共查询到19条相似文献,搜索用时 72 毫秒
1.
不同有机物对厌氧氨氧化耦合反硝化的影响 总被引:2,自引:0,他引:2
通过连续试验和血清瓶批式试验研究了不同种类有机物对厌氧氨氧化耦合异养反硝化脱氮性能的影响.结果表明,从TN去除率来看,对耦合反应器的影响:苯甲酸钠<邻苯二酚<间苯二酚<丙酸钠<乙酸钠;苯甲酸钠、邻苯二酚、间苯二酚、丙酸钠和乙酸钠对厌氧氨氧化菌的影响很小.苯酚反硝化菌能利用苯甲酸钠、邻苯二酚、间苯二酚、丙酸钠和乙酸钠作为电子供体进行反硝化.不同有机物对苯酚反硝化菌的影响不同,进而影响苯酚反硝化菌与厌氧氨氧化菌之间的协同和竞争关系.苯甲酸是苯酚降解过程中可能的中间产物. 相似文献
2.
接种稳定运行300余天的厌氧氨氧化污泥,通过批次试验,研究了不同浓度乙酸钠和不同种类有机物对厌氧氨氧化系统的冲击影响.结果表明:在初始NO2--N浓度为35mg/L左右,乙酸钠浓度为0~200mg/L时,乙酸钠的冲击不会抑制厌氧氨氧化菌的活性,且一定程度上促进厌氧氨氧化反应的进行,最大比氨氧化速率与乙酸钠浓度呈正相关性;不同有机物对厌氧氨氧化系统的促进作用不同,氨氧化速率从高到低依次为乙酸钠、蛋白胨、葡萄糖和淀粉;反硝化作用伴随整个反应过程,但硝态氮还原速率[0.0155~0.0442mgN/(L?min)]小于氨氧化速率[0.1090~0.1498mgN/(L?min)],因此厌氧氨氧化菌在系统中一直占主导地位.在有机物的冲击下,厌氧氨氧化反应可协同反硝化反应去除系统中的总氮,提高系统总氮的去除率,从而改善出水水质. 相似文献
3.
通过改变保存温度和时间,研究了厌氧氨氧化污泥活性的变化规律以及污泥活性恢复能力.结果表明,保存温度、时间对厌氧氨氧化污泥活性影响显著.常温(15±2)℃、低温(5±2)℃对厌氧氨氧化污泥活性影响较小,而中温(30±2)℃、冷冻(-20±2)℃都会使其活性大幅降低,甚至消失.在保存的前30d厌氧氨氧化污泥活性迅速下降,然后趋于缓慢.根据衰减指数模型推出常温状态下衰减指数为0.0324,相对于其他温度最小.并根据保存温度、时间对其影响的特点提出了合适的保存方法,使得厌氧氨氧化污泥的活性能够在较短时间内得到恢复. 相似文献
4.
An AOB的缓慢生长严重限制了它的广泛应用,因此厌氧氨氧化污泥的长期储存和快速恢复的研究成为必然.本研究在室温(室温14~30℃)下,分别选择了15、30、45、60、75和100 d的储存时间,研究了无外加基质条件下,储存时间对厌氧氨氧化污泥活性以及恢复后活性的影响.结果显示,经过15、30、45、60、75和100 d的储存,污泥的比厌氧氨氧化活性(SAA)分别是储存前初始SAA的90.9%、64.3%、61.7%、43.2%、25.8%和19.3%.污泥的SAA随储存时间呈线性下降(R2为0.978).污泥恢复后的活性均高于污泥的初始SAA,分别为储存前的初始SAA的103.4%、129.3%、124.8%、111.7%和116.9%,储存了100 d的污泥恢复后的SAA虽未恢复到初始SAA水平,但也达到初始SAA的98.9%.试验结果表明,在长达100 d的常温储存后,厌氧氨氧化污泥的SAA(以N/VSS计)降为0.0513 g·(g·d)~(-1),经过9.5 d的恢复培养,污泥SAA仍能得到基本恢复. 相似文献
5.
自然界中氮循环与微生物的作用密不可分.在过去的几年里,随着异养硝化、厌氧氨氧化和古菌氨氧化过程的发现,人们对氮循环的认识发生了明显的变化.就异养硝化菌、厌氧氨氧化菌和氨氧化古菌的发现、生化机理及分子生物学等方面进行综述,旨在为今后人们重新认识和构建新的氮循环提供有用信息,并对这些新型微生物今后在污水生物脱氮处理中的应用提出了一些展望和设想.指出今后在污水生物处理系统中,可通过富集异养硝化菌强化同步硝化反硝化、富集厌氧氨氧化菌实现单级自养脱氮、富集氨氧化古菌提高低溶解氧下的脱氮效率. 相似文献
6.
