首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 736 毫秒
1.
The structure of mammalian carnivore communities is strongly influenced by both intraguild competition and predation. However, intraguild interactions involving the world’s most common carnivore, the domestic dog (Canis familiaris), have rarely been investigated. We experimentally examined the behavioural responses of a small canid, the Indian fox (Vulpes bengalensis), to the presence of dogs and dog odours. Resource competition between dogs and Indian foxes is low, so it is unclear whether foxes perceive dogs as interference competitors. To test this, we exposed foxes to neutral, live dog, and animal odour stimuli at food trays, and recorded the time spent at food trays, the amount of food eaten, and vigilance and non-vigilance behaviours. When dogs were visible, foxes continued to visit the food trays, but reduced the amount of time spent and food eaten at those trays. Foxes were more vigilant during dog trials than during neutral and odour trials and also exhibited lower levels of non-vigilance behaviour (resting and playing). In contrast, dog odours did not affect fox foraging and activity. These results show that vigilance/foraging trade-offs due to interference competition can occur between native and domestic carnivores despite low dietary overlap. These negative effects of dogs on a smaller member of the carnivore guild raise conservation concerns, especially for endangered carnivores. In many parts of the world, free-ranging dog densities are high due to human subsidies, and these subsidized predators have the potential to exacerbate the indirect effects of human presence.  相似文献   

2.
Many predators hunt using the social and waste odors of their prey. It is unknown, however, whether potential prey modify their behavior in response to the risks of predation associated with accumulations of conspecific odor. We examined this question by measuring foraging trade-offs of wild house mice (Mus domesticus) in the field where we increased both predation risk and conspecific odor at artificial food patches in a two-factor design. Mouse giving-up densities (GUDs) were significantly higher in open habitats than in closed habitats but did not differ with the addition of mouse odors. Fine-scale behavioral observations of captive mice confirmed their attraction to the conspecific odor in an enclosure experiment, without any change to the GUD. These results indicate that house mice continue to visit and forage at food patches despite accumulations of predator-attracting odors. This most likely occurs for the social benefits obtained from conspecific odor exploration; however, such behavior may cause mice to become vulnerable to considerable olfactory exploitation by their predators. Future work must therefore focus on how mice trade off the social benefits of investigating odors that also attract their enemies.  相似文献   

3.
Thompson CM  Gese EM 《Ecology》2007,88(2):334-346
Trophic level interactions between predators create complex relationships such as intraguild predation. Theoretical research has predicted two possible paths to stability in intraguild systems: intermediate predators either outcompete higher-order predators for shared resources or select habitat based on security. The effects of intraguild predation on intermediate mammalian predators such as swift foxes (Vulpes velox) are not well understood. We examined the relationships between swift foxes and both their predators and prey, as well the effect of vegetation structure on swift fox-coyote (Canis latrans) interactions, between August 2001 and August 2004. In a natural experiment created by the Pinon Canyon Maneuver Site in southeastern Colorado, USA, we documented swift fox survival and density in a variety of landscapes and compared these parameters in relation to prey availability, coyote abundance, and vegetation structure. Swift fox density varied significantly between study sites, while survival did not. Coyote abundance was positively related to the basal prey species and vegetation structure, while swift fox density was negatively related to coyote abundance, basal prey species, and vegetation structure. Our results support the prediction that, under intraguild predation in terrestrial systems, top predator distribution matches resource availability (resource match), while intermediate predator distribution inversely matches predation risk (safety match). While predation by coyotes may be the specific cause of swift fox mortality in this system, the more general mechanism appears to be exposure to predation moderated by shrub density.  相似文献   

