首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 186 毫秒
1.
Data from suburban residences in the Boston metropolitan area reveal a potential adverse impact on indoor air quality from woodburning in woodstoves and fireplaces. Ambient pollutant concentrations at each residence were compared to corresponding pollutant levels indoors at three locations (kitchen, bedroom, and activity room). Individual gaseous pollutant samples were averaged on an hourly basis while 24-h integrated samples of particulate matter were obtained. Ten gaseous pollutants were sampled along with total suspended particulates (TSP). Chemical analyses further determined ten components of TSP including trace metals, benzo-a-pyrene(B)aP, respirable suspended particulates (RSP), and water soluble sulfates and nitrates. Monitoring lasted two weeks at each residence and was conducted under occupied, real-life, conditions. Observed, elevated indoor concentrations of TSP, RSP, and BaP are attributed to woodburning. Data indicate that average indoor TSP concentrations during woodburning periods were about three times corresponding levels during nonwoodburning periods. The primary 24-h national ambient air quality standard (NAAQS) for TSP was exceeded once indoors during fireplace use, and the secondary, 24-h TSP NAAQS, was also exceeded indoors by RSP concentrations. Indoor BaP concentrations during woodstove use averaged five times more than during nonwoodburning periods. At this stage, results are only indicative, but the potential impact from elevated indoor concentrations of TSP, RSP, and BaP, attributed to woodburning, may have long-term health implications.  相似文献   

2.
To study respiratory health effects of long-term exposure to ambient air pollutant mixture, we observed 7058 school children 5-16 years of age living in the four Chinese cities of Lanzhou, Chongqing, Wuhan, and Guangzhou. These children were enrolled from elementary schools located in eight districts, one urban district and one suburban district in each of the above cities. Ambient levels of PM(2.5), PM(10-2.5), total suspended particles (TSP), SO(2), and NO(x) were measured in these districts from 1993 to 1996. Based on a cluster analysis of arithmetic mean concentrations of PM(2.5), PM(10-2.5), (TSP-PM(10)), SO(2), and NO(x), we classified these children into four ordinal categories of exposure to ambient air pollutant mixtures. We tested for exposure-response relationships using logistic regression models, controlling for relevant covariates. We observed monotonic, positive relationships of exposure to the pollutant mixture with prevalence rates of cough with phlegm and wheeze. Other outcomes were not associated with the exposure in a monotonic exposure-response pattern. Even so, odds ratios for cough, phlegm, bronchitis, and asthma in the higher exposure district clusters were all higher than in the lowest exposure district cluster. We found evidence that exposure to the pollutant mixtures had adverse effects on children living in the four Chinese cities.  相似文献   

3.
A spatial comparison of pollutant concentrations within the residential environment is undertaken, comparing pollutant concentrations from three indoor sampling locations (zones). The indoor air quality base was obtained from sampling the indoor air of 12 residential sites and two office buildings in the metropolitan Boston area. Each residential site was monitored continuously for two weeks, and data were reduced into hourly averages. Interzonal comparisons of the mean of hourly averages, 24-h averages, and daily maximum hourly concentrations were made at all sites. Linear regressions were computed between daily maximum hourly concentrations and mean 24-h concentrations of NO, NO2, and CO for kitchens to determine whether maximum hourly concentrations could be predicted from the 24-h concentration. These pollutants show interzonal statistical differences in residences with gas-fired cooking facilities but not in residences with electric cooking facilities. It was determined that, while one indoor sampling zone is not sufficient to specify indoor pollutant concentration maxima in residences having indoor sources of pollution, the daily mean of hourly pollutant concentrations obtained from one indoor zone can adequately describe the indoor environment. In addition, the maximum indoor hourly concentration for NO, NO2, and CO can be estimated for residences with all electric facilities, by using the mean 24-h concentration. The reliability of similar estimates for NO, NO2, and CO in residences with unvented gas appliances is reduced because of substantially more scatter in the paired data point, particularly at higher pollutant concentrations.  相似文献   

