首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 69 毫秒
1.
为探索瓦斯爆炸过程中温度变化规律,基于球形爆炸实验,研究不同初始瓦斯浓度条件下爆炸温度及爆炸温度与爆炸压力之间的相互作用关系。结果表明:随初始瓦斯浓度升高,在6.5%(低浓度)、9.5%(当量浓度)、12%(高浓度)时出现爆炸温度极大值,分别为995,932,1 153 K;爆炸过程中温度延迟时间及升温时间与初始瓦斯浓度曲线均呈U型变化,当初始瓦斯浓度约为9.5%(当量浓度)时,温度延迟时间及升温时间变化较小;当初始瓦斯浓度在爆炸上限浓度(16%)和下限浓度(5%)附近时,受瓦斯浓度影响变化较大;初始瓦斯浓度在9.5%时,瓦斯爆炸过程中的压力波促进火焰燃烧波的反向传播,出现二次升温现象。研究结果可为完善瓦斯爆炸温度变化机理、提高灾害防控技术提供依据。  相似文献   

2.
为减少乙炔火灾爆炸事故的发生,采用20 L爆炸罐为试验仪器,对常温、初始压力0.1 MPa条件下,不同体积配比乙炔-空气混合气的燃爆特性及氮气对乙炔分解爆炸的影响进行了试验研究,并结合碰撞理论和燃烧反应方程对试验结果进行了理论分析。结果表明:乙炔-空气混合气体随乙炔体积分数增大,最大爆炸压力逐渐升高;在乙炔体积分数为10%~55%范围内,乙炔与空气混合气的最大爆炸压力恒定在1.7 MPa,乙炔体积分数为10%时取得最大爆炸指数(78.14MPa.m/s);乙炔体积分数为55%~100%范围内,混合气体爆炸与初始压力有关,并且初始压力随乙炔体积分数增大而升高;纯乙炔分解爆炸的初始压力为0.18 MPa。氮气对乙炔分解爆炸有一定的抑制作用,并随氮气体积分数增加,抑制作用逐渐增大。  相似文献   

3.
对不同初始压力和温度条件下的甲烷/空气混合气的爆炸极限进行实验研究,利用最大-最小准则来确定爆炸极限.分析了温度和压力对甲烷/空气混合气燃爆特性的影响.采用氮气作为惰性气体,对其防爆抑爆效果进行了实验研究.  相似文献   

4.
利用已有的气体爆炸模型和包含初始压力、初始温度的气体爆轰参数的计算公式,从理论上研究初始压力和初始温度对气体爆轰参数的影响情况。使用VisualBasic语言编写计算程序,将计算值与文献值进行对比,具有较好的一致性。以甲烷-空气混合物为例,计算在98000Pa,280~400K及298K,0.1~0.5MPa的气体爆轰参数。计算结果表明,初始压力一定,混合物的爆轰压随初始温度的升高而减小,爆轰波速增大;初始温度一定,混合物的爆轰压随初始压力的增大而增大,爆轰波速基本不变;在初始温度和初始压力两个影响因素中,初始压力对混合物爆轰参数的影响明显大于初始温度。  相似文献   

5.
利用实验室自行设计的20L球形爆炸装置,对煤尘及甲烷煤尘混合物的爆炸特性进行了研究。结果表明:无论有无甲烷,煤尘的最大爆炸压力随煤尘浓度增加呈现先升高后降低的变化趋势,并且均在在煤尘浓度为600g/m3时均达到最大值。同时,甲烷的加入明显提高了煤尘最大爆炸压力值,而且随着甲烷浓度的增加,最大爆炸压力增幅先增加后降低,在甲烷5%时增幅最大。煤尘的爆炸持续时间随煤尘浓度增加呈现先降低后升高的特点,甲烷存在时有同样规律,但是有甲烷时爆炸持续时间明显降低,而且随着甲烷含量的增加,煤尘的爆炸持续时间降低幅度不断增加,在甲烷5%以后趋于稳定。实验结果对生产实践有一定的指导作用。  相似文献   

6.
在对甲烷爆炸极限理论分析的基础上,建立了一套温度压力耦合条件下的气体爆炸极限测试系统,并对甲烷在50~200℃和0.2~1.0 MPa环境条件下的爆炸极限进行了试验研究。结果表明:随环境温度升高和环境压力增大,甲烷爆炸上限升高,爆炸下限下降,爆炸范围变大;在200℃和1.0 MPa条件下,试验测得的甲烷爆炸下限为4.05%,爆炸上限为25.6%,相对于常温常压条件爆炸下限下降了0.95%,而爆炸上限上升了9.6%,这表明初始温度和压力对甲烷爆炸上限的影响较大,而对爆炸下限的影响较小。  相似文献   