4.
The giving-up density of food (GUD), the amount of food remaining in a patch when a forager ceases foraging there, can be used to compare the costs of foraging in different food patches. But, to draw inferences from GUDs, specific effects of foraging costs (predation risk, metabolic and missed opportunities costs) on GUDs have to be identified. As high predation risk, high metabolic costs and abundant food all should produce high GUDs, this does not allow us to infer directly the quality of a habitat. In order to separate the effect of each foraging cost, we developed an optimal foraging model based on food supplementation. We illustrate the use of our model in a study where we assessed the impact of a power line right-of-way in a white-tailed deer (Odocoileus virginianus) winter yard by determining whether the negative effects of cover loss outweigh the positive effects of browse regeneration.  相似文献   

5.
Summary Behavioral resource depression occurs when the behavior of prey individuals changes in response to the presence of a predator, resulting in a reduction of the encounter rate of the predator with its prey. Here I present experimental evidence on the response of two species of gerbils (Gerbillus allenbyi and G. pyramidum) to the presence of barn owls. I conducted the experiments in a large aviary. Both gerbils responded to the presence of barn owl predators by foraging in fewer resource patches (seed trays) and by quitting foraged resource patches at a higher resource harvest rate (giving-up density of resource; GUD). This reduced the amount of time gerbils were exposed to owl predation, and hence the encounter rate of owls with gerbils, i.e., behavioral resource depression. Thus, the presence of owls imposes a foraging cost on gerbils due to risk of predation, and also on the owls themselves due to resource depression. I then examined how resource depression relaxed over time following exposure to owls. In the days following an encounter with the predator, the reduction in foraging activity for both gerbil species eased. Increasing numbers of trays were foraged each day, and GUDs in seed trays declined. The two gerbils differed in their rate of recovery, with G. pyramidum returning to prepredator levels of foraging after 1 or 2 nights and G. allenbyi taking 5 nights or longer. Interspecific differences in recovery rates may be based on differences between the species in vulnerability to predation and/or ability to detect the presence of predators. The differences in recovery rates may be due to optimal memory windows or decay rates, where differences between species are based on risk of predation or on how perceived risk changes with time since a predator was last encountered. Finally, differences between or among competitors in recovery from resource depression may provide foraging opportunities in time for the species which recover most quickly and may have implications for species coexistence.  相似文献   

6.
Theory states that an optimal forager should exploit a patch so long as its harvest rate of resources from the patch exceeds its energetic, predation, and missed opportunity costs for foraging. However, for many foragers, predation is not the only source of danger they face while foraging. Foragers also face the risk of injuring themselves. To test whether risk of injury gives rise to a foraging cost, we offered red foxes pairs of depletable resource patches in which they experienced diminishing returns. The resource patches were identical in all respects, save for the risk of injury. In response, the foxes exploited the safe patches more intensively. They foraged for a longer time and also removed more food (i.e., had lower giving up densities) in the safe patches compared to the risky patches. Although they never sustained injury, video footage revealed that the foxes used greater care while foraging from the risky patches and removed food at a slower rate. Furthermore, an increase in their hunger state led foxes to allocate more time to foraging from the risky patches, thereby exposing themselves to higher risks. Our results suggest that foxes treat risk of injury as a foraging cost and use time allocation and daring—the willingness to risk injury—as tools for managing their risk of injury while foraging. This is the first study, to our knowledge, which explicitly tests and shows that risk of injury is indeed a foraging cost. While nearly all foragers may face an injury cost of foraging, we suggest that this cost will be largest and most important for predators.  相似文献   

7.
Abstract: Domestic dogs (Canis familiaris) and cats (Felis catus) are the most abundant mammalian carnivores worldwide. Given that domestic carnivores rely on human‐provided food, their densities are usually independent of prey densities. Nevertheless, underfed pets may need to hunt to meet their energetic and nutritional requirements. We explored the effects of different levels of care (provision of food) of dogs and cats on their predation rates on wild vertebrates in 2 areas of southern Chile. We interviewed cat and dog owners and analyzed prey remains in scats of pets to examine how domestic dogs and cats were managed and to gather information on the wild vertebrates killed and harassed by pets. We used logistic regression to examine the association between pet care and the frequency of wild vertebrate remains in scats. The probability of a dog preying on vertebrates was higher for poorly fed than for adequately fed dogs (odds ratio = 3.7) and for poorly fed than for adequately fed cats (odds ratio = 4.7). Domestic dogs and cats preyed on most endemic and threatened mammals present in the study sites. Our results provide support for the hypothesis that the less care domestic animals receive from owners the higher the probability those animals will prey on wild vertebrates.  相似文献   

