首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parametric glass milling is presented to machine periodical circular channels on the glass plates for manufacturing micro testing devices. An end mill traverses in the linear motion during the workpiece rotation, which are synchronized by simultaneous control. The glass milling is controlled by 4 parameters in a mathematical model without NC program. Based on the principle of the parametric machining and the effect of the cutter axis inclination on the cutting process, a milling machine was developed to perform the parametric glass milling with an inclined ball end mill. The cutter axis inclination and the actual feed rate are associated with the critical feed rate, the maximum feed rate at which a crack-free surface is finished. As a machining example, a periodical circular channel was machined with a transparent surface by the simultaneous control.  相似文献   

2.
Potassium dihydrogen phosphate (KDP) crystal, widely used for important electro-optic parts, is a typical hard-to-machine material because of its soft, brittle, and anisotropic properties. High quality is usually required for machined surfaces on KDP parts. Reported machining methods for KDP crystal include diamond turning, grinding, magnetorheological finishing, and polishing. Each of these methods has its limitations. Therefore, it is desirable to develop new machining methods for KDP crystal. This paper presents an experimental investigation on surface roughness in rotary ultrasonic machining (RUM) of KDP. It was found that the surface roughness obtained when using a tool with a chamfered corner was lower than that obtained using tools with right-angle corners. Other process variables (spindle speed, feedrate, and ultrasonic power) also affected the surface roughness obtained.  相似文献   

3.
目的分析西部某气田天然气管路球阀发生开裂泄漏事故的原因。方法对球阀的化学成分、断口、金相组织等进行检测分析。结果球阀裂纹起源于阀体内表面,裂纹沿晶界扩展,晶界未发现贫铬现象,不存在晶间腐蚀;阀体材料存在沿晶铸造缺陷和枝晶露头,水淬激冷过程中形成沿晶微裂纹,承压状态下裂纹沿晶扩展;球阀螺纹根部最薄且应力集中,裂纹由内向外扩展,最终沿螺纹根部环向断裂,断口形貌为沿晶断裂。结论导气球阀失效原因是螺纹根部存在应力集中和铸造阀体存在缺陷。在两者共同作用下,导致阀体承压状态下沿晶脆性断裂。  相似文献   

4.
The paper presents a micro dimple machining on a cylinder surface with a two-flutes ball end mill. When the cutter axis is inclined and the depth of cut is less than the tool radius, non-cutting time, during which neither of the two cutting edges contacts the workpiece, appears in a rotation of the cutter. The rotation of the workpiece and the feed of the tool are controlled so that the cutting areas do not overlap each other. In order to incline the tool with respect to the tangential direction on the cylinder surface, the tool is located at a position oriented at 45° from the top of the cylinder. An analytical model is presented to control the shapes of the dimples with the cutting parameters. The presented machining is verified in cutting tests with measuring the shape and the profile of the dimples. Pre-machining operations are conducted to have a high cylindricity of the workpiece in longitudinal turning and polishing. The cutter runout of the tool is also eliminated by adjusting the orientation and the position of the tool in the collet chuck with measuring the cutting force. The micro dimples are machined accurately as they are simulated.  相似文献   

5.
Hydroxyapatite (HAP) is a widely used bio-ceramic in the fields of orthopedics and dentistry. This study investigates the machinability of nano-crystalline HAP (nHAP) bio-ceramic in end milling operations, using uncoated carbide tool under dry cutting conditions. Efforts are focused on the effects of various machining conditions on surface integrity. A first order surface roughness model for the end milling of nHAP was developed using response surface methodology (RSM), relating surface roughness to the cutting parameters: cutting speed, feed, and depth of cut. Model analysis showed that all three cutting parameters have significant effect on surface roughness. However, the current model has limited statistical predictive power and a higher order model is desired. Furthermore, tool wear and chip morphology was studied. Machined surface analysis showed that the surface integrity was good, and material removal was caused by brittle fracture without plastic flow.  相似文献   

