首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The pattern of settlement over time of three broadcast spawning coral species (Cyphastrea serailia, Acanthastrea lordhowensis, and Goniastrea australensis) from the Solitary Islands (30°00′S; 153°20′E) was studied in 1995 and 1996 in order to determine the maximum length of time these larvae could remain in the water column and still retain the ability to settle and metamorphose. Larvae were maintained in aquaria and the number which had settled on biologically-conditioned tile pairs was monitored every 5 to 10 d. While the majority of larvae settled quickly after becoming competent, some larvae survived and settled for extended periods after spawning. Competency periods ranged from 26 d for C. serailia to 56 d for G. australensis and 78 d for A. lordhowensis. These data greatly extend the known competency periods for larvae of broadcast-spawning corals and indicate the potential for transport of broadcast-spawned coral larvae over large distances. Medium to long-distance larval dispersal of the species studied provides a mechanism for their widespread distribution in subtropical regions, on reefs which are often widely spaced and relatively isolated. Received: 27 May 1997 / Accepted: 27 November 1997  相似文献   

2.
We tested the rarely considered hypothesis that the ultraviolet portion (UVR, 280–400 nm) of the light spectrum affects patterns of recruitment in reef-building corals. The premise for this hypothesis rests in the fact that biologically relevant intensities of UVR penetrate to considerable depths (>24 m) in the clear waters surrounding many coral reefs, and that reef organisms allocate substantial resources to prevent and repair UVR damage. The ability of larvae spawned by the brown morph of the Caribbean coral, Porites astreoides, to detect and avoid UVR was assessed in petri dishes where one-half of the dish was shielded from UVR and the other exposed. Observations made every 30 min between 10:30 and 13:30 h showed significantly higher densities of larvae swimming in regions shielded from UVR. To determine how this behavior affects settlement patterns, larvae collected from P. astreoides adults at 18 m depth were released into chambers deployed at 17 m depth where they were given a choice of three different light regions in which to settle: PAR (PAR=400–700 nm), PAR+UVAR (UVAR=320–400 nm), and PAR+UVAR+UVBR (UVBR=280–320 nm). At the end of the experiment, greater numbers of P. astreoides larvae had settled in the region of the tube where UVR was reduced than would be expected if dispersion were random. To our knowledge, this is the first demonstration in any reef-building coral species that planula larvae can detect UVR and that it affects their choice of a settlement site. These results indicate that the capacity to detect and avoid habitats with biologically damaging levels of UVR may be one factor contributing to the successful recruitment of coral larvae.  相似文献   

3.
The swimming abilities of larval fishes are important for their survival, potentially affecting their ability to avoid predators, obtain food and control dispersal patterns. Near settlement swimming abilities may also influence spatial and temporal patterns of recruitment. We examined Critical speed (U-crit) swimming ability in late stage larvae of 89 species of coral reef fishes from the Great Barrier Reef and the Caribbean. Coefficients of variation in U-crit calculated at the individual level were high (28.4%), and this was not explained by differences in size or condition factor of these same larvae. Among species U-crit ranged from 5.5 cm s−1 to 100.8 cm s−1 (mean=37.3 cm s−1), with 95% of species able to swim faster than the average current speed around Lizard Island, suggesting that most species should be capable of influencing their spatial and temporal patterns of settlement. Inter-specific differences in swimming ability (at both the family and species levels) were significantly correlated with size and larval morphology. Correlations were found between swimming performance and propulsive area, fineness ratio and aspect ratio, and these morphological parameters may prove useful for predicting swimming ability in other taxa. Overall, the swimming speeds of larvae from the same families at the two locations were relatively similar, although the Lutjanidae and Acanthuridae from the Caribbean were significantly slower than those from the great barrier reef. Differences in swimming speed and body form among late stage larvae suggests that they will respond differently to factors influencing survival and transport during their pelagic phase, as well as habitat use following settlement.  相似文献   

