首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antimony (Sb) distribution, solubility and mobility onto natural soils of China were studied in lysimeter and batch experiments as a function of physicochemical properties of the soil. An outdoor lysimeter experiment investigated the leaching and migration of Sb in the soils with Sb-polluted topsoil and unpolluted subsoil over a 5 month period. Soil solutions were collected by suction cups installed at different depth of lysimeters, and leachates were regularly collected and analyzed for Sb concentrations. The majority of the added Sb was retained in the topsoil layers, but small portions were moved to the sub-layers. Sb concentrations in the soil solutions and leachates ranged from 0–755.5 (6.38 ± 54 on average) μg l−1 and 0–0.45 (smaller than the detection limit) μg l−1 respectively, indicating the low solubility of Sb in the soils. Batch experiments were performed in order to determine the sorption capacity and the partition coefficient (Kd). Freundlich isotherm described properly the equilibrium experimental data and results show that the Kd values for Primosol, Isohumosol, Ferrosol equal to 22.5, 87.8, 704 L kg−1, respectively. These results showed the strong capacity of the soils to retain Sb, and prevent it being leached down the profile. The mobilizable Sb was in the order: Primosol > Isohumosol > Ferrosol. Sb migration in the soils was mainly associated with the exchangeable, carbonate-bound, and metal–organic complex-bound fractions. Health risk assessment indicates that Sb leaching from Ferrosol will not harm to human health through groundwater under the test conditions, while it has certain health risks from the Isohumosol and Primosol.  相似文献   

2.
Five organic matters, three phosphate compounds, zerovalent iron grit (ZVIG, 2% by soil weight), two alkaline compounds, and two commercial formulations were incorporated, singly and some combined with ZVIG, into a highly Cu-contaminated topsoil (Soil P7, 2600 mg Cu kg−1) from a wood treatment facility. Formulations and two composts were also singly incorporated into a slightly Cu-contaminated topsoil (Soil P10, 118 mg Cu kg−1) from the facility surrounding. This aimed to reduce the labile pool of Cu and its accumulation in beans cultivated on potted soils in a climatic chamber. Lowest Cu concentration in soil solution occurred in P7 soils amended with activated carbon (5%) and ZVIG, singly and combined. Basic slag (3.9%) and compost of sewage sludge (5%) combined with ZVIG promoted shoot production and limited foliar Cu accumulation. For amended P10 soils, no changes occurred in soil solution and foliar Cu concentrations, but one compost increased shoot production.  相似文献   

3.
An iron-rich water treatment residue (WTR) consisting mainly of ferrihydrite was used for immobilization of arsenic and chromium in a soil contaminated by wood preservatives. A leaching batch experiment was conducted using two soils, a highly contaminated soil (1033 mg kg−1 As and 371 mg kg−1 Cr) and slightly contaminated soil (225 mg kg−1 As and 27 mg kg−1 Cr). Compared to an untreated reference soil, amendment with 5% WTR reduced leaching in the highly contaminated soil by 91% for Cr and 98% for As. No aging effect was observed after 103 d. In a small field experiment, soil was mixed with 2.5% WTR in situ. Pore water was extracted during 3 years from the amended soil and a control site. Pore water arsenic concentrations in the amended soil were more than two orders of magnitude lower than in the control for the upper samplers. An increased release of arsenic was observed during winter in both fields, mostly in the deepest samplers. This is likely due to the formation of a pseudo-gley because of precipitation surplus. Stabilization of arsenic and chromium contaminated soil using WTR is a promising method but the transformation of ferrihydrite in soil proves a concern in case of waterlogged soils. Still the amendment minimized the leaching of arsenic, even in cases of seasonal releases.  相似文献   

4.
Usman AR  Lee SS  Awad YM  Lim KJ  Yang JE  Ok YS 《Chemosphere》2012,87(8):872-878
In recent decades, heavy metal contamination in soil adjacent to chromated copper arsenate (CCA) treated wood has received increasing attention. This study was conducted to determine the pollution level (PL) based on the concentrations of Cr, Cu and As in soils and to evaluate the remediative capacity of native plant species grown in the CCA contaminated site, Gangwon Province, Korea. The pollution index (PI), integrated pollution index (IPI), bioaccumulation factors (BAFshoots and BAFroots) and translocation factor (TF) were determined to ensure soil contamination and phytoremediation availability. The 19 soil samples from 10 locations possibly contaminated with Cr, Cu and As were collected. The concentrations of Cr, Cu and As in the soil samples ranged from 50.56-94.13 mg kg−1, 27.78-120.83 mg kg−1, and 0.13-9.43 mg kg−1, respectively. Generally, the metal concentrations decreased as the distance between the CCA-treated wood structure and sampling point increased. For investigating phytoremediative capacity, the 19 native plant species were also collected in the same area with soil samples. Our results showed that only one plant species of Iris ensata, which presented the highest accumulations of Cr (1120 mg kg−1) in its shoot, was identified as a hyperaccumulator. Moreover, the relatively higher values of BAFshoot (3.23-22.10) were observed for Typha orientalis, Iris ensata and Scirpus radicans Schk, suggesting that these plant species might be applicable for selective metal extraction from the soils. For phytostabilization, the 15 plant species with BAFroot values > 1 and TF values < 1 were suitable; however, Typha orientalis was the best for Cr.  相似文献   

