首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 750 毫秒
1.
地下水源地污染源危害性评价方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基于GIS技术平台、层次分析方法,构建了涵盖污染源特性与污染物属性两大方面的8项指标的污染源危害性评价的参数体系,建立了污染源特性指标评价与污染物属性指标评价的耦合模型,解决了地下水源地污染源的量化评价问题.应用所建方法评价了某地下水源地污染源对地下水的危害性.结果表明, 研究区的排污沟、石化公司周边的渗坑群及南部和东部某河滩的渗坑对地下水的潜在危害程度最高,石化公司的潜在危害性中等,其余区域危害性较低.这为污染源的有效监管提供技术支撑.  相似文献   

2.
地下水污染风险评价中特征污染物量化方法探讨   总被引:14,自引:10,他引:4  
针对地下水污染风险评价中的外界胁迫脆弱性评价缺乏有效量化体系这一问题,通过地下水污染源解析,提出了基于特征污染物及其对应排放量的量化体系;通过特征污染物属性解析及利用层次分析法确定研究侧重点,构建了该体系中的特征污染物量化方法.将该量化方法应用于北京市地下水污染风险评价,结果表明,依据不同研究侧重点得出的3种特征污染物危害性计算结果具有明显差异,并且3种危害性排序与对应的3种属性排序亦存在差异.由此表明,确定研究侧重点的主观倾向对特征污染物危害性计算结果有决定性影响.此外,在计算过程中,以序列值的方式解决3种属性的归一化及不同类别特征污染物属性量化结果的统一,会造成不同特征污染物之间相对属性特征的放大或缩小.  相似文献   

3.
地下水潜在污染源危害性评价方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
地下水污染源危害性评价对地下水资源保护及地下水污染防控区划具有重要意义,然而现有区域尺度地下水污染源荷载危害性评价弱化了点源污染复合强度对地下水的影响.因此,为更准确地进行区域地下水潜在污染源危害性评价,引入污染复合强度要素.选取工业源、农业源、生活源、地表排污河、垃圾场和加油站为研究对象,构建以污染源种类、污染物排放量、污染源释放可能性、缓冲区半径和污染复合强度为指标的综合评价模型,采用层次分析法确定各类污染源权重,基于ArcGIS 10.2软件对沧州市进行地下水综合潜在污染源荷载危害性评价.结果表明:Ⅳ、Ⅴ级风险区面积为5 560.0 km2,占总面积的41.6%,主要位于沧州市中部、北部地区,其危害性受工业源影响最大;Ⅰ、Ⅱ级风险区面积为3 303.4 km2,占总面积的25.2%,主要位于沧州市东部地区.研究显示,该评价方法强化了点源污染复合强度对地下水危害性的影响,可为区域地下水潜在污染源危害性评价提供参考,对地下水资源保护及污染防控区划具有重要意义.   相似文献   

4.
地下水有机污染源识别技术体系研究与示范   总被引:5,自引:3,他引:2  
地下水有机污染点多面广、污染源不清、治理难度大,如何从源头上控制污染源,减少污染源对地下水的威胁,是地下水污染控制和治理的关键.以典型污染场地为例开展有机污染源辨识研究,建立地下水有机污染源识别技术体系,并应用于典型污染场地地下水有机污染源的识别.在掌握污染场地地质、水文地质条件的基础上,从大量地下水分析化验数据中,确定污染场地特征污染物为四氯化碳,建立污染场地溶质运移模型,并结合单体同位素技术,通过模型反演和同位素溯源,确定了典型场地有机污染源的分布、污染现状,并对识别出的潜在污染源进行调查和土壤取样分析,结果表明,辨识出的两个历史污染源位置、污染物浓度分布结果可靠,为地下水污染治理提供了依据.  相似文献   

5.
地下油罐泄漏隐蔽性大,不易被及时发现,而且泄漏出的烃类化合物毒性强,对地下水会造成严重污染.为了对某一地下油罐污染源位置和强度进行准确识别,本研究结合现场调查结果,建立了该地下油罐泄漏区的石油污染物反应运移模型.在基本确定污染源泄漏区范围的前提下,进一步建立地下油罐泄漏区污染源的识别模型,并利用遗传算法对泄漏区污染源的位置和泄漏强度进行了自动识别,进而通过参数敏感性分析来评价和比较不同参数对污染物运移结果的影响.结果表明,运移模型中与地下水流场变化相关的特征参数(如开采量、水力坡度、渗透系数等)对污染物运移结果的影响相对比较明显.对于污染源来说,研究不同污染组分在含水层中的化学和生物化学变化显得尤为重要.  相似文献   

6.
北京平原区第四系地下水污染风险评价   总被引:15,自引:5,他引:10  
简述了我国近年来在地下水污染调查与评价方面的工作进展,指出了存在的若干问题.探讨了地下水污染风险评价中的相关概念,并重点论述了地下水污染风险评价与污染评价、脆弱性评价及质量评价的异同.针对北京市平原区的特点,选取了地下水污染评价、地下水质量评价、地下水系统脆弱性评价、地下水系统污染源荷载这4个指标作为评价因子.采用专家打分法确定4个评价因子权重.北京平原区地下水污染风险高、较高、中等、较低、低污染风险区的面积分别为1 232.1、699.3、1 951.4、2 644、133.2 km2.平原区西部及近郊一带污染风险性较高,地下水系统较高的脆弱性和较强的地下水污染源荷载共同作用的结果.在平原东南通州地区,主要是由于历史污染源的存在使得地下水污染的风险较高.  相似文献   