8.
Few researchers have developed large-scale habitat models for sympatric carnivore species. We created habitat models for red foxes (Vulpes vulpes), coyotes (Canis latrans) and bobcats (Lynx rufus) in southern Illinois, USA, using the Penrose distance statistic, remotely sensed landscape data, and sighting location data within a GIS. Our objectives were to quantify and spatially model potential habitat differences among species. Habitat variables were quantified for 1-km2 buffered areas around mesocarnivore sighting locations. Following variable reduction procedures, five habitat variables (percentage of grassland patches, interspersion–juxtaposition of forest patches, mean fractal dimension of wetland patches and the landscape, and road density) were used for analysis. Only one variable differed (P < 0.05) between red fox and coyote sighting areas (road density) and bobcat and coyote sighting areas (mean fractal dimension of the landscape). However, all five variables differed between red fox and bobcat sighting areas, indicating considerable differences in habitat affiliation between this pair-group. Compared to bobcats, red fox sightings were affiliated with more grassland cover and larger grassland patches, higher road densities, lower interspersion and juxtaposition of forest patches, and lower mean fractal dimension of wetland patches. These differences can be explained by different life history requirements relative to specific cover types. We then used the Penrose distance statistic to create habitat models for red foxes and bobcats, respectively, based on the five-variable dataset. An independent set of sighting locations were used to validate these models; model fit was good with 65% of mesocarnivore locations within the top 50% of Penrose distance values. In general, red foxes were affiliated with mixtures of agricultural and grassland cover, whereas bobcats were associated with a combination of grassland, wetland, and forest cover. The greatest habitat overlap between red foxes and bobcats was found at the interface between forested areas and more open cover types. Our study provides insight into habitat overlap among sympatric mesocarnivores, and the distance-based modelling approach we used has numerous applications for modelling wildlife–habitat relationships over large scales.  相似文献   

9.
Abstract: Non-native vertebrate predators pose a severe threat to many native species, and a variety of management programs are aimed at reducing predator effects. We sought to assess the effects of predator-control programs by analyzing changes in prey and predator populations based on data commonly collected in these programs. We examined data from a predator-control program that primarily targets the introduced red fox (  Vulpes vulpes regalis ) in central California. Red foxes negatively affect populations of native waterbirds, particularly the endangered California Clapper Rail (  Rallus longirostris obsoletus ). Using a combination of matrix population modeling, simple difference equations, and statistical analysis, we analyzed data on removed predators and monitored prey populations. Past control efforts succeeded in depressing fox numbers in local areas over 3-month intervals, and there was a significant, positive relationship between the growth rate of local Clapper Rail populations and the successful trapping of red foxes in the preceding year. By modeling the effect of different fox-removal rates, we found that a stable or declining population could be achieved by removing a minimum of 50% of the adults and 25% of the juveniles. Under trapping rates of 50–70%, the proportion of the fox population composed of immigrants averaged 20–52%. In contrast to the current management approach, elasticity analyses suggested that changes in adult survival rates had relatively little effect on long-term population growth. Overall, our approach indicated that predator control was effective in the short term, but for longer-term success it may be necessary to redirect efforts to control juvenile and immigrant foxes. Our analytical approach is potentially useful for evaluating current control programs aimed at reducing the effects of predators on native species.  相似文献   

