首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 104 毫秒
1.
强化生物除磷体系中的反硝化除磷   总被引:20,自引:0,他引:20  
 采用SBR反应器,研究了以硝酸盐作为电子受体的反硝化除磷过程.结果表明,反硝化聚磷菌存在于传统的强化生物除磷体系中.厌氧段磷的释放和COD的消耗成线性关系.通过厌氧/好氧交替运行方式,反硝化聚磷菌在聚磷菌中的比例从13.3%上升到69.4%.稳定运行的厌氧/缺氧SBR反应器具有良好的强化生物除磷和反硝化脱氮性能,缺氧结束时体系中磷浓度小于1mg/L,除磷效率大于89%.  相似文献   

2.
强化生物除磷体系中反硝化聚磷菌的选择与富集   总被引:40,自引:0,他引:40       下载免费PDF全文
采用SBR反应器, 对以硝酸盐作为电子受体的反硝化聚磷菌的选择和富集作了研究.结果表明, 反硝化聚磷菌存在于传统的强化生物除磷体系之中.经过3个阶段的选择和富集, 反硝化聚磷菌在聚磷菌中的比例从15%上升到73%.稳定运行的强化反硝化生物除磷体系具有良好的强化生物除磷和反硝化脱氮性能, 缺氧结束时体系中磷浓度小于1mg/L, 除磷和脱氮效率分别大于94%和95%.  相似文献   

3.
生物反硝化除磷技术及其研究进展   总被引:6,自引:0,他引:6  
污水生物反硝化除磷技术的研究在国内才刚刚起步,而在国外尤其在欧洲已经是一个新热点。该文在相关文献的基础之上,针对反硝化除磷技术的机理、工艺及其研究进展,作了综述和比较分析,以给相关的研究工作者提供一些有价值的参考和帮助。  相似文献   

4.
采用反硝化除磷工艺进行生产性试验处理城市污水,结果表明:该工艺处理城市污水可以达到GB18918--2002一级标准,DPB污泥沉降性能良好,污泥浓度控制在4500-5500mg/L时确定的污泥回流比为20—35%,最佳水力停留时间为:厌氧段0.5~1h,缺氧段1.5~2h;缺氧段后面的再曝气段有利于污泥沉降并可保证除磷效果。  相似文献   

5.
采用反硝化除磷工艺进行生产性试验处理城市污水,结果表明:该工艺处理城市污水可以达到GB18918-2002一级标准,DPB污泥沉降性能良好,污泥浓度控制在4500~5500mg/L时确定的污泥回流比为20~35%,最佳水力停留时间为:厌氧段0.5~1h,缺氧段1.5~2h;缺氧段后面的再曝气段有利于污泥沉降并可保证除磷效果.  相似文献   

6.
温度对生物强化除磷工艺反硝化除磷效果的影响   总被引:7,自引:1,他引:7       下载免费PDF全文
以处理城市污水的中试规模生物强化除磷A2/O活性污泥工艺系统为研究对象,考察了温度对系统COD去除和脱氮除磷效果的影响,特别是温度对活性污泥反硝化除磷性能的影响.结果表明,当温度从(30.9±0.8)℃降低到(9.1±0.6)℃时,A2/O系统的脱氮除磷效果显著下降,系统对TN和TP的污泥去除负荷明显下降.通过污泥反硝化除磷活性实验发现,随着温度的降低,系统中活性污泥的最大厌氧释磷速率、最大好氧吸磷速率和最大缺氧吸磷速率都降低.活性污泥中反硝化除磷菌(DPB)占聚磷菌(PAOs)总量的比例随温度降低稍有下降,但平均值仍维持在47.5%左右.用阿伦尼乌斯公式对实验结果进行拟合,得到系统中活性污泥聚磷菌厌氧释磷反应活化能Ea1为148.0 kJ·mol-1,聚磷菌好氧吸磷反应活化能Ea2为228.8 kJ·mol-1,发生在缺氧条件下反硝化除磷菌的吸磷反应活化能Ea3为315.8 kJ·mol-1.对不同温度下污泥絮体粒径分析结果表明,随温度降低,粒径分布更加集中,系统中活性污泥絮体颗粒平均粒径减小,不利于污泥絮体内部反硝化除磷缺氧微环境的形成.  相似文献   