4.
为了解北京、上海两市大气污染的变化及其影响因素之间的关系,根据2004、2005年大气质量监测数据,分析了北京、上海两地大气污染特征和两地主要大气污染物的变化规律。结果表明,2004、2005年北京市的PM10最大值是最小值的637倍,北京市的变化幅度较上海市的变化幅度大;2004、2005年北京市的SO2最大值是最小值的467倍,上海市的SO2最大值是最小值的131倍,上海市的SO2污染的因素变化幅度较小;两市的NO2浓度都较高,且季节变化不太明显;两市NO2浓度年平均值满足国家空气质量二级标准,但质量浓度都较高,这与两市的机动车尾气污染有关;两市SO2浓度年平均值除上海市2005年外均满足国家空气质量二级标准,上海市SO2污染严重与上海市消耗大量煤炭有关,北京市SO2污染物浓度年度变化剧烈与冬季取暖烧煤有关;两市可吸入颗粒物污染比较严重,北京市PM10浓度年平均值超过国家空气质量二级标准,上海市PM10浓度年平均值达到国家空气质量二级标准。总体上上海市的大气质量要好于北京市。两地大气主要污染物随时间的变化规律与两地的污染物来源、地理、气候等条件有关。  相似文献   

5.
大气污染物的源排放是形成灰霾天气的内因,气象条件是形成灰霾天气的外因。本研究通过构建PM_(2.5)浓度的两段式分布滞后模型,结合自然环境因素及经济因素对PM_(2.5)的影响因素进行了综合分析。在第一段模型中构建了PM_(2.5)和大气污染物排放量的分布滞后模型,第二段模型中构建了不同的大气污染源对大气污染物排放量的影响因素模型。大气污染物排放源主要包括工业源、生活源、机动车源、集中式污染治理设施源。在工业源中,工业废气重度污染行业是大气污染物排放主要的贡献者;在生活源中,燃煤消费量对大气污染物排放影响很大,这也是冬季供暖期间PM_(2.5)剧增的原因;在机动车源中,尽管黄标车的保有量仅占汽车保有量的10%左右,但却占据了颗粒物排放量的绝大部分。利用京津冀代表性城市PM_(2.5)日度数据研究得出平均气温、平均风速、日照时数、平均气压、降雨量、平均相对湿度、沙尘暴等因素对PM_(2.5)浓度的负向与正向作用。研究发现,大气污染物排放量对PM_(2.5)浓度具有聚集的滞后效应,当期大气污染物排放量、滞后一期、滞后两期、滞后三期大气污染物对PM_(2.5)浓度具有显著的正向作用,且影响依次递减。构建的大气污染物排放量的污染源影响因素模型揭示一个地区煤炭消费量、工业废气重度污染行业工业增加值、黄标车保有量对该地区大气污染物排放量具有显著影响。本研究对优化能源消费结构和产业结构,减少空气污染物排放提出了对策建议。  相似文献   

6.
北京、上海两地2004和2005年大气污染特征对比分析   总被引:3,自引:0,他引:3  
为了解北京、上海两市大气污染的变化及其影响因素之间的关系,根据2004、2005年大气质量监测数据,分析了北京、上海两地大气污染特征和两地主要大气污染物的变化规律.结果表明,2004、2005年北京市的PM10最大值是最小值的63.7倍,北京市的变化幅度较上海市的变化幅度大;2004、2005年北京市的SO2最大值是最小值的46.7倍,上海市的SO2最大值是最小值的13.1倍,上海市的SO2污染的因素变化幅度较小;两市的NO2浓度都较高,且季节变化不太明显;两市NO2浓度年平均值满足国家空气质量二级标准,但质量浓度都较高,这与两市的机动车尾气污染有关;两市SO2浓度年平均值除上海市2005年外均满足国家空气质量二级标准,上海市SO2污染严重与上海市消耗大量煤炭有关,北京市SO2污染物浓度年度变化剧烈与冬季取暖烧煤有关;两市可吸入颗粒物污染比较严重,北京市PM10浓度年平均值超过国家空气质量二级标准,上海市PM10浓度年平均值达到国家空气质量二级标准.总体上上海市的大气质量要好于北京市.两地大气主要污染物随时间的变化规律与两地的污染物来源、地理、气候等条件有关.  相似文献   