10.
Southern elephant seals are important apex predators in a highly variable and unpredictable marine environment. In the presence of resource limitation, foraging behaviours evolve to reduce intra-specific competition increasing a species’ overall probability of successful foraging. We examined the diet of 141 (aged 1–3 years) juvenile southern elephant seals to test the hypotheses that differences between ages, sexes and seasons in diet structure occur. We described prey species composition for common squid and fish species and the mean size of cephalopod prey items for these age groups. Three cephalopod species dominated the stomach samples, Alluroteuthis antarcticus, Histioteuthis eltaninae and Slosarczykovia circumantarcticus. We found age-related differences in both species composition and size of larger prey species that probably relate to ontogenetic changes in diving ability and haul-out behaviour and prey availability. These changes in foraging behaviour and diet are hypothesised to reduce intra-specific food competition concomitant with the increase in foraging niche of growing juveniles.  相似文献   

11.
Colonial burrowing herbivores can modify vegetation structure, create belowground refugia, and generate landscape heterogeneity, thereby affecting the distribution and abundance of associated species. Black‐tailed prairie dogs (Cynomys ludovicianus) are such a species, and they may strongly affect the abundance and composition of grassland bird communities. We examined how prairie dog colonies in the North American Great Plains affect bird species and community composition. Areas occupied by prairie dogs, characterized by low percent cover of grass, high percent cover of bare soil, and low vegetation height and density, supported a breeding bird community that differed substantially from surrounding areas that lacked prairie dogs. Bird communities on colony sites had significantly greater densities of large‐bodied carnivores (Burrowing Owls [Athene cunicularia], Mountain Plovers, [Charadrius montanus], and Killdeer [Charadrius vociferus]) and omnivores consisting of Horned Larks (Eremophila alpestris) and McCown's Longspurs (Rhynchophanes mccownii) than bird communities off colony sites. Bird communities off colony sites were dominated by small‐bodied insectivorous sparrows (Ammodramus spp.) and omnivorous Lark Buntings (Calamospiza melanocorys), Vesper Sparrows (Pooecetes gramineus), and Lark Sparrows (Chondestes grammacus). Densities of 3 species of conservation concern and 1 game species were significantly higher on colony sites than off colony sites, and the strength of prairie dog effects was consistent across the northern Great Plains. Vegetation modification by prairie dogs sustains a diverse suite of bird species in these grasslands. Collectively, our findings and those from previous studies show that areas in the North American Great Plains with prairie dog colonies support higher densities of at least 9 vertebrate species than sites without colonies. Prairie dogs affect habitat for these species through multiple pathways, including creation of belowground refugia, supply of prey for specialized predators, modification of vegetation structure within colonies, and increased landscape heterogeneity. Asociaciones de Comunidades de Aves de Pastizales con Perros de la Pradera en la Gran Llanura de Norte América  相似文献   

12.
Food-hoarding animals are expected to preferentially cache items with lower perishability and/or higher consumption time. We observed arctic foxes (Alopex lagopus) foraging in a greater snow goose (Anser caerulescens atlanticus) colony where the main prey of foxes consisted of goose eggs, goslings, and lemmings (Lemmus and Dicrostonyx spp.). We recorded the number of prey consumed and cached and the time that foxes invested in these activities. Foxes took more time to consume a goose egg than a lemming or gosling but cached a greater proportion of eggs than the other prey type. This may be caused by the eggshell, which presumably decreases the perishability and/or pilfering risk of cached eggs, but also increases egg consumption time. Arctic foxes usually recached goose eggs but rarely recached goslings or lemmings. We tested whether the rapid-sequestering hypothesis could explain this recaching behavior. According to this hypothesis, arctic foxes may adopt a two-stage strategy allowing both to maximize egg acquisition rate in an undefended nest and subsequently secure eggs in potentially safer sites. Foxes spent more time carrying an egg and traveled greater distances when establishing a secondary than a primary cache. To gain further information on the location and subsequent fate of cached eggs, we used dummy eggs containing radio transmitters. Lifespan of primary caches increased with distance from the goose nest. Secondary caches were generally located farther from the nest and had a longer lifespan than primary caches. Behavioral observations and the radio-tagged egg technique both gave results supporting the rapid-sequestering hypothesis.  相似文献   