4.
Acroporid corals are the main reef-building corals that provide three-dimensional habitats for other reef organisms, but are decreasing on many reefs worldwide due to natural and anthropogenic disturbances. In this study, temporal patterns of larval settlement and survivorship of two broadcast-spawning acroporid coral species, Acropora muricata and A. valida, were examined through laboratory rearing experiments to better understand the potential for larval dispersal of this important coral group. Many larvae were attached (but not metamorphosed) to settlement tiles on the first examination 3–4 days after spawning (AS). The first permanent larval settlement (i.e. metamorphosed and permanently settled juvenile polyps) occurred at 5–6 days AS, and most larval settlement (85–97% of total) occurred within 9–10 days AS. Larval survivorship decreased substantially to around 50% by the first week of the experiment and to approximately 10% by the second to third week. The rates of larval attachment, settlement, and the initial drop in survivorship of larvae suggest that effective dispersal of some acroporid species may largely be completed within the first few weeks AS.  相似文献   

5.
Over 15 000 coral recruits were counted on settlement plates from three mid-shelf reefs and six fringing reefs in the northern section of the Great Barrier Reef during two summers (1986 and 1987) and one winter (1987). The density of coral recruits on some settlement plates from a fringing reef was up to 4.88 cm–2, the highest value ever reported. Mean density of recruits was greater on fringing reefs (81.1 recruits/settlement plate) than on mid-shelf reefs (15.6 recruits/settlement plate), but there was greater spatial variation in abundance of recruits between the fringing reef sites. Other differences between the mid-shelf reefs and the fringing reefs were that different taxa were dominant, and that settlement orientation differed, with mid-shelf recruits settling preferentially on horizontally oriented surfaces and fringingreef recruits preferring vertical surfaces. Of the three midshelf reefs, Green Island reef recorded the highest recruitment rate for each of the two summers, despite having a depauperate adult coral population following predation by the asteroidAcanthaster planci. This suggests that coral larvae frequently travel between reefs. In contrast with an earlier study, there was no consistent difference in abundance of recruits between forereef and backreef locations. Overall, the results indicated great spatial variation in the availability of coral larvae, both on the scale of whole reefs and within-reef habitats.  相似文献   

6.
Dispersion, distribution, development and feeding incidence of larvae of the naked goby,Gobiosoma bosci (Lacepéde), were examined for linkages between larval behavior while near the reef surface and later patterns of settlement and recruitment. Field sampling and experiments were conducted during the summers of 1988 and 1989 in the Flag Pond oyster reef along the western shore of the Chesapeake Bay near Camp Conoy, Maryland, USA. Results indicated that prior to settlement most demersal larvae aggregate in shoals and exhibit distinct microhabitat preferences on the reef. In a field experiment, larvae settled both during the day and at night. Dispersion at settlement was aggregated, suggesting that demersal shoaling influences settlement patterns in this species. The distribution of demersal larvae also indicated that larval swimming behavior is sufficiently strong to permit active control of position on reefs. Large demersal larvae settled rapidly when brought to the laboratory, but small larvae in demersal shoals appeared to require additional growth and morphological development prior to settlement. Development of the pelvic fins, used by juveniles and adults for perching on the substrate, may be a good indicator of competence to settle in this species. The adaptive significance of demersal shoaling by small larvae of the naked goby, and the fate of these larvae, remains perplexing because the low feeding rates found for larvae shoaling near the reef surface should slow or prevent the growth and development required prior to settlement. Observations made by other authors indicate that demersal shoaling and the use of water directly overlying reefs may be common behaviors of temperate and tropical reef fishes.  相似文献   