5.
Szopka K  Karczewska A  Kabała C 《Chemosphere》2011,83(11):1507-1512
The study was aimed to examine total concentrations and pools of Hg in surface layers of soils in the Karkonosze Mountains, dependent on soil properties and site locality. Soil samples were collected from a litter layer and the layers 0-10 cm and 10-20 cm, at 68 sites belonging to the net of a monitoring system, in two separate areas, and in three altitudinal zones: below 900 m, 900-1100 m, and over 1100 m. Air-borne pollution was the major source of mercury in soils. Hg has accumulated mainly in the litter (where its concentrations were the highest), and in the layer 0-10 cm. Hg concentrations in all samples were in the range 0.04-0.97 mg kg−1, with mean values 0.38, 0.28, and 0.14 mg kg−1 for litter and the layers 0-10 cm and 10-20 cm, respectively. The highest Hg concentrations in the litter layer were found in the intermediate altitudinal zone, whereas Hg concentrations in the layer 0-10 cm increased with increasing altitude. Soil quality standard for protected areas (0.50 mg kg−1) was exceeded in a few sites. The pools of Hg accumulated in soils were in the range: 0.8-84.8 mg m−2, with a mean value of 16.5 mg m−2, and they correlated strongly with the pools of stored organic matter.  相似文献   

6.
Guo H  Yao J  Cai M  Qian Y  Guo Y  Richnow HH  Blake RE  Doni S  Ceccanti B 《Chemosphere》2012,87(11):1273-1280
The influence of petroleum contamination on soil microbial activities was investigated in 13 soil samples from sites around an injection water well (Iw-1, 2, 3, 4) (total petroleum hydrocarbons (TPH): 7.5-78 mg kg−1), an oil production well (Op-1, 2, 3, 4, 5) (TPH: 149-1110 mg kg−1), and an oil spill accident well (Os-1, 2, 3, 4) (TPH: 4500-34 600 mg kg−1). The growth rate constant (μ) of glucose stimulated organisms, determined by microcalorimetry, was higher in Iw soil samples than in Op and Os samples. Total cultivable bacteria and fungi and urease activity also decreased with increasing concentration of TPH. Total heat produced demonstrated that TPH at concentrations less than about 1 g kg−1 soil stimulated anaerobic respiration. A positive correlation between TPH and soil organic matter (OM) and stimulation of fungi-bacteria-urease at low TPH doses suggested that TPH is bound to soil OM and slowly metabolized in Iw soils during OM consumption. These methods can be used to evaluate the potential of polluted soils to carry out self-bioremediation by metabolizing TPH.  相似文献   

7.
Huang YT  Hseu ZY  Hsi HC 《Chemosphere》2011,84(9):1244-1249
Thermal treatment is a useful tool to remove Hg from contaminated soils. However, thermal treatment may greatly alter the soil properties and cause the coexisting contaminants, especially trace metals, to transform and repartition. The metal repartitioning may increase the difficulty in the subsequent process of a treatment train approach. In this study, three Hg-contaminated soils were thermally treated to evaluate the effects of treating temperature and duration on Hg removal. Thermogravimetric analysis was performed to project the suitable heating parameters for subsequent bench-scale fixed-bed operation. Results showed that thermal decontamination at temperature >400 °C successfully lowered the Hg content to <20 mg kg−1. The organic carbon content decreased by 0.06-0.11% and the change in soil particle size was less significant, even when the soils were thermally treated to 550 °C. Soil clay minerals such as kaolinite were shown to be decomposed. Aggregates were observed on the surface of soil particles after the treatment. The heavy metals tended to transform into acid-extractable, organic-matter bound, and residual forms from the Fe/Mn oxide bound form. These results suggest that thermal treatment may markedly influence the effectiveness of subsequent decontamination methods, such as acid washing or solvent extraction.  相似文献   

