首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 408 毫秒
1.
ABSTRACT: Competition for water resources is becoming an increasingly important issue in the southeastern U.S. The potential impacts of future precipitation and runoff estimated by a transient global climate model (HADCM2) on competing water resources in the Southeast has been conducted. Issues of agricultural management, irrigation water withdrawals, and water quality were studied over three time periods: 1974–1993, 2020–2039, and 2080–2099 in five water basins identified previously as exhibiting water-related problems. These basins, which encompass the boundary between Alabama and Mississippi, cover four important agricultural counties in Mississippi. Irrigation water requirements generated by crop growth models for corn, soybeans, and winter wheat were coupled with monthly runoff for the impacted basins estimated by the SWAT water balance model. The results of the study reveal that in the next 20–40 years water availability in the southern portions of the study area will decline as much as 10 percent during times when water requirements for agricultural production are crucial. Maintaining or expanding existing crop yields under future climate regimes may require additional irrigation water and increase competition among other uses such as domestic, industrial, recreational, and ecosystem quality.  相似文献   

2.
ABSTRACT: Systematic sampling of waterways and irrigation runoff from agricultural lands in the North Platte Project of Nebraska in July and August of 1972–1974 demonstrated that phytopathogenic organisms were disseminated. The organisms monitored included the bean common blight bacterium Xanthomonas phaseoli, the bean white mold fungus Whetzelinia sclerotiorum and various nematodes. Although many types of nematodes often were recovered from irrigation water, Heterodera sp. cysts which cause significant disease problems in the valley were found infrequently. Patterns of movement of the bacterial and fungal organisms were correlated with previous or current season infection of bean plants. The short-term survival of X. phaseoli in sterile deionized water may explain the detection of this organism only in runoff or ditches receiving runoff from common blight infected bean fields. Sclerotial bodies of W. sclerotiorum remained viable for at least 10–21 days in flowing water and were found throughout the irrigation waterways. Irrigation of beans with contaminated water can result in both common blight and white mold diseases. Dissemination of phytopathogenic organisms in irrigation reuse systems as well as agricultural land runoff should be considered in irrigation planning and system design.  相似文献   

3.
Irrigation water management is crucial for agricultural production and livelihood security in Morocco as in many other parts of the world. For the implementation of an effective water management, knowledge about farmers' demand for irrigation water is crucial to assess reactions to water pricing policy, to establish a cost-benefit analysis of water supply investments or to determine the optimal water allocation between different users. Previously used econometric methods providing this information often have prohibitive data requirements. In this paper, the Contingent Valuation Method (CVM) is adjusted to derive a demand function for irrigation water along farmers' willingness to pay for one additional unit of surface water or groundwater. An application in the Middle Draa Valley in Morocco shows that the method provides reasonable results in an environment with limited data availability. For analysing the censored survey data, the Least Absolute Deviation estimator was found to be a more suitable alternative to the Tobit model as errors are heteroscedastic and non-normally distributed. The adjusted CVM to derive demand functions is especially attractive for water scarce countries under limited data availability.  相似文献   

4.
ABSTRACT: The current increase in the demand for water by municipal, industrial, and other users is likely to result in approximately one-third less water being available for agricultural use in Texas by the year 2000. As water supplies diminish, the rainfall excess needs to be used more efficiently. Large amounts of runoff occur in the eastern part of Texas that could be collected in small impoundments and utilized for crop production. Farmers in water-surplus basins or subbasins can apply for a permit to divert surface water into small on-farm impoundments to be used for supplemental irrigation. The costs for runoff collection and two supplemental irrigations, which amount to a total of 4 in./yr., are estimated to be approximately $60/acre/year. Depending upon the crop produced, the estimated increase in gross income from supplemental irrigation ranges from about $80 to more than $100 per acre annually.  相似文献   

5.
ABSTRACT: Loading rates derived from monitoring natural runoff from selected land uses are compared. Land uses selected for evaluation are construction sites, barnyards, and agriculture (dairying). Runoff volumes, sediment, and nutrient fractions were monitored and expressed as areal loadings for comparison purposes. Sediment yield and total phosphorus (total P) loss was directly proportional to runoff (m3/ha). In decreasing order, the loadings for sediment and total P were as follows: construction site > barnyard > general dairying. Runoff from the barnyard area was approximately 10 times higher in soluble phosphorus and ammonium nitrogen than the other land uses under investigation. Areal loss for nitrate nitrogen was highest from the construction site and was attributed to the higher volume of runoff per unit area. Results show that barnyards in a dairying watershed are potentially a major source of sediment and nutrients, especially those dissolved fractions which have the potential for immediate water quality impacts. Relative to general agricultural land, urban construction sites also appear to be a major source of sediment and nutrients. As with barnyard sites, however, the effect of such sites on water quality likely depends on proximity to surface water bodies and other watershed characteristics affecting delivery ratios of contaminants.  相似文献   