通过接种厌氧氨氧化(ANAMMOX)污泥,研究了苯酚浓度对ANAMMOX污泥脱氮效能长短期影响.短期结果表明,随着苯酚浓度的增大,氮去除率快速下降.当苯酚浓度大于600 mg·L-1时,NH+4-N的去除率降低到6%以下,TN的去除率只有10%左右.长期实验结果表明,当苯酚浓度小于100 mg·L-1时,NH+4-N的去除率都能达到99%以上,说明低浓度苯酚对ANAMMOX菌有一个驯化的过程.当苯酚浓度高于400 mg·L-1时,NH+4-N的去除率只有23.59%,TN去除率只有50.3%,ANAMMOX污泥抑制明显,与短期结果相同.此时反硝化菌活性明显高于ANAMMOX菌,说明苯酚可作为有机碳源诱发体系中发生反硝化反应,最终导致反硝化菌在体系中占据主导地位.但高浓度(1 000 mg·L-1)苯酚对反硝化菌也具有抑制作用.通过拟合得到苯酚对ANAMMOX半抑制有效浓度(IC50)为71.57 mg·L-1.经过18 d的恢复后,NH+4-N去除率基本恢复,但氮素之间的转化计量式发生了改变,ρ(NH+4-N)去除/ρ(NO-2-N)去除/ρ(NO-3-N)生成为1∶0.86∶0.2.研究结果表明,将苯酚控制在合理范围内可以使反应器达到同步脱氮除酚的效果. 相似文献
7.
为探究生物炭对厌氧氨氧化工艺中硝酸盐积累的缓解作用,通过批次实验考察了不同热解温度(300,500,700℃)生物炭对厌氧氨氧化系统脱氮性能的影响.结果表明,300,500,700℃生物炭的添加使体系总氮去除率较空白组分别提升了14.6%、7.1%、3.3%,其主要原因是生物炭作为电子介导体促进了硝酸盐的还原,还原产物亚硝酸盐继续进行厌氧氨氧化反应,进一步减少了11.2%、9.1%、5.8%的剩余氨氮.300℃生物炭表面具有丰富的酚类、醛类和酮类等失电子基团,其供电子能力为2.64mmol e-/g,高于500℃(1.92mmol e-/g)和700℃(1.32mmol e-/g)的生物炭,故其更好地强化了体系中的电子转移.微生物群落和功能蛋白分析表明,生物炭的添加增强了Ca.Kuenenia、Pseudomonas、Thauera等丰度,有利于厌氧氨氧化和反硝化菌的富集,同时,生物炭通过促进NapA(EC:1.9.6.1)和NarG(EC:1.7.5.1)等功能基因的表达,强化了反硝化过程的氮代谢水平. 相似文献
8.
鉴于反硝化菌与厌氧氨氧化菌具有相似的生理特性,采用CSTR反应器研究了以异养反硝化污泥启动厌氧氨氧化系统的可行性,并考察了其对高氨氮废水的处理潜能。反应器运行170 d后,试验结果表明,此方法可快速培育出具有厌氧氨氧化活性的污泥,NH_4~+-N和NO_2~--N的去除率分别可达99.20%和99.69%。在此基础上考察了有机物浓度对厌氧氨氧化性能的影响,结果表明:低浓度(ρ(COD)≤150 mg/L)有机物可促进厌氧氨氧化活性,而高浓度(ρ(COD)≥200 mg/L)有机物抑制厌氧氨氧化进程,该系统最适ρ(COD)/ρ(NH_4~+-N)为2.14,此时NH_4~+-N和NO_2~--N的去除率分别为99.41%和99.65%。 相似文献
9.
为考察有机物对厌氧氨氧化生物膜反应器脱氮效能的影响,采用MPN(most probable number)法和高通量测序技术,结合处理效果数据,对比分析了有无有机物影响下生物膜中微生物群落差异.试验表明:在进水有机物(COD)为30和60 mg·L-1作用下,总氮去除率与进水COD为0 mg·L-1时的84.10%相比较分别提高了5.08%和10.41%;COD为90 mg·L-1时,总氮去除率降至89.05%.由MPN法和高通量测序结果可知,相对于无有机物,60 mg·L-1有机物使反应器中反硝化菌数量增加,浮霉菌门和变形菌门丰度明显提高,且微生物群落更加丰富.有机物能影响反应器中厌氧氨氧化、反硝化脱氮效能及微生物菌落丰度,适宜的有机物浓度可使厌氧氨氧化与反硝化作用有效耦合,提高反应器的脱氮效能.本研究可为厌氧氨氧化生物膜反应器处理含有机物的实际污水提供参考价值. 相似文献
10.
