首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 575 毫秒
1.
Four populations of the predatory gastropodNucella lapillus were sampled at sites around the South West Peninsula of England in 1986, and analysed for allozyme variation at 18 enzyme loci. Two of these loci, Gpd-1 andHk-1, exhibited sex-specific phenotypes. An absolute locus association was observed between two other loci,Mdh-1 andEst-3. This association was only found at one site (Prawle), and it is suggested that the presence of chromosomal polymorphisms could explain this finding. As a measure of overall similarity, Nei's genetic identity statistic,I, was calculated; the mean for all populations was 0.989, with values ranging from 0.981 to 0.997. Although similar on this gross level, considerable interpopulation variation was evident. Observed mean heterozygosity (per locus) ranged from 0.043 to 0.104 (mean 0.074). Populations differed also in the loci at which significant heterozygote deficits were seen (of the seven deficits recorded only those at thePep-1 locus were consistent across sites) and in the presence of rare alleles undetected elsewhere. The variation observed showed no correlation to shell morphology or geographical distance and confirmed the conclusion that species of the genusNucella show considerable disjunct variation.  相似文献   

2.
Although the genetic structure of many populations of marine organisms show little deviation from panmixia, in those marine species with limited larval dispersal, patterns of microgeographic genetic differentiation may be common. The octocoral Briareum asbestinum should show local population differentiation because colonies reproduce asexually by fragmentation, most matings occur between colonies in very close proximity, and the sexually produced larvae and sperm appear to disperse only short distances. Variability in secondary chemistry of individual B. asbestinum colonies from different populations in close proximity also suggests local population differentiation. We determined the genetic composition of local populations by surveying allozyme variation of three shallow and two deep populations within a 300 m2 area at San Salvador Island, Bahamas and at a site 161 km away on Little San Salvador, Bahamas in July 1990. As B. asbestinum occurs as either an erect branching form or an encrusting mat often at the same sites, we sampled both morphs to examine the extent of genetic exchange between them. Five of 21 loci were polymorphic and most populations showed a deficit of heterozygotes. Allele frequencies differed significantly between morphs at each site where they occurred together. The mean genetic distance (D=0.065) between morphs is consistent with the interpretation that the two morphs are genetically isolated. Despite the close spatial proximity of the San Salvador populations, both the branching and encrusting morphs showed significant genetic heterogeneity among neighboring populations. Similarly, pooled allelic frequencies for samples collected from the islands of San Salvador and Little San Salvador differed significantly at 1 locus for the branching morph and at 3 out of 5 loci for the encrusting morph.  相似文献   

3.
Genetic differentiation and genetic variability of sporophytic and gametophytic populations of Gelidium arbuscula (Bory) from three localities sampled in 1989 and 1990 in the Canary Islands (Spain) were examined by isozyme electrophoresis. Twenty-three to 29 putative alleles corresponding to 22 gene loci, were compared. High deviations in Hardy-Weinberg equilibrium, and significant differences between allelic frequencies of sporophytic and gametophytic subpopulations at the same locality were found, suggesting a predominant asexual reproduction of G. arbuscula. The genetic variability (percentage of polymorphic loci, mean number of alleles per locus and average gene diversity) of haploid subpopulations was lower than that of diploid subpopulations at all three localities, being the lowest described for seaweeds. No correlation between genetic and geographical distance was found. The high genetic differentiation coefficient between all subpopulations suggests a very reduced genetic flow between subpopulations of the same and of different localities. These results suggest that the genetic structure of the populations of G. arbuscula from the Canary Islands is due to a founder-effect combined with a predominance of asexual reproduction. This is the first report comparing allelic frequencies between sporophytic and gametophytic subpopulations of seaweeds.  相似文献   