7.
根据混合气的爆炸极限与混合气各成分的体积浓度之间具有非线性关系的特点,笔者提出采用神经网络非线性方法来计算含有H2,CH4和CO的多元混合气体的爆炸极限。在模型中,H2,CH4和CO的体积浓度作为输入,爆炸上限和下限作为输出。计算结果表明,该非线性模型预测混合气爆炸下限和上限的最大相对误差为3.90%,3.57%,而模型预测值与计算值的相关系数分别为0.971,0.981;非线性模型的预测结果要好于偏最小二乘回归的预测结果。当H2,CO,CH4在混合气中的体积浓度给定时,非线性模型能够准确预测混合气的爆炸极限。  相似文献   

8.
瓦斯对煤尘爆炸特性影响的实验研究   总被引:2,自引:3,他引:2  
瓦斯的存在对煤尘爆炸特性的理论计算和数值仿真的结果与实际数据有一定差距,因此,通过不同浓度瓦斯与煤尘共存条件下爆炸实验研究,得出了矿井瓦斯对煤尘的最低着火温度、最小点火能量、爆炸下限浓度、最大爆炸压力和最大爆炸压力上升速度等爆炸特性影响的规律即瓦斯对煤尘最低着火温度影响不大;瓦斯可使煤尘的最小点火能量减小,尤其是对难于点燃的煤尘;混合物的爆炸下限浓度随瓦斯浓度的增加而降低;混合物的最大爆炸压力上升速度由于瓦斯的存在而增强,而最大爆炸压力几乎没有变化。同时研究了瓦斯对无爆炸性煤尘的影响。实验研究的结论对于现场防止煤尘爆炸的发生具有指导意义。  相似文献   

9.
研究了环境温度对萘酐(C10H6O2)粉尘爆炸参数的影响,得到了随着温度的升高,最大爆炸压力峰值变化不大;而最大压力上升速率增大,爆炸下限浓度降低,安全氧含量也会降低.根据化学动力学理论对这一影响进行了分析.  相似文献   

10.
冷媒与空气的反应特征对空调压缩机安全性有重要影响.本文采用最小自由能原理,分别对两种冷媒R407C和R410A与空气的混合气体的爆炸反应参数进行了数值计算,得到了不同初始压力和不同冷媒含量条件下,混合气体爆炸反应温度和压力,分析了混合气体反应压力条件和爆炸极限范围.结果表明:初始压力低于0.2 MPa时,R407C-空气混合气体和R410A-空气混合气体均不会发生爆炸;初始压力超过0.3 MPa时,混合气体能够发生爆炸,爆炸反应温度和压力随着初始压力的升高而升高;R407C和R410A质量分数分别在34%、35%左右,混合气体反应温度和压力达到最大值.R407C和R410A易燃易爆特征相近;但爆炸范围都比氟利昂(R22)气体宽,即同样的条件下更容易发生爆炸.该计算结果能够为新型冷媒R407C和R410A的安全使用提供一定的依据.  相似文献   

11.
To explore the inhibitory effects of CF3I and CO2 gas on the explosion pressure and flame propagation characteristics of 9.5% methane, a spherical 20 L experimental explosion device was used to study the effect of the gas explosion suppressants on the maximum explosion pressure, maximum explosion pressure rise rate and flame propagation speed of methane. The results indicated that with a gradual increase in the volume fraction of the gas explosion suppressant, the maximum explosion pressure of methane and maximum explosion pressure rise rate gradually decreased, and the time taken to reach the maximum explosion pressure and maximum explosion pressure rise rate was gradually delayed. At the same time, the flame propagation speed gradually decreased. Additionally, the time taken for the flame to reach the edge of the window and the time taken for a crack as well as a cellular structure to appear on the flame surface was gradually delayed. The fluid dynamics uncertainty was suppressed. The explosion pressure and flame propagation processes were markedly suppressed, but the flame buoyancy instability was gradually enhanced. By comparing the effects of the two gas explosion suppressants on the pressure and flame propagation characteristics, it was found that at the same volume fraction, trifluoroiodomethane was significantly better than carbon dioxide in suppressing the explosion of methane. By comparing the reduction rates of the characteristic methane explosion parameters at a volume fraction of 9.5%, it was observed that the inhibitory effect of 4% trifluoroiodomethane on the maximum explosion pressure was approximately 4.6 times that of the same amount of carbon dioxide, and the inhibitory effect of 4% trifluoroiodomethane on the maximum explosion pressure rise rate and flame propagation speed was approximately 2.7 times that of the same amount of carbon dioxide. The addition of 0.5%–1.5% trifluoromethane to 4% and 8% carbon dioxide can improve the explosion suppression efficiency of carbon dioxide. This enhancing phenomenon is a comprehensive manifestation of the oxygen-decreasing effect of carbon dioxide and the trifluoroiodomethane-related endothermic effect and reduction in key free radicals.  相似文献   