温度对厌氧氨氧化与反硝化耦合脱氮除碳的影响 总被引:4,自引:0,他引:4
采用ASBR反应器,研究了温度对厌氧氨氧化与反硝化耦合反应的短期影响.试验结果表明:耦合反应的活化能要小于单纯厌氧氨氧化反应的活化能,厌氧氨氧化与反硝化耦合反应可在一定程度上缓解低温对单纯厌氧氨氧化反应造成的消极影响,温度降低对厌氧氨氧化反应的影响大于对反硝化反应的影响.温度与耦合反应最大比反应速率的关系符合Arrhenius方程,在25~35℃时,耦合反应活化能为49.56kJ/mol,小于厌氧氨氧化反应的活化能66.18kJ/mol,且厌氧氨氧化反应为主导反应,对脱氮的贡献率约为61.29%.9~25℃时耦合反应的活化能为74.91kJ/mol,小于此温度梯度下厌氧氨氧化的活化能106.40kJ/mol,反硝化反应对脱氮的贡献率随温度的降低逐渐升高,9℃时,反硝化反应成为主导反应,对脱氮的贡献率约为75.10%.温度低于25℃时,反应器的容积氮去除速率(NRR)会受温度的影响. 相似文献
11.
采用ASBR(530 L)接种A~2/O厌氧污泥,考察了厌氧氨氧化(ANAMMOX)的启动及其与反硝化耦合处理含盐废水的脱氮特性,并对菌群结构进行了分析.结果表明,温度35℃±1℃、反应时间为14 h,160 d可实现ANAMMOX的成功启动.稳定运行阶段,ANAMMOX与反硝化耦合(SAD)使得总氮(TN)去除率和去除负荷分别达91.1%和0.45 kg·(m~3·d)~(-1);污泥呈浅红色颗粒状,厌氧氨氧化菌为优势菌,且主要菌属为Candidatus Brocadia(10.6%).此外,采用按梯度逐步提高盐度的驯化方式,可实现SAD对高盐(Cl-浓度8 000 mg·L-1)模拟火电厂废水的高效脱氮除碳,COD和TN去除率分别达93.2%和90.0%.推测SAD中反硝化主要为NO_3~--N→N_2,部分反硝化(NO_3~--N→NO_2~--N)仅占30.3%. 相似文献
12.
采用中试ASBR (530 L),接种氧化沟工艺的兼氧段污泥,考察了厌氧氨氧化(anaerobic ammonium oxidation,ANAMMOX)的启动及其与反硝化耦合处理实际火电厂脱硫脱硝尾液的抑制和恢复特性.结果表明,温度35℃±1℃、反应时间为20 h,可180 d实现ANAMMOX的成功启动;活性稳定阶段,总氮(TN)去除率和去除负荷分别达91. 1%和0. 3kg·(m~3·d)~(-1).处理脱硫脱硝尾液的中试ANAMMOX-ASBR在活性抑制阶段,可采用去除抑制因素并降低进水基质浓度方式,实现其活性的恢复(93 d).此外,采用逐步增加脱硫脱硝尾液投加比例(30%、70%、100%)的方式,可实现中试ASBR内ANAMMOX与反硝化耦合,使得系统出水TN去除率和COD浓度分别稳定在约92%和88. 5 mg·L~(-1).修正的Logistic模型更加适合描述ANAMMOX受脱硫脱硝尾液冲击后的NRR恢复过程,得到的NRR恢复延迟时间λ为17. 777个周期,R~2为0. 929 48. 相似文献
13.
本研究在一体式分区反应器中接种成熟的厌氧氨氧化污泥和亚硝化污泥,通过与反硝化反应器串联,研究了前置反硝化与短程硝化-厌氧氨氧化串联工艺处理晚期垃圾渗滤液的脱氮除碳性能.结果表明,未串联反硝化之前,短程硝化-厌氧氨氧化反应器在进水氨氮浓度为600 mg·L~(-1),COD浓度483 mg·L~(-1)时,总氮去除速率(NRR)可达1.88 kg·(m3·d)-1,总氮去除率(NRE)可达90.3%;而在进水COD浓度483 mg·L~(-1),即C/N0.8时,短程硝化-厌氧氨氧化反应器的NRR下降至1.50 kg·(m3·d)-1.通过前置反硝化反应器可以迅速缓解有机物对厌氧氨氧化的不利影响;反硝化与短程硝化-厌氧氨氧化串联反应器在进水NH+4-N浓度为1 100 mg·L~(-1),COD浓度1 150 mg·L~(-1)时,仍可稳定高效运行,整体NRR可达1.37kg·(m3·d)-1,厌氧区NRRana高达15.6 kg·(m3·d)-1,平均NRE可达98.6%,在仅利用原水中有机碳源的情况下实现了垃圾渗滤液的高效深度脱氮.此工艺晚期处理垃圾渗滤液可去除大部分易生物降解有机物. 相似文献
14.