4.
Biochemical genetic variation provided evidence for the mode of reproduction of brooded young in the sea anemone Epiactis prolifera Verrill, 1869. Individuals of E. prolifera are female when small but hermaphroditic when large (i.e., gynodioecious); juveniles are brooded externally on the column. Brooding individuals collected from 6 intertidal sites (5 in central California and 1 in Washington State, USA) in the spring and summer of 1980 were assayed for gene-enzyme variation by starch-gel electrophoresis. Three of 12 enzyme loci were polymorphic; phosphoglucose isomerase appeared to be encoded by two, closely linked loci. Genotypic frequencies deviated markedly from expected random mating proportions. Only three heterozygotes were found; two were heterozygous at all three polymorphic loci, and the other was polymorphic at the two PGI loci. All 158 juveniles from 25 brooding individuals were assayed (2–19 juveniles per parent). Juveniles on homozygous adults were always identical to their parent. However, brooded young of heterozygous individuals were not identical to their parent. but showed 1:2:1 phenotypic segregation ratios consistent with reproduction by self-fertilization. This genetic evidence together with findings of marked heterozygote deficiencies and genetic identity of homozygous adults and their brooded young supports the conclusion that E. prolifera usually reproduces by self-fertilization, and cross-fertilization is rate.  相似文献   

5.
Gene flow between populations of the asteroid Linckia laevigata (Linnaeus) was investigated by examining over 1000 individuals collected from ten reefs throughout the Great Barrier Reef (GBR), Australia, for genetic variation at seven polymorphic enzyme loci. Despite geographic separations in excess of 1000 km, Nei's unbiased genetic distance (0 to 0.003) and standardised genetic variation between populations (F ST) values (mean 0.0011) were small and not significant. Genetic homogeneity among L. laevigata populations is consistent with the long-distance dispersal capability of its 28 d planktonic larval phase, and is greater than that observed for other asteroid species, including another high-dispersal species, Acanthaster planci, which has a 14 d larval phase. Variation within populations was also higher than previously recorded for asteroids (mean heterozygosity=0.384; number of alleles per locus ranged from 5.1 to 6.0 in each population). Among asteroids, dispersal ability is positively correlated with gene flow and levels of variation, and negatively correlated with levels of differentiation.  相似文献   

6.
The Greater Sudbury region in Northern Ontario is known as one of Canada's most ecologically disturbed regions because of the effects of heavy metal pollution. The main objectives of the present study were to assess the effects of soil liming of sites contaminated with metals on species richness and abundance, forest health in general, and to determine the level of genetic variability in white birch populations from Northern Ontario. Shannon-Wiener diversity index and tree species richness values were higher in populations from limed and control sites compared to the unlimed areas. A significant improvement in forest population health (measured using a scale of 1 to 10) in limed sites over the unlimed areas was observed. Key results revealed no significant difference for metal content in white birch (Betula papyrifera) leaves from limed compared to unlimed sites. But higher levels of Al, Ca, Mg, Mn, Ni, Sr, and Zn in leaves compared to the bioavailable amount in soil were observed. The levels of genetic variability in white birch populations were moderate to high, ranging from 30% to 79% of polymorphic loci. A high level of genetic variability such as observed in the present study is usually associated with long term sustainability in plant populations. No association was found between metal accumulation in soil or plants and the levels of genetic variation.  相似文献   

7.
Allozyme electrophoresis of two corals was used to assess whether populations at Ningaloo Reef, Western Australia are primarily self-seeding or whether recruitment is from a broader geographic pool. Significant genetic subdivision across a range of spatial scales (between 6.5 km and 155 km) was found for both Acropora digitifera and A. aspera, with mean F ST values of 0.010 and 0.067 respectively. Large departures from Hardy-Weinberg expectations were found for both species. Without exception these were due to deficits of heterozygotes; mean D values were –0.341 for A. digitifera and –0.455 for A. aspera. The magnitude of the deficits was consistent both across loci for all sites and across all sites for each locus. Some loci were found to be in linkage disequilibrium but no consistent pattern was observed. Also, multi-locus genotypic diversity values were generally high (between 0.83 and 1.00) and so departures from equilibria cannot be attributed to asexual reproduction. The most plausible explanation for the patterns observed is restricted gene flow at both the planktonic and gametic stages, with mating between close relatives.Communicated by G.F. Humphrey, Sydney  相似文献   