7.
From 26 October 2002 to 8 March 2003, particulate matter (PM) concentrations (total suspended particles [TSP], PM10, PM2.5 and PM1) were measured at 49 public places representing different environments in the urban area of Beijing. The objectives of this study were (1) to characterize the indoor PM concentrations in public places, (2) to evaluate the potential indoor sources and (3) to investigate the contribution of PM10 to TSP and the contributions of PM2.5 and PM1 to PM10. Additionally, The indoor and outdoor particle concentrations in the same type of indoor environment were employed to investigate the I/O level, and comparison was made between I/O levels in different types of indoor environment. Construction activities and traffic condition were the major outdoor sources to influence the indoor particle levels. The contribution of PM10 to TSP was even up to 68.8%, while the contributions of PM2.5 and PM1 to PM10 were not as much as that of PM10 to TSP.  相似文献   

8.
Particulate and gaseous emissions from indoor combustion appliances and smoking can elevate the indoor concentrations of various pollutants. Indoor pollutant concentrations resulting from operating one of several combustion appliances, or from sidestream tobacco smoke, were measured in a 27-m3 environmental chamber under varying ventilation rates. The combustion appliances investigated were gas-fired cooking stoves, unvented kerosene-fired space heaters, and unvented natural-gas-fired space heaters. Results showed elevated levels of carbon dioxide, carbon monoxide, nitric oxide, nitrogen dioxide, formaldehyde, and suspended particles from one or more of the pollutant sources investigated. Our findings suggest that, of the sources examined in this study, nitrogen dioxide from combustion appliances and particles from sidestream cigarette smoke are the most serious contaminants of indoor air, if we use existing standards and guidelines as the criteria. An emission rate model was used to quantify the strengths of the pollutant sources, which are reported in terms of the mass of pollutant emitted per energy unit of fuel consumed (in the case of gas and kerosene appliances) and per mass of tobacco combusted (in the case of smoking).  相似文献   

9.
Indoor air quality was examined for some gaseous pollutants and particulate matters. In a public library, the indoor/outdoor ratio of gaseous pollutants were found to be dependent on their reactivity, also on the outdoor concentrations and weather conditions. This ratio was 0.6 for SO2,and 1.3 for CO. The indoor/outdoor ratio of carbon monoxide was found to increase at the higher floors of the same building. Concentrations of indoor particulates was found to be influenced by the outdoor concentrations and the particle size. Analysis indicated that indoor suspended dust contained a significant high concentration of lead as compared with outdoor values. Indoor sources were found to pollute the premises of fossil-fuel equipped homes, thus having carbon monoxide concentrations more than the recognized threshold limit value for industry.  相似文献   

10.
选取2014~2017年南昌市不同时间尺度AQI及主要空气污染物数据,利用GIS技术、神经网络分析、后向轨迹模型及地统计分析方法,分析了南昌市环境空气污染时空变化特征及影响因素。结果表明,南昌市近年来空气质量总体变化不大,空气质量等级以良为主,占全年比例为57%~61%。但首要污染物变化较大,即PM2.5比例显著下降,NO2和O3比例显著上升,PM10变化不大。南昌市空气污染季节变化显著,冬春季空气质量较差,以PM10、PM2.5污染为主,夏季空气质量最好,以O3污染为主。空气污染周变化以周末及周一污染较重、周四污染最轻,说明南昌市空气污染除了与群众出行习惯有关,还存在其他影响因素。南昌市空气质量日变化呈双峰型(9:00~11:00和20:00~22:00),主要受上、下班高峰期带来的交通尾气影响。南昌市空气污染空间变化呈典型的“郊区-市区”分布,其中AQI、PM10、PM2.5、SO2、NO2、CO值均以市区较高、郊区较低,而O3的空间分布规律正好相反,这主要与城区NOx排放较多,O3易与其迅速反应而消耗有关。后向轨迹聚类分析结果表明,来自本地的短轨迹气团占比高,对PM2.5、PM10、NO2、O3的影响大。气象因素上,PM2.5、PM10、NO2受相对湿度影响较大,O3受温度影响较大。  相似文献   