12.
By varying inert gas content, equivalence ratio and initial pressure, this study is aimed at investigating flame propagation behaviors and explosion pressure characteristics near suppression limit. For carbon dioxide, the weakest flame floating phenomenon is observed at Φ = 1.5 and the buoyant instability is enhanced when the equivalent ratio deviates to the rich and lean sides. For nitrogen, the buoyant instability decreases with increasing equivalent ratio. Both maximum explosion pressure and maximum pressure rise rate increase firstly and then decrease with the increase of equivalence ratio, and they decrease significantly with increasing content of carbon dioxide and nitrogen. For carbon dioxide, the critical suppression ratio of Φ = 0.6, 0.8, 1.0, 1.5 and 2.0 is 7.50, 7.18, 5.74, 3.83, and 2.87. For nitrogen, the critical suppression ratio of Φ = 0.6, 0.8, 1.0, 1.5 and 2.0 is 15.83, 11.87, 9.50, 6.33 and 4.75. Compared to nitrogen, the carbon dioxide is more effective on suppressing hydrogen explosion pressure. The adiabatic flame temperature, thermal diffusivity and mole fraction of active radicals continue to decrease with increasing content of carbon dioxide and nitrogen, which contributes to the decrease of laminar burning velocity.  相似文献   

13.
为了探求一氧化碳与水蒸汽参与瓦斯爆炸的化学反应动力学过程的阻尼效应,建立了受限空间中瓦斯爆炸反应的数学模型。数值计算结果表明,结果表明在瓦斯爆炸过程中,瓦斯-空气混合气体含有10%的一氧化碳,虽然会延迟瓦斯爆炸时间,抑制瓦斯爆炸,但是H、O自由基浓度、瓦斯爆炸温度和压力比不加入一氧化碳时升高,同时对CO2、NO的生成起促进作用;当混合气体中含有10%的水蒸汽时,H、O自由基浓度降低,瓦斯爆炸温度和压力也随之降低,致灾性气体CO2、NO的生成得到抑制。虽然一氧化碳对瓦斯爆炸有一定的阻尼效应,但是由于一氧化碳对部分致灾性气体的生成有促进作用,因此,在阻尼瓦斯爆炸方面,水蒸汽的效果要好于一氧化碳。  相似文献   

14.
为了预防实际生产过程中发生的瓦斯爆炸事故,利用20 L球形爆炸装置,通过改变粉尘仓充压压力产生不同的扰动,研究9.5%CH4浓度下不同扰动条件对CO2抑爆特性的影响。通过对所得参数进行分析,得到CO2抑爆特性与初始扰动的关系。研究结果表明:相较于均匀静置状态,初始扰动的存在均能提高CH4的爆炸强度,当引发初始扰动的粉尘仓压力为1.5 MPa时,最大爆炸压力达到0.78 MPa;随CO2浓度增大,爆炸强度整体下降,呈二次下降趋势、最大爆炸压力时间呈上升趋势,且各初始扰动压力间爆炸强度均大于均匀静置状态、最大爆炸压力时间小于均匀静置状态;同时利用CHEMKIN软件得到绝热平衡压力,计算热损失参数发现,同一气体混合比例工况下,初始扰动状态的热损失及热损失分数明显低于均匀静置状态的,且当CO2浓度为15%时,差距最大,不同初始扰动间热损失及热损失分数最小值分别为0.013 19 kJ/m2,17.9%,远小于静置状态下0.036 29 kJ/m2,46.4%,说明初始扰动对于CO2抑爆效果存在削弱作用。  相似文献   