6.
Single-point diamond turning (SPDT) experiments conducted on single-crystal 6-H silicon carbide (SiC) have shown chip formation similar to that seen in the machining of metals. The ductile nature of SiC is believed to be the result of a high-pressure phase transformation (HPPT), which generates a plastic zone of material that behaves in a metallic manner. This metallic behavior is the basis for using AdvantEdge, a metal machining simulation software, for comparison to experimental results.Simulations (2D) were carried out by matching the SPDT experimental conditions, which were conducted at nanometer (nm) depths of cut and varying tool rake angles. The experiments were performed by machining the circumference of the single-crystal wafer, thereby conforming to a 2D orthogonal cut (plunge cuts, or an infeed, achieved the depth of cut, and no cross feed was incorporated).The cutting and thrust forces generated from the experiments under ductile cutting conditions compared favorably with the simulation. As the depth of cut is decreased (250 nm, 100 nm, and 50 nm), the experimental conditions transition from a brittle to ductile behavior, with the 50 nm cuts being dominated by the ductile regime. Thus, the forces from the experiment and the simulations are in much better agreement for the smaller depths of cut, that is, below the critical depth of cut that establishes the ductile-to-brittle transition, as ductile conditions exist in both the simulation and experiments. The differences in the results that do arise are assumed to be primarily due to a springback of the material leading to increased rubbing on the flank face.  相似文献   

7.
Sensors capable of providing fast and reliable feedback signals for monitoring and control of existing and emerging machining processes are an important research topic, that has quickly gained academic and industrial interest in recent years. Generally, high-precision machining processes are very sensitive to variation in local machining conditions at the tool–workpiece interface and lack a thorough understanding of fundamental thermomechanical phenomena. Existing sensors to monitor the machining conditions are not suitable for robust in-process control as they are either destructively embedded and/or do not possess the necessary spatial and temporal resolution to monitor local tool internal temperatures during machining at the cutting tip/edge effectively. This paper presents a novel approach for assessing transient tool internal temperature fields in the close vicinity of less than 300 μm of the tool cutting edge. A revised array layout of 10 micro thin film micro thermocouples, fabricated using adapted semiconductor microfabrication methods, has been embedded into polycrystalline cubic boron nitride (PCBN) cutting inserts by means of a modified diffusion bonding technique. Scanning electron microscopy was used to examine material interactions at the bonding interface and to determine optimal bonding parameters. Sensor performance was statically and dynamically characterized. They show good linearity, sensitivity and very fast response time. Initial machining tests on aluminum alloys are described herein. The tests have been performed to demonstrate the functionality and reliability of tool embedded thin film sensors, and are part of a feasibility study with the ultimate goal of applying the instrumented insert in hard machining operations. The microsensor array was used for the acquisition of tool internal temperature profiles very close to the cutting tip. The influence of varying cutting parameters on transient tool internal temperature profiles was measured and discussed. With further study, the described instrumented cutting inserts could provide more valuable insight into the process physics and could improve various aspects of machining processes, e.g. reliability, tool life, and workpiece quality.  相似文献   

8.
The study focuses on the efforts for minimization of burr formation and improvement of hole surface roughness in micro through-hole machining. It deals with the development of micro compound tool which is consisting of a micro flat drill as the drilling part and a micro diamond-electroplated-grinding part for hole finishing. The finishing diameters of each drilling and grinding parts of the fabricated micro compound tool are 90 μm and 100 μm, respectively. The study focuses mainly on the effect of drill point angle and ultrasonic vibration applied during micro hole machining to the hole entrance and exit burrs formation. The used workpiece is made of stainless steel (SUS304) with a thickness of 100 μm. From the experiment, it was found that the tool having drill point angle of 118° resulted in a smaller burr formation although hole machining was conducted for 600 holes. Furthermore, the application of ultrasonic vibration during hole machining could improve the performance of the developed micro compound tool and decreased the burr size, especially the exit burr.  相似文献   

9.
Prediction of machining forces involved in complex geometry can be valuable information for machine shops. This paper presents a mechanistic cutting force simulation model for ball end milling processes, using ray casting and voxel representation methods used in 3D computer graphics field. Using this method, instantaneous uncut chip cross sectional areas can be extracted, which can be used in cutting pressure coefficient extraction and machining simulation including machining forces and geometry of the workpiece. The major advantage of the proposed scheme is that it can simulate milling processes with arbitrary cutting tool geometry on a workpiece with complex geometry, using an algorithm with constant time complexity. A series of cutting experiments were carried out to validate the model.  相似文献   

