uptake. Ammonium uptake in the mature thalli was proportional to the ambient ammonium concentration. Nitrate uptake in the mature thalli appeared to follow saturation kinetics at low nitrate concentrations, but showed a non-saturable component at concentrations greater than 10 M. Presence of ammonium inhibited nitrate uptake by the mature plants but not by the germlings.  相似文献   

14.
FertilePterygophora californica Rupr. andMacrocystis pyrifera (L.) C.Ag. were collected in California, USA, from 1987 to 1989. Settlement activity of the spores was stimulated by nutrients, but this was not constant over time. Nutrients had no effect on the settlement ofP. californica spores between 2 and 18 h after sunrise, but settlement activity was stimulated by a nutrient mixture between 20 and 24 h after sunrise (14 to 18 h after release). Settlement activity inM. pyrifera spores was unaffected at 2 to 3 h after release, but settlement activity was significantly stimulated from 5 to 12 h after release. A variety of individual nutrients significantly stimulated settlement in 8 to 9 h oldM. pyrifera spores: ammonium, nitrate, glycine, phosphate, manganese-EDTA (18µM), borate, ferrous iron-EDTA, and ferric iron-EDTA. Spores also settled readily in unenriched artificial seawater, and nutrient-stimulated settlement rates were usually 150% of the unenriched control levels. Neither EDTA alone, cobalt-EDTA, nor manganese-EDTA (2µM) had significant effects onM. pyrifera spore settlement. The effects of time and of several individual nutrients on spore settlement activity are different from previously reported chemotactic effects of nutrients onP. californica andM. pyrifera spores. It is suggested that nutrient settlement-stimulation is mechanistically different from nutrient chemotaxis. However, like chemotaxis, settlement stimulation is probably an adaptation which increases the likelihood of spore settlement in microhabitats suitable for subsequent growth and reproduction of gametophytes.  相似文献   

15.
The kinetics of ammonium assimilation was investigated in Ulva pertusa (Chlorophyceae, Ulvales) from northeastern New Zealand. Ammonium assimilation exhibited Michaelis–Menten kinetics with a maximum rate of assimilation (V max) of 54 ± 5 μmol g−1 dry weight h−1 and half-saturation constant (K m) of 23 ± 8 μM. In contrast, values for ammonium uptake were considerably higher with a V max of 316 ± 59 μmol g−1 dry weight h−1 and K m of 135 ± 46 μM. At environmentally relevant ammonium concentrations (5 μM), assimilation accounted for most (70%) of the ammonium taken up. Darkness decreased the maximum rate of ammonium assimilation by 83%. We investigated the hypothesis that rates of biosynthetic processes are greater in the early part of the day in Ulva. Consistent with this hypothesis, the maximum rate of ammonium assimilation in U. pertusa peaked in the morning and coincided with low levels of the photosynthetic product sucrose, which peaked in the afternoon. There was a diurnal cycle in the rate of ammonium uptake and assimilation in light and dark, but the amplitude was much greater for assimilation than uptake. Moreover, our data suggest that net ammonium assimilation only occurs during the day in U. pertusa. We suggest that two major roles for diurnal cycles are minimisation of interspecific competition for resources and metabolic costs.  相似文献   

16.
Surface nannoplankton and netplankton photosynthetic rates and chlorophyll a concentrations were measured 3 h before and 3 h after local apparent noon at 36 stations in the eastern Pacific. Morning and afternoon nannoplankton and netplankton photosynthetic capacities were plotted against chlorophyll a concentrations. Comparison of am (morning) and pm (afternoon) regression coefficients revealed that neither netplankton nor nannoplankton photosynthetic efficiencies varied diurnally in temperate California Current waters. However, in oligotrophic tropical surface waters where the photosynthetic rates of both fractions were nitrogen limited, netplankton assimilation ratios exhibited an afternoon maximum, while nannoplankton efficiencies exhibited a morning maximum. The netplankton followed the same pattern in eutrophic tropical surface waters with high nitrate concentrations, but nannoplankton assimilation ratios were highest in the afternoon. Assuming that midday light intensities inhibit surface photosynthesis, it was concluded that assimilation ratios will reach a mid-morning or mid-afternoon maximum depending upon the relative importance of netplankton and nannoplankton productivity and the degree to which nutrients are limiting.  相似文献   