8.
Metal uptake and its effect on foliar metallothionein 2b (MT2b) mRNA levels were studied in hybrid aspen (Populus tremula × tremuloides) in field conditions. The trees were planted on a site contaminated with several metals, including cadmium (mean 5.1 mg kg−1), chromium (80 mg kg−1), copper (180 mg kg−1), nickel (81 mg kg−1), vanadium (240 mg kg−1) and zinc (520 mg kg−1). Of the ten trace elements analyzed, only Cd and Zn accumulated in the leaves with maximal foliar concentrations of 35 and 2400 mg kg−1 (dry weight), respectively. There was a strong correlation between Cd and Zn concentrations and bioaccumulation factors (concentration in plant/soil) in the leaves, branches and roots, suggesting similar transport mechanisms for these two metals. The levels of MT2b correlated with Cd and Zn concentrations in the leaves, demonstrating that increased MT2b expression is one of the responses of hybrid aspen to chronic metal exposure.  相似文献   

9.
Growth performance and heavy metal uptake by willow (Salix viminalis) from strongly and moderately polluted calcareous soils were investigated in field and growth chamber trials to assess the suitability of willow for phytoremediation. Field uptakes were 2-10 times higher than growth chamber uptakes. Despite high concentrations of cadmium (≥80 mg/kg) and zinc (≥3000 mg/kg) in leaves of willow grown on strongly polluted soil with up to 18 mg Cd/kg, 1400 mg Cu/kg, 500 mg Pb/kg and 3300 mg Zn/kg, it is unsuited on strongly polluted soils because of poor growth. However, willow proved promising on moderately polluted soils (2.5 mg Cd/kg and 400 mg Zn/kg), where it extracted 0.13% of total Cd and 0.29% of the total Zn per year probably representing the most mobile fraction. Cu and Pb are strongly fixed in calcareous soils.  相似文献   

10.
The main purpose of this work was to identify the role of soil humic acids (HAs) in controlling the behavior of Cu(II) in vineyard soils by exploring the relationship between the chemical and binding properties of HA fractions and those of soil as a whole. The study was conducted on soils with a sandy loam texture, pH 4.3-5.0, a carbon content of 12.4-41.0 g kg−1 and Cu concentrations from 11 to 666 mg kg−1. The metal complexing capacity of HA extracts obtained from the soils ranged from 0.69 to 1.02 mol kg−1, and the stability constants for the metal ion-HA complexes formed, log K, from 5.07 to 5.36. Organic matter-quality related characteristics had little influence on Cu adsorption in acid soils, especially if compared with pH, the degree of Cu saturation and the amount of soil organic matter.  相似文献   

11.
Lindstrom SM  White JR 《Chemosphere》2011,85(4):625-629
Treatment wetlands have a finite period of effective nutrient removal after which treatment efficiency declines. This is due to the accumulation of organic matter which decreases the capacity and hydraulic retention time of the wetland. We investigated four potential solutions to improve the soluble reactive P (SRP) removal of a municipal wastewater treatment wetland soil including; dry down, surface additions of alum or calcium carbonate and physical removal of the accreted organic soil under both aerobic and anaerobic water column conditions. The flux of SRP from the soil to the water column under aerobic conditions was higher for the continuously flooded controls (1.1 ± 0.4 mg P m−2 d−1), dry down (1.5 ± 0.9 mg P m−2 d−1) and CaCO3 (0.8 ± 0.7 mg P m−2 d−1) treatments while the soil removal and alum treatments were significantly lower at 0.02 ± 0.10 and −0.07 ± 0.02 mg P m−2 d−1, respectively. These results demonstrate that the two most effective management strategies at sequestering SRP were organic soil removal and alum additions. There are difficulties and costs associated with removal and disposal of soils from a treatment wetland. Therefore our findings suggest that alum addition may be the most cost effective and efficient means of increasing the sequestering of P in aging treatment wetlands experiencing reduced P removal rates. However, more research is needed to determine the longer term effects of alum buildup in the organic soil on the wetland biota, in particular, on the macrophytes and invertebrates. Since alum effectiveness is time limited, a longer term solution to P flux may favor the organic soil removal.  相似文献   