7.
污水生物除磷技术研究进展   总被引:2,自引:4,他引:2  
本文介绍污水生物除磷工艺的发展,对生物脱氮除磷特别是反硝化脱氮除磷原理和新工艺进行讨论,分析反硝化除磷技术的影响因素和反硝化脱氮除磷工艺的优缺点,指出反硝化除磷工艺适合低碳磷比、碳氮比污水的处理以及实际应用中有待进一步研究和解决的问题。  相似文献   

8.
生物脱氮除磷工艺好氧区硝化功能的强化试验   总被引:5,自引:0,他引:5  
在活性污泥法脱氮除磷工艺系统的好氧段投放高硬度聚乙烯悬浮小球作为生物载体,可以强化系统的硝肥功能,提高处理系统的脱氮除磷效率,同时避免产生填料间污泥结团。经两套试验装置的5种工况条件下平行对照试验结果表明:好氧区全池投放聚乙烯悬浮小球,装填密度在10% ̄15%,TKN去除率达98.2%,TN去除率达到86%,TP去除率达到91%。  相似文献   

9.
一体化生物除磷脱氮技术--反硝化除磷   总被引:12,自引:5,他引:12  
介绍了一种高效、节能的生物除磷脱氮技术-反硝化除磷。通过与传统生物除磷技术的比较,总结反硝化除磷的机理、影响因素并探讨它在脱氮好氧颗粒污泥中的应用。  相似文献   

10.
城市污水除磷技术研究——化学强化一级除磷与生物除磷   总被引:4,自引:0,他引:4  
文章分析了使用化学强化一级除磷技术存在的主要问题,特别指出了化学絮凝剂在生产过程中存在的消耗人类有限资源及环境污染大等缺点,认为该种除磷方法不符合可持续发展的理念。生物除磷技术因操作方便及二次污染小等特点成为近年来国内外研究的热点。文章通过介绍生物除磷技术的微生物学、除磷效率等领域的研究进展,结合本课题组取得的部分结果,认为科研工作者应重视该技术的应用基础研究并在实际生产中加以推广应用。  相似文献   

11.
在CAST反应器中引入自制悬浮填料,构成了CAS-BT复合反应器,采用人工配制废水,对其除磷效果进行了试验研究。当进水TP为25mg/L左右时,经历了近80d时间的试验运行,TP的去除率高达99%左右,显示出CAS-BT工艺具有很强的除磷能力。试验发现:原水中含磷量越高聚磷微生物数量越多,系统聚磷能力越强。  相似文献   

12.
后置反硝化生物脱氮除磷工艺在水处理中的应用   总被引:1,自引:0,他引:1  
介绍了AOAO、SBR、MSBR、氧化沟、DEPHANOX等后置反硝化生物除磷脱氮工艺的流程及处理效果。该工艺由于聚磷微生物经过厌氧释磷后进人生化效率较高的好氧环境,其在厌氧池形成的吸磷动力可以充分地得到利用.故有较好的除磷效果。但碳源不足制约了系统的脱氮效果.在解决好反硝化脱氮碳源问题的条件下.该工艺也能取得较好的同时脱氮除磷效果,且操作简便,运行费用低.将有较好的应用前景。  相似文献   

13.
废水除磷技术及进展分析   总被引:15,自引:1,他引:15  
介绍了磷污染的危害,指出磷是产生水体富营养化的最主要因素.全面阐述废水除磷的技术,分析了各种工艺的特点,指出了生物除磷技术的发展趋势.  相似文献   

14.
以城镇污水处理厂尾水为研究对象,考察不同混凝剂投加量及pH值对除磷效果的影响,分析水样混凝前后不同形态P的变化情况。试验结果表明:当铁盐混凝剂(氯化铁)和铝盐混凝剂(高效聚铝)的最佳投加质量浓度分别为7 mg/L和8 mg/L,经混凝处理后,水样中TP残留浓度均低于GB 18918-2002《城镇污水处理厂污染物排放标准》一级A标准((TP)≤0.5 mg/L)。通过对尾水中P的不同形态的分析,尾水中溶解性总磷(TSP,主要为溶解性正磷酸盐(SRP))通过沉析作用得到有效去除,铝盐混凝剂对颗粒态磷(PP)及其他P的絮凝作用较为明显,除磷效果较铁盐混凝剂稳定、易控。  相似文献   