7.
U. Oren  Y. Benayahu 《Marine Biology》1997,127(3):499-505
 Coral reefs in the northern Gulf of Eilat are exposed to continuous man-made disturbances, resulting in decreased coral coverage and reduced recruitment at the Nature Reserve of Eilat. The construction of artificial reefs on sandy bottoms is a possible option to decrease diving pressure on natural reefs. In the present study we tested this hypothesis by submerging an experimental artificial reef anchored to the bottom at 18 m depth and floated vertically 3 m below water surface. The reef was composed of PVC plates, attached both vertically and horizontally along a wire. Propagules of two coral species, the stony coral Stylophora pistillata and the soft coral Dendronephthya hemprichi, were transplanted to this artificial reef. Planulae of S. pistillata were obtained during the breeding season, seeded in petri dishes in the laboratory and after 2 wk the dishes were transferred to the experimental artificial reef. Automized fragments of D. hemprichi which had previously settled on 10 × 10 cm PVC plates were transplanted onto the experimental artificial reef. The survivorship of the transplanted D. hemprichi colonies was significantly higher on the lower sides of shallower plates. Survivorship of S. pistillata colonies increased with depth when located on the vertical plates, or on the upper sides of the horizontal plates. The highest survivorship of this coral was on the vertical plates and on the upper sides of the horizontal plates, while very low survivorship was recorded on the lower sides. The results indicate that vertical artificial surfaces offer the optimal biotic and abiotic conditions for the survival of the two examined corals. The vertical plates are characterized by low sed imentation rates, low coverage of turf-algae, minimal grazing by sea urchins and absence of the competitor tunicate Didemnum sp. In addition, the vertical orientation of the experimental plates reduces shading and offers the required light intensity for zooxanthellate corals such as S. pistillata. Only a few studies to date have tried to implement artificial reefs in a coral reef environment. The results of the present study indicate the potential of enhancing recruitment of corals by transplantation of juvenile recruits onto appropriate artificial structures. Maximal survivorship of these recruits is dependent upon the structural features of the artificial reef, which should offer optimal conditions. Received: 25 May 1996 / Accepted: 15 July 1996  相似文献   

8.
J. Gilmour 《Marine Biology》1999,135(3):451-462
Laboratory and field experiments were used to determine whether high (≃100 mg l−1), low (≃50 mg l−1) and control (≃0 mg l−1) levels of suspended sediment affected fertilisation, larval survival, and larval settlement in the scleractinian coral Acropora digitifera (Dana, 1846). Both high- and low-sediment treatments significantly decreased fertilisation, but post-fertilisation embryonic development was not inhibited by suspended sediments. Larval survival and larval settlement were significantly reduced in high- and low-sediment treatments. No difference was found between high- and low-sediment treatments in any of the three post-spawning processes investigated, suggesting that they are susceptible to sediment concentrations which are not exceptionally high even under natural conditions (>50 mg l−1). The introduction of an additional stress in the form of high levels of suspended sediments coupled with naturally high variability in recruitment may have a considerable effect on the successful supply and settlement of coral larvae to a reef. Given that many coral communities are open reproductive systems, the consequences of disturbance events are not likely to be restricted to the impact area. Recruitment to a population may be reduced significantly in the presence of high levels of suspended sediments because of effects on larval survival and settlement. Recruitment of larvae to adjacent populations may also be affected due to a decreased fertilisation success and potential increases in mortality of larvae passing through the affected site. Received: 13 August 1998 / Accepted: 22 July 1999  相似文献   

9.
Determining the scale of larval dispersal and population connectivity in demersal fishes is a major challenge in marine ecology. Historically, considerations of larval dispersal have ignored the possible contributions of larval behaviour, but we show here that even young, small larvae have swimming, orientation and vertical positioning capabilities that can strongly influence dispersal outcomes. Using young (11–15 days), relatively poorly developed (8–10 mm), larvae of the pomacentrid damselfish, Amblyglyphidodon curacao (identified using mitochondrial DNA), we studied behaviour relevant to dispersal in the laboratory and sea on windward and leeward sides of Lizard Island, Great Barrier Reef. Behaviour varied little with size over the narrow size range examined. Critical speed was 27.5 ± 1.0 cm s−1 (30.9 BL s−1), and in situ speed was 13.6 ± 0.6 cm s−1. Fastest individuals were 44.6 and 25.0 cm s−1, for critical and in situ speeds, respectively. In situ speed was about 50% of critical speed and equalled mean current speed. Unfed larvae swam 172 ± 29 h at 8–10 cm s−1 (52.0 ± 8.6 km), and lost 25% wet weight over that time. Vertical distribution differed between locations: modal depth was 2.5–5.0 and 10.0–12.5 m at leeward and windward sites, respectively. Over 80% of 71 larvae observed in situ had directional swimming trajectories. Larvae avoided NW bearings, with an overall mean SE swimming direction, regardless of the direction to nearest settlement habitat. Larvae made smaller changes between sequential bearings of swimming direction when swimming SE than in other directions, making it more likely they would continue to swim SE. When swimming NW, 62% of turns were left (more than in other directions), which would quickly result in swimming direction changing away from NW. This demonstrates the larvae knew the direction in which they were swimming and provides insight into how they achieved SE swimming direction. Although the cues used for orientation are unclear, some possibilities seemingly can be eliminated. Thus, A. curacao larvae near Lizard Island, on average swam into the average current at a speed equivalent to it, could do this for many hours, and chose different depths in different locations. These behaviours will strongly influence dispersal, and are similar to behaviour of other settlement-stage pomacentrid larvae that are older and larger.  相似文献   