6.
ABSTRACT: Water budget studies are essential for water resources and environmental management. In this study, a water budget analysis is presented for the Everglades Agricultural Area (EAA) in South Florida for the period from 1973 to 1991. The EAA is a highly productive irrigation/drainage basin that has a high water table and organic soils. Water quality problems are associated with the drainage discharge from the basin. During dry periods, supplemental water is used for irrigation and in rainy periods excess water with relatively higher phosphorus content is pumped out of the basin to Lake Okeechobee and the Everglades ecosystem. Elevated concentrations of phosphorus in the runoff/drainage that is discharged from the EAA basin have created water quality problems. The mean surface water inflow to the basin was 63,990 ha-m, and the outflow was 131,447 ha-m per year. On the average, supplemental surface water use was 47,411 ha-m, and runoff/drainage was 114,816 ha-m per year. The mean annual basin rainfall was 120.9 cm. A general trend in the decline of the wet season rainfall is observed.  相似文献   

7.
ABSTRACT: Best management practices for irrigated agriculture are not restricted to the control of sediments in the return flow. Salts and nutrient loading and oxygen depletion are also of environmental concern. Since knowledge of waste loading returned from agricultural irrigation is limited, specific characterization of irrigatin and runoff water quality should precede corrective measures. In 1974, 1975 and 1976, four study sites with in a 50,000-acre irrigated area were monitored to characterize the quantity and quality of irrigation water and surface return flow. Simple correlatins among constituents showed strong relationships among BOD, TP, PO4,-P, and No3-N. Least significant difference tests among seasonal means of change-in-load per irrigation showed that only TDS and PO4-P were significant.  相似文献   

8.
ABSTRACT: An environmental simulation model of the Upper St. Johns River Basin, Florida, has been developed in order to predict hydrologic responses under proposed management plans. Land use projections for each of 19 hydrologic planning units are provided by a linear programming analysis of agricultural activities. Inputs to the model include rainfall, runoff, evapotranspiration (ET), aquifer properties, topography, soil types, and vegetative patterns. A water balance is developed in the uplands based on infiltration, ET, surface runoff, and groundwater flow. Valley continuity is based on stage-volume relationship for inflows and outflows and a variable roughness coefficient dependent on vegetative patterns. Land use changes form the basis for predicting hydroperiod variation under alternative management schemes. Plans are ranked according to two criteria, deviation from a natural hydroperiod and flood or drought control provided. Results indicate that (1) a single reservoir without irrigation and (2) floodplain preservation plans are superior to (3) multiple reservoir with irrigation and (4) uncontrolled floodplain plans with regard to both criteria.  相似文献   

9.
ABSTRACT: Conflicts caused through development of urban areas in proximity to irrigated agriculture in water-scarce regions can be minimized through the direct urbanization of irrigated lands. This shifts the water supply from one use to another on the same site rather than creating an additional use in an adjoining area. This condition has prevailed in the Phoenix region. In the Tucson region, the municipality is buying and retiring farmland in an adjacent agricultural area, for the purpose of acquiring the water right in order to transfer water to municipal use. This land purchase is necessitated by existing Arizona water law, which ties the water to the land. This method of transfer creates problems concerning how much water can be transferred per acre retired; what to do with the abandoned farmland; inequities to agribusiness and taxing entities; and loss of food crop production which have not been resolved. An alternative to the retirement of farms, applicable in the Tucson region, is to exchange treated municipal wastewater for irrigation water. While this method appears to be the least disruptive, it requires the resolution of certain institutional problems concerned with land and water management method.  相似文献   

10.
Food security and sustainable development require efficient use of water resources, especially in irrigation. Economic pricing can be an effective tool to achieve more efficient water use, provided it is supported by other policies in implementation. Applying various water pricing and cost recovery arrangements is suggested for efficient allocation. Any adverse impact on farmers’ incomes must be addressed and more reliable service must accompany higher prices. Experience from several countries suggests a variety of implementation issues. Essential complements to water pricing are water distribution rules and technological choices at critical nodes in the delivery system that allow farmers flexibility in conserving water in response to higher prices. Among supporting institutions, water users associations seem a higher priority than water markets.  相似文献   