13.
Foraging theory predicts that animals will adjust their foraging behavior in order to maximize net energy intake and that trade-offs may exist that can influence their behavior. Although substantial advances have been made with respect to the foraging ecology of large marine predators, there is still a limited understanding of how predators respond to temporal and spatial variability in prey resources, primarily due to a lack of empirical studies that quantify foraging and diving behavior concurrently with characteristics of prey fields. Such information is important because changes in prey availability can influence the foraging success and ultimately fitness of marine predators. We assessed the diving behavior of juvenile female harbor seals (Phoca vitulina richardii) and prey fields near glacial ice and terrestrial haulout sites in Glacier Bay (58°40′N, ?136°05′W), Alaska. Harbor seals captured at glacial ice sites dived deeper, had longer dive durations, lower percent bottom time, and generally traveled further to forage. The increased diving effort for seals from the glacial ice site corresponded to lower prey densities and prey at deeper depths at the glacial ice site. In contrast, seals captured at terrestrial sites dived shallower, had shorter dive durations, higher percent bottom time, and traveled shorter distances to access foraging areas with much higher prey densities at shallower depths. The increased diving effort for seals from glacial ice sites suggests that the lower relative availability of prey may be offset by other factors, such as the stability of the glacial ice as a resting platform and as a refuge from predation. We provide evidence of differences in prey accessibility for seals associated with glacial ice and terrestrial habitats and suggest that seals may balance trade-offs between the costs and benefits of using these habitats.  相似文献   

14.
Antipredator behavior studies generally assess prey responses to single predator species although most real systems contain multiple species. In multi-predator environments prey ideally use antipredator responses that are effective against all predator species, although responses may only be effective against one predator and counterproductive for another. Multi-predator systems may also include introduced predators that the prey did not co-evolve with, so the prey may either fail to recognize their threat (level 1 naiveté), use ineffective responses (level 2 naiveté) or succumb to their superior hunting ability (level 3 naiveté). We analyzed microhabitat selection of an Australian marsupial (koomal, Trichosurus vulpecula hypoleucus) when faced with spatiotemporal differences in the activity/density levels of one native (chuditch, Dasyurus geoffroii) and two introduced predators (red fox, Vulpes vulpes; feral cat, Felis catus). From this, we inferred whether koomal recognized introduced predators as a threat, and whether they minimized predation risk by either staying close to trees and/or using open or dense microhabitats. Koomal remained close to escape trees regardless of the predator species present, or activity/density levels, suggesting koomal employ this behavior as a first line of defense. Koomal shifted to dense cover only under high risk scenarios (i.e., with multiple predator species present at high densities). When predation risk was low, koomal used open microhabitats, which likely provided benefits not associated with predator avoidance. Koomal did not exhibit level 1 naiveté, although further studies are required to determine if they exhibit higher levels of naiveté (2–3) against foxes and cats.  相似文献   