8.
Horizontal starch gel electrophoresis was employed to investigate levels of genetic differentiation between 13 samples of the neritic squid species Loligo forbesi Steenstrup obtained from throughout the majority of its known geographical range. Six enzyme loci identified in a preliminary study as being polymorphic were screened for variation between samples. No significant differences in allele distribution were detected between any of the samples obtained from the Faroe Bank in the north to Lisbon in the south, suggesting that squid throughout this range in the vicinity of the continental shelf are able to maintain panmixia, and effectively belong to a single population sharing a common gene pool. No clinal variation in allele distribution was detected throughout this range, a result which complements the findings of a detailed morphological companion study of the same individuals. Comparison of this homogenous European continental shelf population with squid from the Azores revealed highly significant (P<0.01) differences in allele distribution at five of the six polymorphic enzyme loci studied. A genetic identity value (I) equivalent to 0.93 over 33 loci was obtained. Analysis of F-statistics suggested migration rates between sites to be as low as one individual per five generations, a rate deemed insufficient under most models to prevent divergence by random genetic drift. The large distance and oceanic depths separating the Azores from continental Europe seem to present an effective barrier to gene flow to L. forbesi, a squid belonging to a family considered to be confined in distribution to relatively shallow, near coastal waters. The two populations of squid in the Azores and along the European continental shelf currently both ascribed to L. forbesi should therefore probably best be regarded as relative subspecies.  相似文献   

9.
Samples of an intertidal zoanthid, Zoanthus coppingeri, Haddon and Shackelton, 1891, were collected from three localities in the Great Barrier Reef region during 1992–1993, and subjected to allozyme electrophoretic analysis at seven polymorphic loci. The reduced ratio of observed to expected genotypic diversity indicated that populations were partly clonal, but they were not dominated by a few clones as occurs in some other cnidarians. Regular disturbance by wave action is postulated to prevent the formation of large stands of particular clones by clearing space and mixing genotypes over small scales. The sexual origin of clonal genotypes was confirmed by conformance to Hardy-Weinberg predictions of genotype frequencies at all but one locus. Values of the standardised genetic variance among populations, F ST , were highly significant between localities and between replicate sites within localities separated by only 50 m. Strong genetic structure has not previously been described in a Great Barrier Reef invertebrate species, and is considered to be the consequence of stochastic changes in gene frequencies as a result of low levels of gene flow. High clonal longevity and low recruitment rates may maintain genetic differences over long periods. Similar effects may be seen in other Great Barrier Reef invertebrate species with comparable reproductive patterns.  相似文献   

10.
Sponges of three morphotypes of Suberites ficus (Johnston, 1842) were collected during February and March 1985 off the south-west of the Isle of Man, and were compared by using spicule size distributions and genetic allele frequencies of isozyme loci. The populations did not show any significant differences of spicule size or type, but could be easily differentiated into three separate species based on isozyme patterns. Samples of pale orange S. ficus growing on gastropod shells inhabited by hermit crabs (Pagurus spp.) were reproductively isolated from the redorange and the pale yellow colour morphs encrusting the bivalve Chlamys opercularis. These latter two colour morphs were genetically similar, but significant differences were observed at two of the 19 gene loci assayed. All the sponges studied were sympatric, and therefore the genetic differences, indicating reproductive isolation, are strong evidence for separate gene pools and, hence, that they are different species. The genetic identity between the two colour morphs of S. ficus on C. opercularis shells was 0.977, whilst between each of these and S. ficus on hermit crabs it was about 0.65. In all three species genetic variability was high, with mean expected and observed heterozygosity values per locus ranging from 0.17 to 0.36.  相似文献   