17.
The uptake of nitrate and ammonium was investigated experimentally during early spring 1989 in the Greenland Sea, with particular attention placed on the roles of irradiance, nitrogen concentrations and nitrateammonium interactions. The phytoplankton assemblage was dominated by the colonial prymnesiophyte Phaeocystis pouchetii. Nitrate concentrations ranged from undetectable at the end of the cruise to greater than 10 M, and ammonium levels ranged from less than 0.1 to 1.9M. The uptake of both nitrate and ammonium as a function of irradiance was found to be a saturation response. Photoinhibition occurred and was found to be greater for ammonium uptake. Ammonium uptake also saturated at irradiance levels five times lower than those needed to saturate nitrate uptake. Nitrate and ammonium uptake as a function of nitrogen concentration also was characterized by a saturation response, with the estimated half-saturation constant (K s) value for nitrate uptake being 0.29 M. Elevated ammonium concentrations inhibited nitrate uptake, and the response appeared to be one of exponential decrease with increasing concentrations of ammonium. The most important factor in the Greenland Sea influencing ammonium uptake during the spring was irradiace, while both irradiance and ammonium concentrations played major roles in regulating nitrate uptake and new production.  相似文献   

18.
The fate of nitrate in sediments from seagrass (Zostera capricorni Aschers.) beds of Moreton Bay on the subtropical eastern coast of Queensland, Australia, was investigated. Added nitrate was metabolised at rates of 0.4 to 3.4 g N cm-3 d-1 when sediments were incubated under anaerobic conditions with a large excess of nitrate. The potential rate of nitrate utilization was as rapid in sediments from subtidal bare areas as from adjacent seagrass beds. Ammonium was produced rapidly from15N-nitrate by microbial action in all the subtidal sediments examined. After 12 h of incubation, 13 to 28% of the15N initially added as labelled nitrate was detected as labelled ammonium in the sediments. Denitrification, although not measured directly, appeared to be a relatively minor fate of nitrate. Benthic microbes took up large amounts of15N but only after a delay of 6 h; this pattern could have been due to induction and synthesis of the enzymes necessary for nitrate uptake, and the assimilation of labelled ammonium. Under field conditions, assimilation by seagrasses and denitrification by bacteria were probably not significant sinks for nitrate in comparison with uptake by benthic microbes and dissimilatory reduction to ammonium.  相似文献   

19.
Ammonium uptake and assimilation by zooxanthellae (Symbiodinium sp.) cultured with an excess of nitrate was enhanced in light. Uptake was decreased by the same amount when zooxanthellae were incubated in darkness either after 6 h pretreatment in light, or at the end of the dark period of a 12 h light: 12 h dark cycle. This suggested that short-term incubations of zooxanthellae were valid tests for light enhancement of dissolved inorganic nitrogen (DIN) uptake. Assimilation of ammonium into glutamine (Gln) and glutamate (Glu) was also decreased in darkness. During a 12 h light: 12 h dark cycle, free pools of both Gln and Glu fell quickly at the start of the light period, followed by steady increases until the beginning of the next dark period. Of the four other major components of free amino acid pools tested, only the nonprotein amino acid taurine showed diel fluctuations. Gln and Glu pools in zooxanthellae freshly isolated from reef-forming corals also showed differences between day and night, suggesting changes in patterns of DIN assimilation over the diurnal cycle.  相似文献   

20.
The phosphorus metabolism of Pyrocystis noctiluca Murray (Schuett) 1886 has characteristics which may enhance its potential for success in orthophosphate impoverished waters. The steady-state phosphate uptake rates were equal in the light and dark, and were directly proportional to both the phosphorus cell quota and the cell division rate. In contrast, nutrient-saturated uptake rates were multiphasic, faster in the light than the dark, 2 to 4 orders of magnitude greater than steady-state rates, and were inversely proportional to both the phosphorus cell quota and the cell division rate. These uptake characteristics suggest that P. noctiluca may take up phosphate coincidently at their typically low ambient concentrations as well as to exploit episodic nutrient events in nature. Cell division rates were a hyperbolic function of the ambient orthophosphate concentration. The shortest doubling time was 8.7 d, the phosphate concentration at half the maximum division rate was 0.15 M and the threshold, concentration for cell division was ca 0.05 M PO 4 3- . Division rates of P. noctiluca in the ocean are much faster than predicted from the measured ambient orthophosphate concentrations. Since this dinoflagellate has high naturally occurring alkaline phosphatase activities, and can utilize organic-P compounds, we suggest that organic-P can be as important as orthophosphate in supporting the observed division rates of P. noctiluca in the sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号