11.
Air pollution has been associated with daily mortality in numerous studies over the past decade. However most of these studies were conducted in the United States and Europe with relatively few done in Asia. In the current study, the association between ambient air pollution and daily mortality in Taipei, Taiwan's largest city which has a subtropical climate was undertaken, for the period 1994-1998 using a case-crossover analysis. This design is an alternative to Poisson time series regression for studying the short-term adverse health effects of air pollution. The air pollutants examined included particulate matter (PM(10)), sulfur dioxide (SO(2)), ozone (O(3)), nitrogen dioxide (NO(2)), and carbon monoxide (CO). The largest observed effect, which was without statistical significance, was seen for NO(2) and CO levels on deaths due to respiratory diseases (ORs=1.013 and 1.014, respectively). The well established link between air pollution levels and daily mortality may not be as strong in cities in subtropical areas, although other factors such as differences in pollutant mix or the underlying health of the population may explain the lack of a strong association in this study. Further studies of this type in cities with varying climates and cultures are needed.  相似文献   

12.
The findings on health effects of ambient fine particles (PM2.5) and coarse particles (PM10-2.5) remain inconsistent. In China, PM2.5 and PM10-2.5 are not the criteria air pollutants, and their monitoring data are scarce. There have been no epidemiological studies of health effects of PM2.5 and PM10-2.5 simultaneously in China. We conducted a time series study to examine the acute effects of PM2.5 and PM10-2.5 on daily mortality in Shanghai, China from Mar. 4, 2004 to Dec. 31, 2005. We used the generalized additive model (GAM) with penalized splines to analyze the mortality, air pollution and covariate data. The average concentrations of PM2.5 and PM10-2.5 were 56.4 microg/m3 and 52.3 microg/m3 in our study period, and PM2.5 constituted around 53.0% of the PM10 mass. Compared with the Global Air Quality Guidelines set by World Health Organization (10 microg/m3 for annual mean) and U.S. National Ambient Air Quality Standards (15 microg/m3 for annual mean), the PM2.5 level in Shanghai was much higher. We found that PM2.5 was associated with the death rates from all causes and from cardiorespiratory diseases in Shanghai. We did not find a significant effect of PM10-2.5 on mortality outcomes. A10 microg/m3 increase in the 2-day moving average (lag01) concentration of PM2.5 corresponded to 0.36% (95% CI 0.11%, 0.61%), 0.41% (95% CI 0.01%, 0.82%) and 0.95% (95% CI 0.16%, 1.73%) increase of total, cardiovascular and respiratory mortality. For PM10-2.5, the effects were attenuated and less precise. Our analyses provide the first statistically significant evidence in China that PM2.5 has an adverse effect on population health and strengthen the rationale for further limiting levels of PM2.5 in outdoor air in Shanghai.  相似文献   