为改善厌氧氨氧化对总氮(TN)去除不完全和有机物对厌氧氨氧化胁迫的问题,采用厌氧折流板反应器(ABR),接种成熟的厌氧氨氧化污泥与城市污水处理厂厌氧污泥,通过不同基质浓度控制,构建厌氧氨氧化耦合反硝化系统(SAD),并考察不同进水基质(COD、NO-2-N、NH+4-N)浓度对耦合系统脱氮除碳效能的影响及污染物去除规律.结果表明,在ABR反应器中可实现厌氧氨氧化与反硝化的耦合反应,并缓解了有机物对厌氧氨氧化菌的抑制效应.当进水COD、NO-2-N和NH+4-N浓度为260、185和100 mg·L-1,比例为2.6∶1.85∶1时,三者出水浓度分别低于10、1.0和0.9 mg·L-1,TN去除率达到99%,实现系统的稳定运行和C、N污染物的超低排放.不同基质浓度和比例条件下,目标污染物去除基本在第1隔室完成,去除率均在75%以上,且厌氧氨氧化反应在SAD耦合系统脱氮中占主导地位. 相似文献
15.
16.
处理采矿废水湿地沉积物中厌氧氨氧化过程 总被引:1,自引:1,他引:1
氮元素在人工湿地生物地球化学循环中起到了重要作用,因此本文以处理采矿废水人工湿地为研究对象,分析了富硫、富铁沉积物中氨氮的厌氧转化过程及其主要途径.本实验以湿地沉积物为样品,通过添加氨氮和利用乙炔抑制剂的技术手段,探究了水铁矿对减少湿地氮流失的效果.结果发现了湿地中存在厌氧氨氧化(anaerobic ammonium oxidation,ANAMMOX)以及厌氧氨氧化作用与铁还原耦合的作用过程(anaerobic ammonium oxidation coupled to iron reduction,Feammox).Feammox可以利用Fe(Ⅲ)氧化氨氮产生氮气,中间产物包括硝酸盐、亚硝酸盐、及温室气体N2O等.水铁矿的加入对Feammox过程有促进作用,使得Feammox过程主导的氨氮流失速率从1.69 mg·(kg·d)~(-1)增强到2.72 mg·(kg·d)~(-1),进而使得Feammox过程对氨氮流失的贡献率从28%增加到42%.但同时,水铁矿的加入使得ANAMMOX作用显著地降低,从而使得湿地系统总体氮流失可以减少约25%.研究结果表明水铁矿矿化形成针铁矿而抑制ANAMMOX过程、以及促进Feammox争夺硫酸盐型厌氧氨氧化过程(sulfate-reducing anaerobic ammonium oxidation,S-ANAMMOX)电子供体而抑制SANAMMOX过程,达到了减少湿地系统总氮流失的目的.另外,对于进一步认识湿地中铁的氧化还原循环过程同氮循环之间的交互作用具有一定的意义. 相似文献
17.
采用ASBR厌氧氨氧化反应器,研究不同有机碳源及浓度变化对厌氧氨氧化菌活性与反应器脱氮性能的影响.实验结果表明,当葡萄糖浓度为200 mg·L~(-1)时,厌氧氨氧化活性下降84.2%;当乙酸钠浓度低于120 mg·L~(-1)时不但不会抑制厌氧氨氧化菌的活性,还在一定程度上促进了厌氧氨氧化反应的进行;蔗糖对厌氧氨氧化的促进作用与乙酸钠类似,当浓度为80mg·L~(-1)时,最大比厌氧氨氧化速率提高了25.0%;柠檬酸三钠对厌氧氨氧化反应几乎没有影响,当有机物浓度为80 mg·L~(-1)时,最大比厌氧氨氧化速率达到最大.有机碳源对厌氧氨氧化的促进作用由大到小为:蔗糖乙酸钠柠檬酸三钠葡萄糖.有机碳源作用下,厌氧氨氧化反应可协同反硝化反应去除系统中的硝态氮,提高了系统总氮的去除率. 相似文献
18.