15.
采用瞬态火焰传播实验系统,对7%,8%,9%,10%和11%的瓦斯体积浓度分别与不同浓度的长焰煤煤尘混合,并使用直径25 μm的Pt/Rh13-Pt微细热电偶测量温度,揭示受限空间内瓦斯与煤尘混合爆炸温度特性。结果表明:煤尘浓度一定时,随着瓦斯浓度的增加,爆炸温度先增加后减小;纯瓦斯浓度在10%时爆炸温度最高,加入煤尘后的混合体系中,瓦斯浓度为9%时爆炸温度最高;瓦斯浓度不变时,随着煤尘浓度的增加,爆炸温度一直减小;7%~11%瓦斯分别与130 g/m3煤尘混合爆炸后测得最高温度分别为1 333.6,1 475.4,1 511.4,1 455.6,1 396.4 ℃;与9%纯瓦斯爆炸相比,9%瓦斯与130,260,520,780 g/m3煤尘混合爆炸后测得最高温度分别降低7.2%,11.5%,15.0%和22.9%。结论得到的瓦斯煤尘共混爆炸温度数据可为煤矿灾害高温防护提供参考依据。  相似文献   

16.
市政排污空间作为城市公共基础设施的重要组成部分,易积聚可燃气体形成爆炸性环境。结合排污空间的特殊环境条件,采用Fluidyn-MP多物理场数值模拟软件,建立了20 L球形爆炸罐分析模型,通过改变初始温度和初始压力,对排污空间甲烷-空气混合物爆燃特性及其变化规律进行模拟研究。结果表明:初始温度升高导致甲烷-空气混合物最大爆炸压力降低,缩短了到达最大爆炸压力的时间;初始压力增加导致最大爆炸压力急剧升高,并延长了到达最大爆炸压力的时间;最大爆炸压力对初始压力的敏感程度远大于初始温度的影响。此外,随着初始温度和初始压力的升高,爆炸火焰平均传播速度增加,而火焰传播速度对初始温度较敏感。  相似文献   

17.
巷道中瓦斯爆炸诱导激波传播特性研究   总被引:3,自引:1,他引:2  
利用AutoReaGas软件,数值模拟巷道中瓦斯浓度和火源对瓦斯爆炸传播的影响,其计算结果表明:爆炸静态超压随着传播距离的增加而减小,而爆炸动压随着传播距离的增加而增大;点火位置距离巷道封闭端越近,各测点得到的爆炸静态超压值越大;瓦斯浓度对爆炸峰值超压影响显著,当浓度为9.5%的氧化反应当量比浓度时,得到的最大峰值超压为70.95kPa,爆炸威力最大。  相似文献   

18.
湍流状态下甲烷爆炸特性的实验研究   总被引:6,自引:0,他引:6  
利用20L近球形气体爆炸反应装置,测试甲烷在宏观静止和湍流两种不同状态下的爆炸特性。实验结果表明:甲烷的爆炸极限受其流动状态的影响不明显;湍流状态下甲烷爆炸压力Pm和爆炸压力上升速率(dp/dt)m较宏观静止状态明显增大,爆炸压力峰值时间tm明显缩短,其中爆炸压力上升速率受湍流影响较为显著;甲烷浓度不同,其爆炸受湍流影响的程度也不同,较高浓度(11%~16%)时的Pm受湍流的影响程度较大,越靠近最佳浓度(dp/dt)m和tm受湍流的影响程度越大;同一浓度下Pm和(dp/dt)m随着湍流的加强而增大,tm则缩短。该研究表明,避免和减少湍流对矿井瓦斯爆炸过程的抑制具有重要作用。  相似文献   

19.
天燃气安全不仅仅局限在企业内部,而是面向全社会,关系到社会稳定和市民生命财产安全。随着天然气市场开拓和广泛利用,庞大的管网系统和多样的用气环境给安全工作提出了更高的要求。采用理论分析、实验研究相结合的方法研究了管道内天然气爆炸火焰及压力波的传播规律。应用直径为700mm,长度为93m的管道进行了三次天然气爆炸传播实验。得出爆源点最大压力值并不是整个爆炸过程的最大值;压力波最大压力值在爆源点附近先降低,然后上升到某一峰值之后再逐渐衰减;最大压力值在衰减过程中不是单调衰减,有点起伏;随着天然气浓度的增大,其爆炸平均升压速率反而减小;随着天然气浓度的增大,其爆炸平均升压速率反而在减小;爆源附近火焰传播速度较小,上升到某一峰值后逐渐衰减。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号