13.
The indoor and outdoor air quality of two staff quarters of Hong Kong Polytechnic University at Tsim Sha Tsui East (TSTE) and Shatin (ST) were investigated. The air sampling was carried out in winter for about two months starting from January to February of 1996. Fifteen flats from each staff quarter were randomly selected for indoor/outdoor air pollutant measurements. The pollutants measured were NOx, NO, NO2, SO2, CO, and O3. The variations of pollutant concentrations between indoor and outdoor air were investigated on weekday mornings, weekday evenings, weekend mornings, and weekend evenings. All indoor/outdoor pollutant concentrations measured did not exceed the ASHRAE/NAAQS standard. The carbon monoxide concentrations indoors were systemically higher than those outdoors at the TSTE and the ST quarters, both on weekdays and Sunday, which indicates there are CO sources indoors. Except for CO, the indoor levels of other pollutants (NOx, NO, NO2, SO2, and O3) are lower than those outdoors. There was a significant correlation (P < 0.05) between indoor and outdoor concentrations for SO2 and O3 at both the TSTE and the ST quarters. Except for O3, the mean concentrations of all the pollutants in the TSTE quarters, both indoor and outdoor, were higher than that of the ST quarters in all sampling periods. All indoor and outdoor O3 levels were lower at the TSTE quarters than those at the ST quarters. The O3 ratios of TSTE/ST were 0.72 outdoor and 0.79 indoor. This can be explained by the NO titration reaction through NO conversion to NO2.  相似文献   

14.
BackgroundIndustrial plants emit air pollutants like fine particles (PM2.5), sulfur dioxide (SO2) and nitrogen dioxide (NO2) that may affect the health of individuals living nearby.ObjectiveTo assess the effects of community exposure to air emissions of PM2.5, SO2, and NO2 from pulp mills, oil refineries, metal smelters, on respiratory hospital admissions in young children in Quebec (QC) and British Columbia (BC), Canada.MethodsWe assessed QC, BC and pooled associations between the following estimates of exposure and hospital admissions for asthma and bronchiolitis in children aged 2–4 years for the years 2002–2010: i) Crude emission exposures at the residential postal codes of children, calculated by multiplying estimated daily emissions of PM2.5, SO2, or NO2 from all nearby (< 7.5 km) pulp mills, oil refineries, metal smelters emitting yearly ≥ 50 t and their total emissions, by the percent of the day each postal code was downwind; ii) Daily levels of these pollutants at central ambient monitoring stations nearby the industries and the children's residences.ResultsSeventy-one major industries were selected between QC and BC, with a total of 2868 cases included in our analyses. More cases were exposed to emissions from major industries in QC than in BC (e.g. 2505 admissions near SO2 industrial emitters in QC vs 334 in BC), although air pollutant levels were similar. Odds ratios (ORs) for crude refinery and smelter emissions were positive in QC but more variable in BC. For example with PM2.5 in QC, ORs were 1.13 per 0.15 t/day (95% CI: 1.00–1.27) and 1.03 (95% CI: 0.99–1.07) for refinery and smelter emissions, respectively. Pooled results of QC and BC for crude total SO2 emissions from all sources indicated a 1% increase (0–3%) in odds of hospital admissions per 1.50 t/day increase in exposure. Associations with measured pollutant levels were only seen in BC, with SO2 and NO2.ConclusionHospital admissions for wheezing diseases in young children were associated with community exposure to industrial air pollutant emissions. Future work is needed to better assess the risk of exposure to complex mixture of air pollutants from multiple industrial sources.  相似文献   

15.
Long-term air quality data with high temporal and spatial resolutions are needed to understand some important processes affecting the air quality and corresponding environmental and health effects. The annual and diurnal variations of each criteria pollutant including PM2.5 and PM10 (particulate matter with aerodynamic diameter less than 2.5 μm and 10 μm, respectively), CO (carbon monoxide), NO2 (nitrogen dioxide), SO2 (sulfur dioxide) and O3 (ozone) in 31 provincial capital cities between April 2014 and March 2015 were investigated by cluster analysis to evaluate current air pollution situations in China, and the cities were classified as severely, moderately, and slightly polluted cities according to the variations. The concentrations of air pollutants in winter months were significantly higher than those in other months with the exception of O3, and the cities with the highest CO and SO2 concentrations were located in northern China. The annual variation of PM2.5 concentrations in northern cities was bimodal with comparable peaks in October 2014 and January 2015, while that in southern China was unobvious with slightly high PM2.5 concentrations in winter months. The concentrations of particulate matter and trace gases from primary emissions (SO2 and CO) and NO2 were low in the afternoon (~ 16:00), while diurnal variation of O3 concentrations was opposite to that of other pollutants with the highest values in the afternoon. The most polluted cities were mainly located in North China Plain, while slightly polluted cities mostly focus on southern China and the cities with high altitude such as Lasa. This study provides a basis for the formulation of future urban air pollution control measures in China.  相似文献   