10.
Cost-effective machining of hardened steel components such as a large wind turbine bearing has traditionally posed a significant challenge. This paper presents an approach to machine hardened steel parts efficiently at higher material removal rates and lower tooling cost. The approach involves a two-step process consisting of laser tempering of the hardened workpiece surface followed by conventional machining at higher material removal rates with lower cost ceramic tools to efficiently remove the tempered material. The laser scanning parameters that yield the highest depth of tempered layer are obtained from a kinetic phase change model. Machining experiments are performed to demonstrate the possibility of higher material removal rates and improved tool wear behavior compared to the conventional hard turning process. Tool wear performance, cutting forces, and surface finish of Cubic Boron Nitride (CBN) tools as well as low cost ceramic tools are compared in machining of hardened AISI 52100 steel (~63 HRC). In addition, cutting forces and surface finish are compared for the laser tempering based turning and conventional hard turning processes. Experimental results show the potential benefits of the laser tempering based turning process over the conventional hard turning process.  相似文献   

11.
Coated tools have improved the performance of both traditional and nontraditional machining processes and have resulted in improved machining characteristics. However, a study on the performance of coated tools in micromachining, particularly in ECM, has not yet been adequately conducted. One possible reason is the difficulties associated with the preparation of coated microtools. This paper describes a method of preparation of nickel coated tungsten microtools by electrodeposition and reports on the performance of these tools in microECM experiments. The tungsten microtool was electroplated with nickel with direct and pulse current. The effect of the various input parameters on the coating characteristics was studied and performance of the coated microtool was evaluated in pulse ECM. The coated tool removed more material than the uncoated tool under similar conditions and was more electrochemically stable. It was concluded that nickel coated tungsten microtool can improve the pulse ECM performance.  相似文献   

12.
Nickel-base single-crystalline materials such as LEK94 possess excellent thermo-mechanical properties at high temperatures combined with low density compared to similar single-crystalline materials used in aero engines. Since the components of aero engines have to fulfil demanding safety standards, the machining of the material used for these components must result in a high geometrical accuracy in addition to a high surface quality. These requirements can be achieved by electrochemical and precise electrochemical machining (ECM/PECM). In order to identify proper machining parameters for PECM the electrochemical characteristics dependent on the microstructure and the chemical homogeneity of LEK94 are investigated in this contribution. The current density was found to be the major machining parameter affecting the surface quality of LEK94. It depends on the size of the machining-gap, the applied voltage and the electrical conductivity of the electrolyte used. Low current densities yield inhomogeneous electrochemical dissolution of different microstructural areas of the material and lead to rough surfaces. High surface qualities can be achieved by employing homogenous electrochemical dissolution, which can be undertaken by high current densities. Furthermore, a special electrode was developed for the improvement of the quality of side-gap machined surfaces.  相似文献   

13.
Three- dimensional laser machining of structural ceramics such as alumina (Al2O3), silicon nitride (Si3N4), silicon carbide (SiC) and magnesia (MgO) was carried out using a 1.06 μm wavelength pulsed Nd:YAG laser. The rate of machining predicted in terms of material removed per unit time (mg/s) increased with an increase in heating rate (K/s). A thermal model based on temperature dependent absorptivity and thermophysical properties, in addition to conduction, convection and radiation based heat transfer, was developed to predict material removal rate. Predicted values were compared with actual measurements made from machined cavities. Such a study would enable advance predictions of the laser processing conditions required to machine cavities of desired dimensions.  相似文献   

14.
The material removal within different machining process can be performed in distinct modalities. One of the modality is based on the erosion phenomena. In this paper, theoretical model of abrasive jet machining based on erosion phenomenon is discussed. The material is removed from the surface due to erosion. In abrasive jet machining process, the output parameter is achieved by controlling various input parameters. This paper discusses the effects of various input parameters in abrasive jet machining (AJM) on the material removal rate (as the output parameter). The results presented in the paper are obtained from a theoretical study carried out with the help of mathematical model and computational technique. Theoretical investigation indicates that magnetic field, electric field and inhomogeneity in DC electric field have significant effect on metal removal by abrasive jet machining process.  相似文献   

15.
Titanium aluminide intermetallics offer an attractive combination of low density and good oxidation, corrosion and ignition resistance with unique mechanical properties. In this study two series of machining tests are designed. Firstly the powder mixed electrical discharge machining (PMEDM) of γ-TiAl by means of different powders such as aluminum, chrome, silicon carbide, graphite and iron is performed to investigate the output characteristics of surface roughness and topography, material removal rate (MRR), electrochemical corrosion resistance of machined samples and also the machined surfaces are investigated by means of EDS and XRD analyses. Secondly after selection the aluminum powder as the most appropriate kind of powder, the current, pulse on time, powder size and powder concentration are changed in different levels for overall comparison between EDM and PMEDM output characteristics. In the first setting of input machining parameters, aluminum powder improves the surface roughness of TiAl sample about 32% comparing with EDM case and also aluminum particles with the size of 2 μm, in the second setting of input parameters lead to 54% enhancement of MRR comparing with EDM case. The electrochemical corrosion results show that, corrosion resistance of the samples which are machined by graphite and chrome powders respectively are about three and two times more than the sample which is machined without powder.  相似文献   