15.
The rates and patterns of feeding and displacement of predators constitute two of the most important plastic behavioral responses that allow individuals to respond quickly to changes in abundance of their prey, predation risks and to rapid alterations in environmental conditions. In this study, we quantified seasonal and spatial variation in displacement (net changes in location in 12 or 24 h periods) and prey consumed of marked individuals of the keystone seastar Heliaster helianthus at six sites spanning 600 km along the coast of north-central Chile. We evaluated the hypotheses that: (1) at sites with low availability (cover) of the main prey, the mussel Perumytilus purpuratus, Heliaster displays larger displacements and consumes a greater proportion of other prey (e.g. mobile species) than at sites with high mussel cover, (2) daily displacements will be correlated with sea surface temperature (SST) and (3) increased wave action will reduce seastar daily displacement. Our results show that Heliaster displacement is higher at sites with lower availability of P. purpuratus; and at these sites, a larger proportion of Heliaster individuals are observed feeding, mostly on other prey (e.g. limpets), which could offset the higher costs associated with increased movement. In addition, wave forces affected the activity of Heliaster negatively. Contrary to our expectations, the daily displacements did not show any relationship with SST measured on the day or the previous days of the surveys, despite the fact that average displacement was generally higher in summer than in winter months. Future studies should examine Heliaster movement during single foraging excursions and determine whether these responses affect the growth and reproductive output of individuals. Such information is vital to understand how changes in prey abundance and environmental conditions alter the behavior and energy budget of this predator and its ability to control prey populations.  相似文献   

16.
Daubenton's bat, a trawling vespertilionid bat species, hunts for insects that fly close to, or rest on, the water surface. During summer, many ponds at which Daubenton's bats hunt become gradually covered with duckweed. The purpose of this study was to investigate the effects of duckweed cover on the hunting behaviour of Daubenton's bats and on the ultrasound-reflecting properties of the water surface. Our study revealed the following. (1) Daubenton's bat avoids water surfaces covered with duckweed. (2) Prey abundance was related to the number of foraging Daubenton's bats but was independent of duckweed cover. (3) When mealworms were presented among standardized amounts of duckweed to naturally foraging Daubenton's bats, they caught significantly less mealworms when the duckweed cover was increased. (4) Measurements with ultrasonic signals show that a water surface covered with duckweed returns a much stronger background echo at small angles (i.e. parallel to the water surface) compared to an uncovered water surface. It seems likely that a cover of duckweed on the water surface interferes with prey detection by masking the echoes returning from prey. (5) It was relatively difficult for the bats to discriminate small patches of duckweed from mealworms. The proposed discrimination mechanism for this trawling bat species suggests that single duckweed patches can also be mistaken for natural prey by Daubenton's bats. Received: 4 January 1998 / Accepted after revision: 19 July 1998  相似文献   

17.
Kitzberger T  Chaneton EJ  Caccia F 《Ecology》2007,88(10):2541-2554
Resource pulses often involve extraordinary increases in prey availability that "swamp" consumers and reverberate through indirect interactions affecting other community members. We developed a model that predicts predator-mediated indirect effects induced by an epidemic prey on co-occurring prey types differing in relative profitability/preference and validated our model by examining current-season and delayed effects of a bamboo mass seeding event on seed survival of canopy tree species in mixed Patagonian forests. The model shows that predator foraging behavior, prey profitability, and the scale of prey swamping influence the character and strength of short-term indirect effects on various alternative prey. When in large prey-swamped patches, nonselective predators decrease predation on all prey types. Selective predators, instead, only benefit prey of similar quality to the swamping species, while very low or high preference prey remain unaffected. Negative indirect effects (apparent competition) may override such positive effects (apparent mutualism), especially for highly preferred prey, when prey-swamped patches are small enough to allow predator aggregation and/or predators show a reproductive numerical response to elevated food supply. Seed predation patterns during bamboo (Chusquea culeou) masting were consistent with predicted short-term indirect effects mediated by a selective predator foraging in large prey-swamped patches. Bamboo seeds and similarly-sized Austrocedrus chilensis (ciprés) and Nothofagus obliqua (roble) seeds suffered lower predation in bamboo flowered than nonflowered patches. Predation rates on the small-seeded Nothofagus dombeyi (coihue) and the large-seeded Nothofagus alpina (rauli) were independent of bamboo flowering. Indirect positive effects were transient; three months after bamboo seeding, granivores preyed heavily upon all seed types, irrespective of patch flowering condition. Moreover, one year after bamboo seeding, predation rates on the most preferred seed (rauli) was higher in flowered than in nonflowered patches. Despite rapid predator numerical responses, short-term positive effects can still influence community recruitment dynamics because surviving seeds may find refuge beneath the litter produced by bamboo dieback. Together, our theoretical analysis and experiments indicate that indirect effects experienced by alternative prey during and after prey-swamping episodes need not be universal but can change across a prey quality spectrum, and they critically depend on predator-foraging rules and the spatial scale of swamping.  相似文献   