10.
D. S. Stoner 《Marine Biology》1994,121(2):319-326
The rate at which larvae successfully recruit into communities of marine benthic invertebrates is partially dependent upon how well larvae avoid benthic predators and settle on appropriate substrata. Therefore, to be able to predict recruitment success, information is needed on how larvae search for settlement sites, whether larvae preferentially settle on certain substrata, and the extent to which there are adequate cues for larvae to find these substrata. This article describes how larvae of the colonial ascidian Diplosoma similis find settlement sites on a coral reef. Direct field observations of larval settlement were made on a fringing reef in Kaneohe Bay, Oahu, Hawaii, between September 1985 and April 1986. A comparison of the substrata that larvae contacted prior to settlement relative to the percentage cover of these substrata on the study reef suggests that larvae are using a non-contact mode of substratum identification to locate suitable settlement sites. This mode of substratum identification allowed 74% of larvae to evade predation by benthic organisms who would otherwise have eaten larvae if they had been contacted. Of those larvae that evaded predation, 88% subsequently settled on the same two substrata upon which most adults are found (dead coral or the green alga Dictyosphaeria cavernosa). This pattern of settlement was probably a result of active selection, since the two substrata cover only 14.4% of the reef's surface and currents had little effect on the direction in which larvae swam. An important contributing factor to the high success rate of larval settlement on suitable substrata was the lack of any temporal decay in substratum preference. It is concluded that for Diplosoma similis larval supply is a sufficient predictor of larval settlement rate. However, for marine invertebrates whose larvae are passively dispersed and exhibit a greater temporal decay in substratum preference, larval settlement should generally have a greater dependency on spatial variation in the abundance of benthic predators and suitable substrata.  相似文献   

11.
Most presettlement reef fish settled at night at One Tree Island, Great Barrier Reef. Fish were sampled day and night using channel nets located on the reef crest, and a plankton-mesh purse-seine net in the lagoon (1992–1994). Catches of fish at night were generally tens to hundreds of times greater than those taken during the day. Preflexion fish, as well as postflexion and pelagic juveniles, were taken in greater numbers at night. Preflexion forms were a combination of those that had hatched from demersal eggs and later stages that had been transported over the reef crest. Highest numbers of postflexion and pelagic juvenile forms of Apogonidae, Blenniidae, Gobiesocidae, Gobiidae, Labridae, Lutjanidae, Mugiloididae, Mullidae, Pomacentridae, Scaridae, Serranidae and Tripterygiidae were found at night. Observations, while SCUBA diving, and purse-seine samples in the lagoon indicated that the only resident larvae were of the genera Spratelloides and Hypoatherina; most of the fishes caught in nets, therefore, were immigrants. Patch reefs, sampled for new settlers early in the morning and late in the day, indicated that the majority of apogonids (Apogon doederleini, >95%) settled at night. Although greater numbers of pomacentrids were found in morning counts (e.g. Pomacentrus wardi), if data were converted to an hourly rate, many pomacentrids showed a similar hourly rate of settlement day and night. Depth-stratified sampling in waters near One Tree Island (to 20 m) indicated that some taxa rise to the surface at night. This behaviour, perhaps combined with avoidance of diurnal predators may explain on-reef movement of potential settlers soon after dark. Studies on settlement cues, therefore, need to focus on night-related phenomena. Received: 3 March 2000 / Accepted: 20 June 2000  相似文献   