11.
Five polymorphic microsatellite loci were developed and then used to assess the population genetic structure of a commercially harvested merobenthic octopus species (Octopus maorum) in south-east Australian and New Zealand (NZ) waters. Beak and stylet morphometrics were also used to assess population differentiation in conjunction with the genetic data. Genetic variation across all loci and all sampled populations was very high (mean number alleles = 15, mean expected heterozygosity = 0.85). Microsatellites revealed significant genetic structuring (overall F ST = 0.024, p < 0.001), which did not fit an isolation-by-distance model of population differentiation. Divergence was observed between Australian and NZ populations, between South Australia and north-east Tasmania, and between two relatively proximate Tasmanian sites. South Australian and southern Tasmanian populations were genetically homogeneous, indicating a level of connectivity on a scale of 1,500 km. Morphometric data also indicated significant differences between Australian and NZ populations. The patterns of population structuring identified can be explained largely in relation to regional oceanographic features.  相似文献   

12.
Stock heterogeneity was investigated in albacore tuna (Thunnus alalunga, Bonnaterre 1788), a commercially important species in the North Atlantic Ocean and Mediterranean Sea. Twelve polymorphic microsatellite loci were examined in 581 albacore tuna from nine locations, four in the north-east Atlantic Ocean (NEA), three in the Mediterranean Sea (MED) and two in the south-western Pacific Ocean (SWP). Maximum numbers of alleles per locus ranged from 9 to 38 (sample mean, 5.2–22.6 per locus; overall mean, 14.2 ± 0.47 SE), and observed heterozygosities per locus ranged from 0.44 to 1.00 (overall mean: 0.79 ± 0.19 SE). Significant deficits of heterozygotes were observed in 20% of tests. Multilocus F ST values were observed ranging from 0.00 to Θ = 0.036 and Θ′ = 0.253, with a mean of Θ = 0.013 and Θ′ = 0.079. Pairwise F ST values showed that the SWP, NEA and MED stocks were significantly distinct from one another, thus corroborating findings in previous studies based on mitochondrial DNA, nuclear DNA (other than microsatellites) and allozyme analyses. Heterogeneity was observed for the first time between samples within the Mediterranean Sea. GENELAND indicated the potential presence of three populations across the NEA and two separate populations in the Mediterranean Sea. Observed genetic structure may be related to migration patterns and timing of movements of subpopulations to the feeding grounds in either summer or autumn. We suggest that a more intensive survey be conducted throughout the entire fishing season to ratify or refute the currently accepted genetic homogeneity within the NEA albacore stock.  相似文献   

13.
Individuals of Mytilus edulis of the same age (ca 2 months) were collected as spat from natural populations. Relative growth rates were determined among individuals differing in heterozygosity at five enzyme loci. Growth rate was positively correlated with individual heterozygosity and each of the five loci contributed about equally to the relatinship. More heterozygous individuals also achieved more uniform average growth rates. Although there was a deficiency of heterozygotes at each locus, relative to Hardy-Weinberg expectations, the magnitude of the deficiency, measured as FIS, was less among faster growing mussels. Our results conform closely with those of Zouros et al. (1980) on the American oyster. We conclude that the relationship between multiple locus heterozygosity and growth rate is one that is general to a diversity of outbreeding plant and animal populations. Other studies indicate that this relationship is due to a greater average metabolic efficiency of more heterozygous individuals. This relationship does not emerge from experimental designs in which there has been limited genetic sampling of the natural genetic variation.  相似文献   

14.
This paper reports data on 28 allozyme loci in wild and artificially reared sea bass (Dicentrarchus labrax) samples, originating from either coastal lagoon or marine sites in the Mediterranean Sea. F ST analysis (θ estimator) indicated strong genetic structuring among populations; around 34% of the overall genetic variation is due to interpopulation variation. Pairwise θ estimates showed that, on average, the degree of genetic structuring was much higher between marine populations than between samples from lagoons. Six polymorphic loci showed differences in allele frequencies between marine and lagoon samples. Multivariate analyses of individual allozymic profiles and of allele frequencies suggested that different arrays of genotypes prevail in lagoons compared to marine samples, particularly at those loci that, on the basis of previous acclimation experiments, had been implicated in adaptation to freshwater. On the other hand, variation at “neutral” allozyme loci reflects to a greater extent the geographic location of populations. Allozyme differentiation was also studied in a D. labrax population from the Portuguese coast. Average genetic distance between this population and the Mediterranean populations was quite high (Nei's D = 0.236) and calls into question the taxonomic status of the Portuguese population. Finally, genetic relationships between D. labrax and D. punctatus were evaluated. Average Nei's D was 0.648, revealing high genetic differentiation between the two species, even for two sympatric populations of these species in Egypt; thus gene flow was not indicated between species. Received: 24 October 1996 / Accepted: 27 November 1996  相似文献   