15.
低温条件下生物除磷系统的强化启动和运行   总被引:8,自引:0,他引:8  
本文通过对比试验对冬季低温条件下生物除磷系统的启动和运行进行了研究,结果表明,低温条件下:(1)温度对生物除磷系统的影响是通过影响有机物的酸化水解而间接产生作用的;(2)通过人工投加HAc使污水中VFA≥80mg/L时,可以顺利启动生物除磷系统;(3)设置独立水解酸化池,可以提高生物除磷效果,在进水COD=150~300mg/L、磷酸盐=5mg/L时,出水磷酸盐≤1mg/L;(4)低温条件下按照水解-外循环ERP-SBR方式运行时,在磷酸盐浓度高达10mg/L的情况下仍能保证出水磷酸盐浓度≤0.5mg/L。  相似文献   

16.
通过序批式反应器(SBR)的连续运行,研究了污水不同起始pH值对增强生物除磷的影响(SBR1:pH=6.8;SBR2:pH=7.6).结果表明,在厌氧阶段,SBR2释磷量高于SBR1;在好氧阶段,SBR2降解的聚羟基烷酸(PHA)量低于SBR1,并且糖原合成量/PHA降解量的比例要远远低于SBR1.但是,SBR2反而比SBR1吸收更多的磷.进一步的研究表明,由于SBR2比SBR1合成的糖原少,因此其低PHA降解量并没有导致低吸磷量.推测SBR2中的聚磷菌(PAO)量高于SBR1,从而导致SBR2有着更高的吸磷量以及PHA利用率.在好氧末,SBR2中的可溶解性正磷酸盐(SOP)浓度远远低于SBR1,SBR2的除磷效果达到93.67%,但SBR1仅为65.06%.因此,通过控制污水起始pH值的方法可以达到显著提高增强生物除磷效果的目的,比控制整个污水生物处理过程pH的方法要方便.  相似文献   

17.
混凝法处理污水处理厂出水中磷的实验研究   总被引:3,自引:1,他引:3  
采用硫酸铝、PAC、氯化铁和明矾四种混凝剂对城市污水处理厂出水进行除磷实验研究。实验结果表明,四种混凝剂硫酸铝、PAC、氯化铁和明矾的最佳投药量分别为40mg/L、30mg/L、50mg/L和70mg/L,最佳pH范围分别为6.92~8.08、5.92~10.07、6.92~10.07和6.92~8.08,在此最佳条件下,出水中总磷浓度分别为0.18 mg/L、0.03 mg/L、0.17 mg/L和0.19 mg/L,相应的去除率分别为80.85%、96.81%、81.73%和79.73%。处理后出水总磷浓度达到地表水环境质量标准(GB3838-2002)Ⅲ类水质标准(总磷浓度≤0.2mg/L)。  相似文献   

18.
易鹏  张树军  甘一萍  常江  彭永臻  曹相生 《环境科学》2010,31(10):2390-2397
采用A/O除磷+半亚硝化-厌氧氨氧化自养脱氮三污泥系统,实现了城市污水营养物经济高效去除.结果表明,在水力停留时间(HRT)为3.6h条件下,A/O除磷系统出水总磷(TP)≤0.5mg/L;在常温、DO0.2mg/L和HRT=4.6h条件下,半亚硝化系统实现了亚硝氮累积率为75%~96%的半亚硝化;在温度为27~30℃和HRT=1.4h条件下,厌氧氨氧化(ANAMMOX)系统出水总氮(TN)≤8mg/L,最低值为1.6mg/L,TN去除负荷达到0.57kg/(m3·d).三污泥系统中聚磷菌、氨氧化菌和ANAMMOX菌均在各自适宜的环境条件下生存,优化了污泥种群,提高了各工艺单元的处理效率.城市污水自养脱氮系统理论上可以减少62.5%的供氧量,节省100%反硝化碳源,同时降低了污泥产量,大大减少了CO2的排放.与传统的生物脱氮除磷工艺相比,三污泥系统具有节能降耗减排上的巨大优势和潜力,也有利于实现水资源的循环利用和可持续发展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号