11.
The paper describes an approach towards optimal allocation of surface and ground water resources to three agricultural areas in the Jordan Valley under conditions of scarce water supply. The optimizing model allocates water from three main rivers, each with reservoir storage, and from two ground water sources to three irrigation regions. Productivity of irrigation water, expressed as the net present value of the regional agricultural output, but allowing for crop water deficits, is first maximized using nonlinear programming. The allocation process then adopts techniques of linear programming to determine the least cost alternative based on the unit cost of water from each resource at each destination, as it varies with time.  相似文献   

12.
ABSTRACT: This paper defines types of water losses in irrigated agriculture and outlines potentials for water conservation. Recoverable water “losses” (seepage, leakage, and spillage during storage and conveyance, and surface runoff and deep percolation during irrigation) and irrecoverable losses (evaporation from water and soil surfaces and transpiration from plants) are described and illustrated. Some conservation terms are defined, particularly the distinction between on-farm irrigation efficiency and areawide efficiency. Briefly reviewed are agricultural water conservation technologies and their applicability. The biggest untapped potential for water conservation may be a reduction in irrecoverable losses, especially evapotranspiration. The advantages and disadvantages of reducing recoverable and irrecoverable water losses are described, including possible effects on ground water, energy, salinity, crops, wildlife, and in-stream uses. Such information may be useful in several policy and management issues, e.g., ground water overdraft and possible constraints on crops and sites to be irrigated.  相似文献   

13.
A survey of storm runoff fecal coliform bacteria (FCB) from working farm and ranch pastures is presented in conjunction with a survey of FCB in manure management systems (MMS). The cross-sectional survey of pasture runoff was conducted on 34 pastures on five different dairies over 2 yr under varying conditions of precipitation, slope, manure management, and use of conservation practices such as vegetative filter strips. The MMS cross-sectional survey consisted of samples collected during 1 yr on nine different dairies from six loafing barns, nine primary lagoons, 12 secondary lagoons, and six irrigation sample points. Pasture runoff samples were additionally analyzed for Cryptosporidium sp. and Giardia duodenalis, whereby detectable concentrations occurred sporadically at higher FCB concentrations resulting in poor correlations with FCB. Prevalence of both parasites was lower relative to high-use areas studied simultaneously on these same farms. Application of manure to pastures more than 2 wk in advance of storm-associated runoff was related to a > or =80% reduction in FCB concentration and load compared to applications within 2 wk before a runoff event. For every 10 m of buffer length, a 24% reduction in FCB concentration was documented. A one-half (75%), one (90%), and two (99%) log10 reduction in manure FCB concentration was observed for manure holding times in MMS of approximately 20, 66, and 133 d, respectively. These results suggest that there are several management and conservation practices for working farms that may result in reduced FCB fluxes from agricultural operations.  相似文献   

14.
A multi-objective optimisation approach to water management   总被引:3,自引:0,他引:3  
The management of river basins is complex especially when decisions about environmental flows are considered in addition to those concerning urban and agricultural water demand. The solution to these complex decision problems requires the use of mathematical techniques that are formulated to take into account conflicting objectives. Many optimization models exist for water management systems but there is a knowledge gap in linking bio-economic objectives with the optimum use of all water resources under conflicting demands. The efficient operation and management of a network of nodes comprising storages, canals, river reaches and irrigation districts under environmental flow constraints is challenging. Minimization of risks associated with agricultural production requires accounting for uncertainty involved with climate, environmental policy and markets. Markets and economic criteria determine what crops farmers would like to grow with subsequent effect on water resources and the environment. Due to conflicts between multiple goal requirements and the competing water demands of different sectors, a multi-criteria decision-making (MCDM) framework was developed to analyze production targets under physical, biological, economic and environmental constraints. This approach is described by analyzing the conflicts that may arise between profitability, variable costs of production and pumping of groundwater for a hypothetical irrigation area.  相似文献   

15.
Rainfall can transport herbicides from agricultural land to surface waters, where they become an environmental concern. Tile drainage can benefit crop production by removing excess soil water but tile drainage may also aggravate herbicide and nutrient movement into surface waters. Water management of tile drains after planting may reduce tile drainage and thereby reduce herbicide losses to surface water. To test this hypothesis we calculated the loss of three herbicides from a field with three water management systems: free drainage (D), controlled drainage (CD), and controlled drainage with subsurface irrigation (CDS). The effect of water management systems on the dissipation of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine), metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazine-5(4H)-one), and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] in soil was also monitored. Less herbicide was lost by surface runoff from the D and CD treatments than from CDS. The CDS treatment increased surface runoff, which transported more herbicide than that from D or CD treatments. In one year, the time for metribuzin residue to dissipate to half its initial value was shorter for CDS (33 d) than for D (43 d) and CD (46 d). The half-life of atrazine and metolachlor were not affected by water management. Controlled drainage with subsurface irrigation may increase herbicide loss through increased surface runoff when excessive rain is received soon after herbicide application. However, increasing soil water content in CDS may decrease herbicide persistence, resulting in less residual herbicide available for aqueous transport.  相似文献   