16.
A new approach for the machining of tantalum is presented. The new approach is a combination of traditional turning and cryogenically enhanced machining (CEM). In the tests, CEM was used to reduce the temperature at the cutting tool/workpiece interface, and thus reduce the temperature-dependent tool wear to prolong cutting tool life. The new method resulted in a reduction of surface roughness of the tantalum workpiece by 200% and a decrease of cutting forces by approximately 60% in experiments. Moreover, cutting tool life was extended up to 300% over that in the conventional machining.  相似文献   

17.
This paper focuses on investigating several aspects of the machining process from an ecological perspective, the result being a macro-level analysis. The analysis presented here considers not only the environmental impact of the material removal process itself, but also the impact of the associated processes such as the material preparation, and the scrap processing. A macro-level assessment of the comparative life cycle environmental performance of the near-dry machining (NDM) using TiN-coated carbide tools and the flood machining (FM) is performed by a case study referring to the gear milling. The assessment, using the SimaPro 7.1.5 software and the ecoinvent1.5 database, includes combined Life Cycle Assessment (LCA) of the workpiece material, the scrap processing, the use of lubrication, and the energy consumption.  相似文献   

18.
The crystallographic orientation or anisotropy is one of the main microstructural attributes strongly affecting the mechanical properties of materials. It is also an influential parameter to be considered during the manufacturing process especially for ultra-precision machining since it affects part quality, tool performance, and process productivity through material properties. In this study, a prediction toolset constituted of a Viscoplastic Self-Consistent model and machining process mechanics model is used to predict the texture evolution on the machined surface. The VPSC (Viscoplastic Self-Consistent) methodology which uses the mechanisms of slip and twinning that are active in single crystals of arbitrary symmetry was used. For this, an analytical model for the process mechanics is derived to understand the forces and stresses generated by the cutting tool at each workpiece point, then the strain and strain rate to capture the rate at which the material is deforming and finally the crystallographic orientations under various machining conditions. Experiments were performed on the orthogonal cutting of aluminum alloy AA-7075-T651 and the texture results were compared to model predictions.  相似文献   

19.
In recent years, demands for miniature components have increased due to their reduced size, weight and energy consumption. In particular, brittle materials such as glass can provide high stiffness, hardness, corrosion resistance and high-temperature strength for various biomedical and high-temperature applications. In this study, cutting properties and the effects of machining parameters on the ductile cutting of soda-lime glass are investigated through the nano-scale scratching process. In order to understand the fundamentals of the material removal mechanism at the atomic scale, such as machined surface quality, cutting forces and the apparent friction, theoretical investigation along with experimental study are needed. Scribing tests have been performed using a single crystal diamond atomic force microscope (AFM) probe as the scratching tool, in order to find the cutting mechanism of soda-lime glass in the nano-scale. The extended lateral force calibration method is proposed to acquire accurate lateral forces. The experimental thrust and cutting forces are obtained and apparent friction coefficients are deduced. The effects of feed rates and the ploughing to shearing transition of soda-lime glass have been investigated.  相似文献   

20.
Micromachining of glass is essential for several microfluidic components, micro-pumps, micro-accelerometers, micro-reactors, micro-fuel cells and several biomedical devices. Unique properties such as high chemical resistance, thermal stability and transparency give glass scope for additional applications. However, poor machinability of glass is a major constraint, especially in high aspect ratio applications of glass in microsystem technology. Micro electrochemical discharge machining (micro ECDM) is an emerging nontraditional fabrication method capable of micromachining ceramic materials like glass. While surface features less than 100 μm have been successfully machined on glass, machining high aspect features is a challenge. Machining accuracy at high depths is severely affected due to overcut and tool wear. In this paper, high aspect ratio microtools fabricated in-house have been used for deep microhole drilling on glass using low electrolyte concentration. An aspect ratio of 11 has been achieved. The results show that lower electrolyte concentration reduced overcut by 22%, thus increasing the aspect ratio of the micro holes. Lowering the electrolyte concentration also reduced the tool wear and hole taper by 39% and 18% respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号