12.
Demersal zooplankton, those plankton which hide within reef sediments during the day but emerge to swim freely over the reef at night, were sampled quantitatively using emergence traps planced over the substrate at Lizard Island Lagoon, Great Barrier Reef. Densities of zooplankton emerging at night from 6 substrate types (fine, medium, and coarse sand, rubble, living coral and reef rock) and from 5 reef zones (seaward face, reef flat, lagoon, back reef, and sand flat) were determined. A large population of nocturnal plankton including cumaceans, mysids, ostracods, shrimp, isopods, amphipods, crustacean larvae, polychaetes, foraminiferans and copepods are resident members of the reef community at Lizard Island. The mean density of plankton emerging throughout the reef was 2510±388 (standard error) zooplankton/m2 of substrate. Biomass averaged 66.2±5.4 mg ash-free dry weight/m2 of substrate. Demersal zooplankton exhibited significant preferences for substrate types and reef zones. The highest mean density of zooplankton emerged from coral (11,264±1952 zooplankton/m2) while the lowest emerged from reef rock (840±106 zooplankton/m2). The density of demersal plankton was six times greater on the face than in any other zone, averaging 7900±1501 zooplankton/m2. Copepods dominated samples collected over living coral and rubble while foraminiferans, ostracods and decapod larvae were most abundant from sand. Plankton collected with nets at night correlated only qualitatively with plankton collected in emergence traps from the same location. Although abundant, demersal plankton were not numerous enough to meet the metabolic needs of all corals at Lizard Island Lagoon. Demersal plankton appear especially adapted to avoid fish predation. The predator-avoidance strategies of demersal plankton and maintenance of position on the reef are discussed. Our results indicate that much of the zooplankton over coral reefs actually lives on the reef itself and that previous studies using standard net sampling techniques have greatly underestimated plankton abundance over coral reefs.  相似文献   

13.
Few studies have examined predator-prey relationships in diverse communities such as those found on coral reefs. Here we examined patterns of spatial and temporal association between the local abundance of predator and prey fishes at Lizard Island on the Great Barrier Reef, Australia. We predicted that the nature of this association would have implications for patterns of prey-fish mortality. Strong positive relationships between prey and piscivore abundance were found throughout the study. Greater densities of predators and of prey were found on patch-reef habitats, compared with contiguous reef-slope habitats. Declines in prey-fish abundance on patch reefs were density-dependent and correlated with the densities of predators. The relative roles of recruitment and piscivore movement in determining patterns of predator and prey abundance were assessed from surveys of recruit densities and an intensive programme of tagging two species of rock-cod, Cephalopholis cyanostigma and C. boenak (Serranidae), over 2 years. Patterns of recruitment explained little of the variation in the abundance and distribution of piscivorous fish. If movement explains large-scale patterns of distribution, this was not evident from the tagging study. The two rock-cod species were highly sedentary, with individuals on patch reefs seldom moving among reefs. Individuals on reef slopes were also highly site-attached, although they moved greater distances than those on patch reefs. Although the mechanisms responsible remain to be determined, this study demonstrated strong associations between the abundance of piscivorous fish and their prey on coral reefs. This relationship appeared to be an important factor in producing density-dependent declines in the abundance of prey. Received: 30 April 2000 / Accepted: 22 September 2000  相似文献   

14.
Grazing effects on nitrogen fixation in coral reef algal turfs   总被引:2,自引:0,他引:2  
This study addressed whether grazing by the sea urchin Diadema antillarum influenced rates of nitrogen fixation by algal turf communities on Caribbean coral reefs. Because the turfs were nitrogen-limited, we also assessed whether newly-fixed nitrogen was important for supporting net primary productivity by the turfs. We measured acetylene reduction in turfs grown in treatments excluding or including D. antillarum in the presence of other herbivores at 3 m water depth on Tague Bay forereef, St. Croix, U.S. Virgin Islands. These were the first measurements of acetylene reduction on coral reefs under quasi-natural conditions of high water-flow and photosynthetic oxygen generation. Rates of acetylene reduction under these conditions were as high as any measured previously in coral reef communities (mean 7.6 nmol C2H4 cm−2 h−1). Algal turfs grazed by D. antillarum and other herbivores had chlorophyll-specific acetylene reduction rates up to three times higher than when D. antillarum was excluded. High rates of nitrogen fixation by the turfs were sufficient to meet <2% of the nitrogen required to support net chlorophyll-specific primary productivity over 24 h. Grazer-mediated increases in nitrogen fixation do not appear responsible for a parallel enhancement of net primary productivity. Algal turfs at this site must be dependent primarily on external sources of nitrogen. Received: 1 July 1997 / Accepted: 5 September 1997  相似文献   