16.
Increasing demand for global food production is leading to greater use of irrigation to supplement rainfall and enable more intensive use of land. Minimizing adverse impacts of this intensification on surface water and groundwater resources is of critical importance for the achievement of sustainable land use. In this paper we examine the linkages between irrigation runoff and resulting changes in quality of receiving surface waters and groundwaters in Australia and New Zealand. Case studies are used to illustrate impacts under different irrigation techniques (notably flood and sprinkler systems) and land uses, particularly where irrigation has led to intensification of land use. For flood irrigation, changes in surface water contaminant concentrations are directly influenced by the amount of runoff, and the intensity and kind of land use. Mitigation for flood irrigation is best achieved by optimizing irrigation efficiency. For sprinkler irrigation, leaching to groundwater is the main transport path for contaminants, notably nitrate. Mitigation measures for sprinkler irrigation should take into account irrigation efficiency and the proximity of intensive land uses to sensitive waters. Relating contaminant concentrations in receiving groundwaters to their dominant causes is often complicated by uncertainty about the subsurface flow paths and the possible pollutant sources, viz. drainage from irrigated land. This highlights the need for identification of the patterns and dynamics of surface and subsurface waters to identify such sources of contaminants and minimize their impacts on the receiving environments.  相似文献   

17.
Efficiency in the use of water for irrigation is normally defined in a physical sense - engineering and agronomic; and it is often assumed that higher efficiency is desirable. However, in an economic sense, there is an optimum range in the level of physical efficiency. Normally it can be said that as water prices increase, it becomes more rational to increase physical efficiency by selecting and adopting improved methods of controlling, measuring and applying water, and to design systems of pricing and regulations that will promote optimal allocation and efficient use. However, the value of water is often extremely low, in which case there may be little economic incentive to improve physical efficiency unless forced by physical factors that affect production and productivity such as soil characteristics, waterlogging or nutrient leaching.
The combination of regulations and prices that are used to allocate irrigation water reflect the conflicting goals of redistribution of income in favor of agriculture and needs to encourage efficient use of water. Regulations and pricing systems also depend on the value of water, the dependability of supplies, systems of delivery and the extent to which flows can be regulated.
Using examples and case studies, this paper discusses physical and economic efficiencies and their interrelationships. It emphasizes the role of pricing and regulations and provides general guidelines.  相似文献   

18.
ABSTRACT Alternative combinations of water pricing and regulations are possible in allocating irrigation water. The best combination will depend on the value of water, ability to control deliveries, desire to subsidize agriculture, ownership traditions, crops grown, return flows, drainage problems, staff training, ability to collect fees, the number of farmers involved, etc. Marginal cost pricing is just one possible alternative and it is more a way of thinking about prices rather than a set system. The possibilities for achieving an equitable and efficient distribution of water are improved if some form of marginal cost pricing is included in the system of water charges.  相似文献   

19.
农业非点源污染目前已成为全球水污染的主要来源。对我国农业非点源污染成因的分析表明:农药、化肥的大量使用,不同灌溉方式、生产生活废弃物和规模化畜禽养殖等与农业非点源污染的形成之间均有密切的关系,应从农田径流控制、小流域综合治理、发展生态农业等方面开展农业非点源污染防治。实施农田养分最佳管理技术、开发农业非点源污染管理应用软件、完善农业生态补偿机制将成为我国农业非点源污染研究的发展趋势。  相似文献   

20.
ABSTRACT Past prices of Colorado-Big Thompson water shares were analyzed using an asset pricing model which incorporated the growth rate in real returns to irrigation water and the value of potential urban water uses. A real growth rate in the returns to irrigation water was estimated at 5.3 percent. Nevertheless, market values for water shares have exceeded capitalized agricultural values since 1969. Historically, urban use potential was heavily discounted, but the implicit discount rate fell rapidly in the last decade. The expectation that water shares will eventually be sold to municipal or industrial consumers now appears to be reflected fully in water prices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号