15.
Planktonic populations of the calanoid copepod Labidocera aestiva show significant biochemical genetic heterogeneity along the Atlantic coast of the USA. In summer, 1981, copepods were collected by surface tows at Beaufort Inlet, North Carolina; Fort Pierce Inlet, Florida; and Vineyard Sound, Massachusetts. Genetic variation within each population and genetic differentiation among the three populations were studied by micro-acrylamide gel electrophoresis of six loci encoding four enzymes. All six enzyme loci were polymorphic when all populations were considered together, but the North Carolina population was monomorphic at two loci. High genetic variability was indicated by the following: (1) the number of alleles per locus averaged over all loci was 2.57±0.26 SD; (2) the average proportion of loci for which the frequency of the most common allele was not greater than 0.95 was 0.78±0.10; (3) the frequency of heterozygous individuals was 0.25±0.07. Genetic differentiation among population samples in the three regions was demonstrated in several ways: allele frequencies at one aminopeptidase-I locus, Lap-1, differed significantly among samples of the three populations, and there were unique alleles of high frequency at this locus in two population samples. Values of the statistic of genetic distance (D) averaged 0.20±0.08 for pairwise comparisons between all samples. Compared to expected heterozygosity if individuals across the entire range sampled mated at random, there were highly significant heterozygote deficiencies at five of the six loci. Genetic differentiation of populations of L. aestiva may result from (1) differential selection on populations in the three regions, or (2) restricted gene flow between the populations. Gene flow may be limited by geographic separation or differences in life history, such as seasonal presence in the plankton and diapause egg production.Contribution No. 5810 of Woods Hole Oceanographic Institution  相似文献   

16.
Chaotic genetic patchiness in an intertidal limpet,Siphonaria sp.   总被引:5,自引:0,他引:5  
Variation of 4 polymorphic enzymes was studied for 2 yr (1978 and 1979) in an undescribed species of Siphonaria, a pulmonate limpet, from a rocky shore at Rottnest Island, Western Australia. Depending on the locus, significant genetic differences were found among sites along 50 m of shore, between high and low portions of the shore within sites, between adults and recruits, and between recruits in the 2 yr. This genetic heterogeneity does not follow a simple, consistent pattern, but forms a shifting, ephemeral genetic patchiness best described as chaotic. This patchiness may result from temporal variation of numbers and genotypes of recruits, which leads to the proposal that planktonic dispersal, although causing uniformity on a large scale, can give rise to fine-scale genetic patchiness.  相似文献   

17.
Five populations of the bathyal trochid gastropod Bathybembix bairdii (Dall) taken from depths of 579 to 1156 m in the Southern California Continental Borderland were surveyed for levels of genetic variability at 18 presumptive gene loci, using techniques of starch gel electrophoresis. All the populations were highly similar genetically; none of the populations possessed unique alleles. Four of 5 polymorphic loci scored in all the populations displayed statistically significant heterogeneity of allelic frequencies among stations. Only the diallelic fumarase (FUM) locus displayed a trend with depth. The geographic and depth patterns of the genetic variability in these populations do not support the hypothesis that the high levels of genetic variability observed in bathyal populations are an artifact of gene flow between populations differentiated with depth. The 16.2% of the loci heterozygous per individual of B. bairdii is of the same order as the average heterozygosities reported for other deep-sea invertebrate taxa. These reports of high genetic variability in a physically constant and seasonless environment are reviewed and discussed in the context of the trophic-stability hypothesis of Ayala and Valentine and the time, size and divergence hypothesis of Soulé. Evidence is presented that despite the observed correlation of average heterozygosities in benthic marine invertebrates with seasonality of the trophic regime, this is not apparent for an enzyme system (leucine amino peptidase) which might be expected to display this trend if it reflected a genetic strategy to cope with trophic seasonality. The time, size and divergence hypothesis, focusing on population size, accounts for the general features of levels of genetic variability in deep-sea invertebrates.  相似文献   