18.
Summary The threat-sensitive predator avoidance hypothesis predicts that prey can assess the relative threat posed by a predator and adjust their behaviour to reflect the magnitude of the threat. We tested the ability of larval threespine sticklebacks to adjust their foraging in the presence of predators by exposing them to conspecific predators of various sizes and recording their foraging and predator avoidance behaviours. Larvae (<30 days post-hatch) displayed predator escape behaviours only towards attacking predators. At 3 weeks post-hatch larvae approached the predator after fleeing, a behaviour which may be the precursor to predator inspection. Larvae reduced foraging and spent less time in the proximity of large and medium-sized predators compared to small predators. The reduction in foraging was negatively correlated to the predator/larva size ratio, indicating that larvae increased their foraging as they increased in size relative to the predator. We conclude that larval sticklebacks can assess the threat of predation early in their ontogeny and adjust their behaviour accordingly.Correspondence to: J.A. Brown  相似文献   

19.
A thorough understanding of communication requires an evaluation of both the signaler and receiver. Most analyses of prey–predator communication are incomplete because they examine only the behavior of the prey. Predators in these systems may be understudied because they are perceived as less tractable research subjects, due to their more cryptic hunting behaviors and secretive lifestyles. For example, research on interactions between rodents and rattlesnakes has focused on the behavior of rodent signalers, while responses of snakes have been virtually unexamined. Rattlesnakes are ambush predators, and capture rodents by waiting at foraging sites for long periods of time. In this study, I take advantage of the sedentary nature of this foraging strategy and use fixed videography to record natural encounters between timber rattlesnakes (Crotalus horridus) and their prey. Three different prey species were found to exhibit conspicuous visual displays to snakes, both when snakes were actively foraging, and when they were basking. After receiving displays, foraging snakes left their ambush sites and moved long distances before locating subsequent ambush sites, indicating that they responded to displays by abandoning attempts to ambush prey in the vicinity of signalers. This study represents the first quantitative analysis of the response of free-ranging snakes to signals from their prey, and elucidates a technique by which such quantitative data can be more easily obtained.  相似文献   

20.
Predation risk and foraging behavior of the hoary marmot in Alaska   总被引:2,自引:0,他引:2  
Summary I observed hoary marmots for three field seasons to determine how the distribution of food and the risk of predation influenced marmots' foraging behavior. I quantified the amount of time Marmota caligata foraged in different patches of alpine meadows and assessed the distribution and abundance of vegetation eaten by marmots in these meadows. Because marmots dig burrows and run to them when attacked by predators, marmot-toburrow distance provided an index of predation risk that could be specified for different meadow patches.Patch use correlated positively with food abundance and negatively with predation risk. However, these significant relationships disappeared when partial correlations were calculated because food abundance and risk were intercorrelated. Using multiple regression, 77.0% of the variance in patch use was explained by a combination of food abundance, refuge burrow density, and a patch's distance from the talus where sleeping burrows were located. Variations in vigilance behavior (look-ups to search for predators while feeding) according to marmots' ages, the presence of other conspecifics, and animals' proximity to their sleeping burrows all indicated that predation risk influenced foraging.In a forage-manipulation experiment, the use of forage-enhanced patches increased six-fold, verifying directly the role of food availability on patch used. Concomitant with increased feeding, however, was the intense construction of refuge burrows in experimental patches that presumably reduced the risk of feeding. Thus, I suggest that food and predation risk jointly influence patch use by hoary marmots and that both factors must be considered when modeling the foraging behavior of species that can be predator and prey simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号