15.
The present study (Ishigaki Island, Japan) explored the distance of transmission of chemical cues emitted by live versus dead coral reefs (Exp. 1: High performance liquid chromatography (HPLC) analyses with water sampling station at 0, 1, and 2 km away from the reef) and the potential attraction of these chemical cues by larval fish, crustaceans, and cephalopods (Exp. 2: choice flume experiment conducted on 54 Chromis viridis larvae, 52 Palaemonidae sp larvae, and 16 Sepia latimanus larvae). In the experiment 1, HPLC analyses highlighted that the live coral reef (and not the dead coral reef) produced different and distinct molecules, and some of these molecules could be transported to a distance of at least 2 km from the reef with a reduction of concentration by 14–17-fold. In the experiment 2, C. viridis, Palaemonidae sp, and S. latimanus larvae were significantly attracted by chemical cues from a live coral reef (sampling station: 0 km), but not from a dead coral reef. However, only C. viridis larvae detected the chemical cues until 1 km away from the live coral reef. Overall, our study showed that chemical cues emitted by a live coral reef were transported farthest away in the ocean (at least 2 km) compared to those from a dead coral reef and that fish larvae could detect these cues until 1 km. These results support the assumption of a larval settlement ineffective in degraded coral reefs, which will assist conservationists and reef managers concerned with maintaining biodiversity on reefs that are becoming increasingly degraded.  相似文献   

16.
The ability of young coral reef fishes to feed using solely ultraviolet-A (UV-A) radiation during ontogeny was examined using natural prey in experimental tanks. Larvae and juveniles of three coral reef fish species (Pomacentrus amboinensis, Premnas biaculeatus and Apogon compressus) are able to feed successfully using UV-A radiation alone during the later half of the pelagic larval phase. The minimum UV radiation intensities required for larval feeding occur in the field down to depths of 90–130 m in oceanic waters and 15–20 m in turbid inshore waters. There was no abrupt change in UV sensitivity after settlement, indicating that UV photosensitivity may continue to play a significant role in benthic juveniles on coral reefs. Tests of UV sensitivity in the field using light traps indicate that larval and juvenile stages of 16 coral reef fish families are able to detect and respond photopositively to UV wavelengths. These include representatives from families that are unlikely to possess UV sensitivity as adults due to the UV transmission characteristics of the ocular media. Functional UV sensitivity may be more widespread in young coral reef fishes than in the adults, and may play a significant role in detecting zooplanktonic prey.  相似文献   

17.
Laboratory experiments with larvae of the cheilostome bryozoan Bugula stolonifera Ryland, 1960 assessed the time to settlement in the presence of a constantly available polystryrene substrate, the development of competence for metamorphosis, and the effects of the duration of swimming period on early colony development. Sexually mature colonies of B. stolonifera were collected on 11 and 18 September 1987; 2 and 18 August, 1988; and 6, 12, 19, and 26 September 1988, from Eel Pond (Woods Hole, Massachusetts, USA) and were maintained at 20°C. In the presence of a constantly available substrate, cumulative percent settlement curves were sigmoid, with 75% of larvae settled in 3.2±0.5 h. Typically, 50% of the larvae settled in less than 3 h and 95% settled in 6.1±1.2 h. The number of settled individuals that developed feeding ancestrulae by 3 d and the number that developed first-feeding autozooids by 6 d was assessed as a function of duration of larval swimming. Individuals which were kept swimming for 8 and 10 h after hatching developed significantly more slowly to the ancestrula and autozooid stages in 13 out of 14 experiments than did larvae that swam 2 or 6 h. This is the first report for any bryozoan that prolongation of the larval free-swimming period affects the rate of colony development.  相似文献   