18.
Genetic diversity and genetic structure in a population of the brown seaweed Halidrys dioica Gardner were evaluated in five sites in southern California, USA, in 1991, using isozyme electrophoresis. H. dioica is relatively long-lived and has an outcrossing mating system and floating reproductive fronds with the potential for longdistance gamete dispersal. Because these characteristics are hypothetically important in determining genetic diversity and structure, we predicted that genetic diversity would be high and genetic structure would be exhibited only at relatively large geographic scales in H. dioica populations. The data were consistent with the prediction: genetic diversity (% polymorphic loci, no. of alleles/locus, average expected heterozygosity) was high compared to that of other seaweed species. Genetic structure (Wright's F statistics, Nei's genetic distance, point-pattern analysis of alleles) was low within and among distinct rocky reefs over 4 km of coast but high in subpopulations separated by 90 km. Life-history characteristics may be useful predictors of genetic diversity and structure in seaweed populations, but information on selection regimes, long-distance dispersal, and the extent of clonal propagation, for example, are critically lacking.  相似文献   

19.
Populations of the sea anemone Metridium senile (L.) were sampled from several locations in eastern North America in two series, one collected from 1977–1979 and the other from 1981–1985. Fourteen populations were sampled twice at one- to six-year intervals. Samples were analyzed for temporal differences in genetic composition at both the single locus and multiple locus levels. Overall patterns of geographic variation in allele frequency did not change between series. Regressions describing clines did not differ significantly, and loci not showing clinal variation in the first series remained similar in the second. Analysis of populations sampled twice produced no systematic evidence of change in allele frequency with time for any of four polymorphic loci. Comparisons with computer simulations of repeated sampling of multiple locus genotypes from panmictic populations with free recombination also revealed little temporal change at this level. One population showed possible evidence of recruitment from a different gene pool. Other significant departures from expectations reflected more reproducibility of genotype distributions between samples than expected for sexual populations. This excess stability likely results jointly from clonal reproduction and little sexual recruitment. Despite these indications of genetic stability in adult populations, newly settled juveniles were genetically different from resistant adults in one population, demonstrating the potential for genetic change by immigration. Successful sexual recruitment seems to be rare, even though larvae regularly settle from the plankton. Although interpretation of these results is somewhat limited by lack of knowledge of longevities and generation times, to the extent that they reflect longer-term trends, they suggest that at least some of the observed patterns of geographic variation in allele frequency probably result from natural selection.  相似文献   

20.
Samples of Siphonaria sp. were collected between 1978 and 1982 from sites covering its known geographic range, from Kalbarri, Western Australia to Port Robe, South Australia. Geographic variation of 7 polymorphic enzymes was examined in this intertidal pulmonate limpet, and was found to be consistently small, indicating a large-scale influence of gene flow due to planktonic dispersal. Despite this large-scale uniformity, there is fine-scale genetic patchiness, which is repeated, rather than accumulated, on the larger scale. Throughout its geographic range, Siphonaria sp. shows deficits of heterozygotes for all 7 loci. The consistency among loci indicates that the causes of the deficits are populational, rather than locus-specific. A Wahlund effect, the departure from Hardy-Weinberg equilibrium due to mixing of individuals from groups with different allelic frequencies, is the simplest explanation of such deficits. The limited geographic variation of allelic frequencies, however, is grossly inadequate to produce these deficits through a Wahlund effect. Similarly, temporal variation in allelic frequencies in recruits does not explain the deficits. The largest contributor to a Wahlund effect appears to be binomial sampling variance among small local breeding groups. Thus, mixing of larvae on a scale of metres, rather than among geographical areas, apparently produces the deficits of heterozygotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号