7.
根据污染物浓度监测数据进行地下水污染源反演是一类典型的地下水逆问题,通过对地下水污染源位置与强度的确定有助于提高地下水污染治理与修复的效果。提出一种基于自组织映射(SOM)算法的地下水污染溯源模型的替代模型的构建方法,并通过数值算例研究了SOM替代模型中训练数据样本数目和神经元数目的最优组合,以得到能够准确地表征地下水污染源强信息与观测数据之间联系的最优替代模型。算例研究结果表明:基于SOM算法的替代模型作为一种快速反演算法,在应用于地下水污染源反演问题时能有效减少计算量,并能以较高的精度对地下水污染源进行快速识别,具有良好的稳定性和鲁棒性。  相似文献   

8.
为分析参数不确定性对地下水污染源识别的影响,本文通过模拟-优化方法、灵敏度分析方法、蒙特卡罗方法和克里格方法的综合运用,建立了描述渗透系数与污染物质释放强度之间关系的推算模型,进行了考虑参数不确定性的地下水污染源识别研究.研究结果表明,推算模型具有较高的精度,确定性系数和平均相对误差分别为0.9895和4.51%;运用推算模型推算了8000组渗透系数影响下的污染源识别结果,节省了约99%的计算负荷和时间;对8000组污染源识别结果进行了定量的统计与分析,得到了概率密度最大的污染源识别结果和置信水平分别为80%、60%、40%和20%对应的污染源识别结果置信区间.本研究改善了应用模拟-优化方法进行地下水污染源识别时,难以考虑参数不确定性的缺点,可以为决策者提供更多的参考依据.  相似文献   

9.
区域地下水污染风险评价方法研究   总被引:19,自引:8,他引:11  
依据系统风险评价的边界要素,初步建立了区域地下水污染风险评价指标体系:区域地下水特殊脆弱性评价、区域污染源特性评价和区域特征污染物健康风险评价.采用多指标综合方法,对3个评价体系进行耦合,并运用ArcMap的Spatial Analysis功能制图对其进行风险表征,从而建立了对不同地区不同自然条件、不同污染类型的区域地下水污染风险评价的新方法.以常州市为例,利用该方法对其浅层地下水进行污染风险评价,研究表明该市地下水脆弱性指数较高,且分布不均;污染源分布较为集中,对地下水污染风险影响较大;受污染物及污染源影响,常州市区人群健康风险值较高.全市浅层地下水污染风险高且分布不均,污染风险较高区域分布在安家-薛家-郑陆一线以北和城区及其东南部一带.  相似文献   

10.
北京市地下水污染的现状及对策   总被引:17,自引:1,他引:17  
本文在全面分析北京市地下水污染源,污染途径,污染物迁移转化及地下水污染现状的基础上,提出防止地下水源污染的防护措施及污染控制对策。  相似文献   

11.
地下水污染风险评价是管理地下水资源和预防地下水污染的有效方法,采用DRSTIW模型对叶尔羌河流域平原区地下水脆弱性进行评价;采用因子分析对污染源解析量化,进行地下水污染负荷评价;采用兼顾开采价值和原位价值来估算地下水功能价值.采用熵权法和层次分析法确定综合权重,基于ArcGIS加权叠加功能生成地下水污染风险图.结果表明,研究区地下水脆弱性整体较高,地下水污染负荷和地下水功能价值整体较低,地下水污染风险整体偏低,高污染风险和较高污染风险区占研究区总面积的20.7%,主要分布在莎车县、泽普县、麦盖提县、图木舒克市和巴楚县西部等区域,含水层渗透能力强、地下水径流条件弱、地下水补给量模数大、植被覆盖率低和水岩相互作用强等自然条件加之频繁的人类活动如农业化肥的施用和工业、生活污水的排放等使得这些区域地下水污染风险较高.地下水污染风险评价为地下水监测网络的优化和地下水污染防治提供有力的数据支撑.  相似文献   

12.
我国地下水环境风险源点多面广,但风险源周边地下水监测水平较低,尤其是在单个监测点指标异常时,监测数据异常值的来源及风险源造成污染概率的判定方面存在较大不足.为了解决此类问题,提出了基于贝叶斯模型的地下水风险源污染概率估计方法,并以石家庄市某工业集聚区下游一个农灌井中Cr6+含量和CHCl3含量异常事件为研究案例,计算了指标异常来源于工业集聚区内8个风险源的污染概率.结果表明:①通过结合风险源的建成时间、废水排放量等软数据及对流弥散方程,优化先验概率、似然度以及后验概率求解方法,提出了基于贝叶斯模型的地下水风险源污染概率估计方法.②该工业集聚区下游农灌井中Cr6+含量和CHCl3含量异常事件的案例应用结果显示,Cr6+含量异常来源于S6风险源的后验概率为76.2%,即Cr6+含量异常最有可能由某无机盐制造业污染源造成;CHCl3含量异常来源于S1和S3风险源的后验概率分别为32.7%和23.6%,监测点CHCl3含量异常最有可能由一个或两个化学农药制造业污染源造成.研究显示,建立的地下水风险源污染概率估计方法初步解决了监测数据不足时指标异常的来源识别问题,可用于未开展详细调查前地下水污染来源的快速锁定,也可使后期的地下水污染调查更具有针对性,对地下水污染风险防控具有重要科学意义.   相似文献   