16.
Given that Hong Kong is one of the most densely populated cities in the world, the exposure of the Hong Kong people is one of the interesting research areas. In this study, an indirect approach was used to estimate the exposure to nitrogen dioxide (NO2), respiratory dust (PM10) and carbon monoxide (CO) pollutants experienced by different age groups of people in Hong Kong. The average concentrations of the 20 major microenvironments obtained from our measurement survey data, together with the people activity pattern data obtained from 7-day recall questionnaires, were used to predict frequency distributions to exposure assessment. Our results showed that Hong Kong people spent more than 86% of their time indoors. Homes were shown to be the one of the major exposure sites to NO2, CO and PM10 for all age groups. Our results also indicate that the 24-h NO2 exposure for individuals, irrespective of age, spending more than 2 h in commuting daily, was observed to be exceeding the 24-h NO2 exposure standards. This study was one of the pioneering studies with valuable contribution for modeling the estimates of exposures to NO2, PM10 and CO of different age groups in Hong Kong.  相似文献   

17.
Recent studies have pointed to evidence that fine particles in the air could be significant contributors to respiratory and cardiovascular diseases and mortality. Epidemiologists looking at the health effects of particulate pollution need more information from various receptor locations to improve the understanding of this problem. Detailed information on temporal, spatial and size distributions of particulate pollution in urban areas is also important for air quality modellers as well as being an aid to decision and policy makers of local authorities. This paper presents a detailed analysis of temporal and seasonal variation of PM(10) and PM(2.5) levels at one urban roadside, one urban background and one rural monitoring location. Levels of PM(10), PM(2.5) and coarse fraction of particulates are compared. In addition, particulate levels are compared with NO(2) and CO concentrations. The study concludes that PM(10) and PM(2.5) are closely related at urban locations. Diurnal variation in PM(2.5)/PM(10) ratio shows the influence of vehicular emission and movement on size distribution. This ratio is higher in winter than in summer, indicating a build-up or longer residence time of finer particulates or washout due to wet weather in winter. In the second part of this study, a disease burden analysis is carried out based on the dose-response relationships recommended by the UK Committee on the Medical Effects of Air Pollution. The disease burden analysis indicates that if Marylebone Road (MR) levels of PM(10) were prevalent all over London, it will result in around 2.5% increase in death rates due to all causes. Whereas, if Bloomsbury (BB) levels were prevalent in London, which is more likely to occur as this is more representative of the urban background environment to which people in London are likely to be exposed, the corresponding increase would be around 1.7%. Considering this, in London, at Bloomsbury levels, 973 deaths and 1515 respiratory hospital admissions (RHA) are attributable to PM(10) while 2140 RHA are attributable to NO(2). After deducting the disease burden due to background levels at Rochester (RC), PM(10) emission caused by anthropogenic activities in London equates to 273 additional deaths and 410 additional RHA, while NO(2) account for additional 1205 incidences of RHA.  相似文献   