18.
The swimming behaviour of newly hatched turbot (Scophthalmus maximus L.) larvae was observed in artificial seawater (ASW) and in solutions of 21 l-amino acids at a concentration of 10−5M. The behaviour of 20 larvae was analysed in each solution. Each larva was observed for 1 min. Individual movements were recorded on video and analysed using a computer-assisted program. The larvae swam in convoluted, randomised three-dimensional paths, rested and started swimming again. There were large variations in the swimming behaviour of turbot larvae during ontogeny. In ASW the mean frequency of trajectories longer than a body length of 4 mm larva−1 min−1 increased from 1.2 at Day 1, to 10 at Day 4. Analysing the data (Dunnett's method) revealed that the frequency of swimming trajectories increased in the presence of glycine, histidine and glutamine, and decreased in the presence of proline. The total distance swum increased for glycine but decreased for proline. The threshold concentration for glycine detected by turbot larvae was 10−5M. The straightness index did not change in the presence of the amino acids. The possible role of these changes in behaviour is discussed. Received: 12 June 1997 / Accepted: 13 January 1998  相似文献   

19.
The genetic structure of 12 reef populations of the soft coral Sinularia flexibilis (Octocorallia, Alcyoniidae) was studied along the Great Barrier Reef (GBR) at a maximum separation of 1,300 km to investigate the relative importance of sexual and asexual reproduction, genetic differentiation and gene flow among these populations. S. flexibilis is a widely distributed Indo-Pacific species and a gamete broadcaster that can form large aggregations of colonies on near-shore reefs of the GBR. Up to 60 individuals per reef were collected at a minimum sampling scale of 5 m at two sites per reef, from December 1998 to February 2000. Electrophoretic analyses of nine polymorphic allozymes indicated that genotypic frequencies in most populations and loci did not differ significantly from those expected from Hardy–Weinberg predictions. Analysis of multi-locus genotypes indicated a high number of unique genotypes (N go) relative to the number of individuals sampled (N) in each reef population (range of 0.69–0.95). The maximum number of individuals likely to have been produced sexually (N*) was similar to the number of individuals sampled (i.e. N*:N ˜ 1), suggesting that even repeated genotypes may have been produced sexually. These results demonstrated a dominant role of sexual reproduction in these populations at the scale sampled. Significant genetic differentiation between some populations indicated that gene flow is restricted between some reefs (F ST=0.026, 95% CI= 0.011 − 0.045) and even between sites within reefs (F ST=0.041, 95% CI=0.027 − 0.055). Nevertheless, there was no relationship between geographic separation and genetic differentiation. Analyses comparing groups of populations showed no significant differentiation on a north-south gradient in the GBR. The pattern in the number of significant differences in gene frequencies in pairwise population comparisons, however, suggested that gene flow may be more restricted among inner-shelf reef populations near to the coast than among mid/outer-shelf populations further from the coast. Received: 10 July 2000 / Accepted: 5 October 2000  相似文献   

20.
The global decline in reef health has prompted the need for effective management methodologies, including the development of active restoration measures. One such approach is the ‘gardening concept’ that involves use of underwater nurseries where coral fragments are farmed before their transplantation into denuded reefs. Here we document enhanced sexual reproduction in colonies of the coral Stylophora pistillata cultured in mid-water floating nursery situated in nutrient enriched water, near the fish farms in Eilat, Red Sea. We found that after 2 years of nursery, the average number of oocytes per polyp in farmed colonies was ca. 35% higher than in corresponding naturally growing colonies. Small branches in the nursery developed gravid colonies that released equal (or more) numbers of planula larvae as compared to similar size, 5-year old naturally growing colonies. These nursery-borne planulae possessed more zooxanthellae and contained more chlorophyll per larva. While settled and metamorphosed in equal rates compared to planulae originated from reef-grown colonies, the nursery borne planulae developed faster growing young colonies. We estimate that a coral nursery could generate, during the reproductive season, tens of millions of planula larvae and therefore should be regarded as a ‘larval dispersion hub’ that can be used as a management tool for natural recruitment enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号