13.
采用一种基于径向基函数的替代模型代替地下水溶质运移模型,将其作为约束条件嵌入污染源识别的优化模型中,通过遗传算法对优化模型进行求解.最后通过一个假想例子评估优化模型的性能.研究表明:污染源泄漏量识别结果的平均绝对误差为1.00g/s,误差较小,计算时间为51min,耗时较少,因此,基于径向基函数模型的优化方法有效地避免了优化模型求解过程中多次调用模拟模型造成的巨大计算负荷,获得了较为准确的计算结果,是一种有效的地下水污染源识别方法,能够用来求解地下水污染源泄漏量.  相似文献   

14.
区域地下水环境风险评价技术方法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对我国在地下水环境风险评价技术方法储备不足的问题,提出区域地下水环境风险评价技术方法应遵循逐级筛选、分类分级评价的思路,突出对不同尺度的控制,将区域地下水尺度划分为区域(流域、平原)、局部地区(城市、单元)和场地(水源地、污染场地)3个层次. 通过分析区域地下水环境中风险源—受体—危害分析—生态终点的暴露响应途径,提出适宜大尺度区域地下水环境风险的评价方法;选用区域土地利用类型表征区域污染源,以地下水水质以及供水量变化为生态终点,采用相对风险模型分析大尺度区域环境风险. 针对大尺度区域内高环境风险区,采用源—路径—受体控制模型建立城市区域尺度地下水污染风险评价理论模型,并结合当地污染源特征、水文地质条件及水质现状进行局部地区地下水污染风险评价. 针对局部地区的高污染风险区,基于健康风险评价理论,突出水质安全保障,确定小尺度场地地下水健康风险的内涵与评价方法,提出场地地下水健康风险评价流程采用过程模拟方法确定污染物在包气带—地下水中的迁移转化,定量分析其对人体健康的影响. 下辽河平原区域地下水环境风险评价结果显示,高环境风险区位于沈阳浑河冲洪积扇区域,而细河是区域内地下水高健康风险区,应有针对性地采取保护措施.   相似文献   

15.
地下水污染风险评价中污染源荷载量化方法的对比分析   总被引:3,自引:2,他引:1  
赵鹏  何江涛  王曼丽  崔亚丰 《环境科学》2017,38(7):2754-2762
地下水污染风险评价是地下水资源保护和地下水污染防治区划的重要基础,其评价体系通常由污染源荷载、地下水脆弱性和地下水价值3个要素构成.由于污染源荷载量化方法的差异,必然存在对污染源基础信息的需求差异,以及对最终评价结果的影响未知等问题.为探讨污染源荷载量化方法对地下水污染风险评价的影响,本文选择具有代表性的评分指数法和定量指数法,以滹沱河冲洪积扇中尺度研究区为例,分别进行污染源荷载量化,耦合叠加相同的地下水脆弱性、地下水价值要素,进行地下水污染风险评价,并作对比分析.结果表明,两种方法得出的污染源荷载量化结果存在较大差异,风险评价的最终结果在风险数值特征及风险级别的空间分布上差异也比较显著,说明污染源荷载量化方法的选择对风险评价结果有重要影响;评分指数法适用于基础信息精度较低的大尺度评价区,方法简单,评价结果可靠性程度略低,定量指数法适用于基础信息精度高的中小尺度评价区,方法略复杂,但评价结果可靠性更高,反映出评价区的尺度效应对方法的选择有重要影响.  相似文献   

16.
地下水“三氮”污染来源及其识别方法研究进展   总被引:5,自引:2,他引:3  
杜新强  方敏  冶雪艳 《环境科学》2018,39(11):5266-5275
地下水"三氮"污染来源的识别研究对污染控制与修复有重要的意义.在阐述地下水"三氮"污染来源(大气氮沉降、土壤天然有机氮矿化、地表径流氮输入、人类活动氮排放等)及其在我国的分布特征的基础上,总结了国际上常用的"三氮"污染来源识别方法,包括水化学方法、统计学相关方法、区域氮平衡法、稳定同位素示踪法及一些新型示踪方法.指出由于"三氮"污染来源的多样性及污染形成机制的复杂性,单一识别方法在应用中均有较明显的局限性,目前主流识别手段为稳定同位素示踪法与多种识别方法相综合.进一步提出要加强新型示踪方法的开拓、定量识别方法的优化,污染源识别与迁移转化机制、地下水补排条件、地下水-地表水转化关系等研究相结合为未来发展的主要趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号