18.
Characterization of water-soluble ion species in urban ambient particles   总被引:18,自引:0,他引:18  
Concentrations and distributions of water-soluble ion species contained in ambient particles were measured in a coastal urban area, Kaohsiung City, Taiwan. PM10 and PM2.5 samples were collected using a dichotomous sampler from November 1998 to April 1999 and were analyzed for water-soluble ion species with ion chromatography. On the average, ion species measured in this study accounted for 42.2% of the PM2.5 and 35.7% of the PM10. It was found that SO4(2-) , NO3-, and NH4+ dominated the identifiable components within both fine (PM2.5) and coarse (PM2.5-10) fractions, and occupied 90.0% and 80.6% of total dissolved ionic concentrations for PM2.5 and PM10. The secondary aerosol formed through the NOx/SO2 gas-to-particle conversion was estimated based on the oxidation ratio of sulfur and nitrogen (SOR and NOR, respectively), i.e., sulfate sulfur/nitrate nitrogen to total sulfur/total nitrogen. The average SOR/NOR values were 0.25/0.07 and 0.29/0.12 for PM25 and PM10, respectively. The high SOR and NOR values obtained in this study suggested that there existed a secondary formation of SO4(2-) from SO2 along with NO3- from NOx in the atmosphere.  相似文献   

19.
长江三角洲城市群空气质量时空分布特征   总被引:2,自引:0,他引:2  
基于数理统计、空间插值技术、相关性分析与GIS地图表达,研究长江三角洲城市群AQI及各空气含量因子污染浓度的时间、空间分布特征。通过提取国务院最新规划的长江三角洲城市群空间分布数据,划分研究区为"一核五圈",探讨了空气质量指数的时间变化特征和AQI、首要污染物的空间分布规律,定量评价了AQI与其污染因子的相关性,结果表明:(1)时间变化上,长三角城市群空气质量季均变化规律为夏季最好,冬季最差;月均变化呈波浪形分布,在1月份的平均浓度皆为最高;周均变化为:在一周后半段达到一周最大值;(2)空间分布上,分季节看,AQI在春、秋、冬三季空间梯度变化显著,呈现北高、南低的分布格局。在首要污染物的分布上,以PM_(2.5)和O_3均分长三角地区;(3)PM_(2.5)含量空间分布与AQI有较高相似性,均处于北高南低的分布状态,臭氧分布呈现东高西低,即较发达的城市臭氧含量相对较高的空间分布格局。最后通过相关性计算,AQI与PM_(2.5)相关性显著,与O_3没有明显相关性,为长三角大气污染防治提供依据。  相似文献   

20.
Cooking and heating with coal and biomass is the main source of household air pollution in China and a leading contributor to disease burden. As part of a baseline assessment for a household energy intervention program, we enrolled 205 adult women cooking with biomass fuels in Sichuan, China and measured their 48-h personal exposure to fine particulate matter (PM2.5) and carbon monoxide (CO) in winter and summer. We also measured the indoor 48-h PM2.5 concentrations in their homes and conducted outdoor PM2.5 measurements during 101 (74) days in summer (winter). Indoor concentrations of CO and nitrogen oxides (NO, NO2) were measured over 48-h in a subset of ~ 80 homes. Women's geometric mean 48-h exposure to PM2.5 was 80 μg/m3 (95% CI: 74, 87) in summer and twice as high in winter (169 μg/m3 (95% CI: 150, 190), with similar seasonal trends for indoor PM2.5 concentrations (winter: 252 μg/m3; 95% CI: 215, 295; summer: 101 μg/m3; 95% CI: 91, 112). We found a moderately strong relationship between indoor PM2.5 and CO (r = 0.60, 95% CI: 0.46, 0.72), and a weak correlation between personal PM2.5 and CO (r = 0.41, 95% CI: − 0.02, 0.71). NO2/NO ratios were higher in summer (range: 0.01 to 0.68) than in winter (range: 0 to 0.11), suggesting outdoor formation of NO2 via reaction of NO with ozone is a more important source of NO2 than biomass combustion indoors. The predictors of women's personal exposure to PM2.5 differed by season. In winter, our results show that primary heating with a low-polluting fuel (i.e., electric stove or wood-charcoal) and more frequent kitchen ventilation could reduce personal PM2.5 exposures. In summer, primary use of a gaseous fuel or electricity for cooking and reducing exposure to outdoor PM2.5 would likely have the greatest impacts on personal PM2.5 exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号