12.
Okorie A  Entwistle J  Dean JR 《Chemosphere》2012,86(5):460-467
The pseudo-total and oral bioaccessible concentration of six potentially toxic elements (PTEs) in urban street dust was investigated. Typical pseudo-total concentrations across the sampling sites ranged from 4.4 to 8.6 mg kg−1 for As, 0.2-3.6 mg kg−1 for Cd, 25-217 mg kg−1 for Cu, 14-46 mg kg−1 for Ni, 70-4261 mg kg−1 for Pb, and, 111-652 mg kg−1 for Zn. This data compared favourably with other urban street dust samples collected and analysed in a variety of cities globally; the exception was the high level of Pb determined in a specific sample in this study. The oral bioaccessibility of PTEs in street dust is also assessed using in vitro gastrointestinal extraction (Unified Bioaccessibility Method, UBM). Based on a worst case scenario the oral bioaccessibility data estimated that Cd and Zn had the highest % bioaccessible fractions (median >45%) while the other PTEs i.e. As, Cu, Ni and Pb had lower % bioaccessible fractions (median <35%). The pseudo-total and bioaccessible concentrations of PTEs in the samples has been compared to estimated tolerable daily intake values based on unintentional soil/dust consumption. Cadmium, Cu and Ni are well within the oral tolerable daily intake rates. With respect to As and Pb, only the latter exceeds the TDIoral if we model ingestion rate based on atmospheric ‘dustiness’ rather than the US EPA (2008) unintentional soil/dust consumption rate of 100 mg d−1. We consider it unlikely that even a child with pica tendencies would ingest as much as 100 mg soil/dust during a daily visit to the city centre, and in particular to the sites with elevated Pb concentrations observed in this study.  相似文献   

13.
Wu S  Xia X  Yang L  Liu H 《Chemosphere》2011,82(5):732-738
The concentration of PCBs in urban soils of Beijing across six land types including business districts (BD), cultural and educational areas (CE), classical gardens (CG), public green (PG), residential areas (RA), and roadsides (RD) was investigated. The total concentrations of PCBs ranged from below method detection limit (M.D.L.) to 37.11 × 10−3 mg kg−1 dry weight (mean: 11.70 × 10−3 mg kg−1; median: 13.28 × 10−3 mg kg−1), which was at a medium level compared with other cities around the world. In general, the levels of PCBs decreased from the center of Beijing city to the suburb, suggesting the increasing PCBs concentrations with the age of the urban area. For different types of land use, the highest level of PCBs was observed in CG soils which have the oldest age, and the homologue profiles were similar, which were predominated by lowly chlorinated congeners including di-, tri- and tetra-CBs. Principal component analysis indicated that local sources such as Aroclor 1016, 1242, and 1248 were important sources in addition to long-range transport of PCBs all over the world. Although the toxic equivalency (TEQ) concentrations of dioxin-like PCBs in all soil samples of Beijing were higher than those in other urban areas of China, they met the Canadian soil quality standard.  相似文献   

14.
Polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) were monitored over 56 days in calcareous contaminated-soil amended with either or both biochar and Eisenia fetida. Biochar reduced total (449 to 306 mg kg−1) and bioavailable (cyclodextrin extractable) (276 to 182 mg kg−1) PAHs, PAH concentrations in E. fetida (up to 45%) but also earthworm weight. Earthworms increased PAH bioavailability by >40%. Combined treatment results were similar to the biochar-only treatment. Earthworms increased water soluble Co (3.4 to 29.2 mg kg−1), Cu (60.0 to 120.1 mg kg−1) and Ni (31.7 to 83.0 mg kg−1) but not As, Cd, Pb or Zn; biochar reduced water soluble Cu (60 to 37 mg kg−1). Combined treatment results were similar to the biochar-only treatment but gave a greater reduction in As and Cd mobility. Biochar has contaminated land remediation potential, but its long-term impact on contaminants and soil biota needs to be assessed.  相似文献   

15.
Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils   总被引:1,自引:0,他引:1  
Lin W  Xiao T  Wu Y  Ao Z  Ning Z 《Chemosphere》2012,86(8):837-842
A field survey was conducted to identify potential Zn accumulators from an artisanal Zn smelting area in southwest China’s Guizhou Province. Hydroponic and soil culture experiments were performed to investigate the accumulation ability of Zn in Corydalis davidii. Zn concentrations in roots, stems and leaves of C. davidii in the smelting site were 1.1-3.5, 1.2-11.2, and 3.3-14 mg g1, respectively, whereas Zn concentrations in roots, stems and leaves of C. davidii in the contaminated site impacted by the Zn smelting were 1.0-2.4, 1.9-6.5, and 3.0-1.1 mg g−1, respectively. Zn concentrations in leaves and stems of C. davidii were observed at above 10 mg g−1 that refers to the threshold of Zn hyperaccumulator. The concentration distribution of Zn in C. davidii was leaf > stem > root, and the Zn bioaccumulation factors of C. davidii were above 1. It is concluded that C. davidii has high tolerance to concentrate Zn stress, and that C. davidii is a newly discovered Zn-hyperaccumulator with high biomass in the aboveground parts. Based on the cultivation experiments, C. davidii could reduce Zn concentration by 26.6, 21.2, and 10.2 mg kg−1yr−1 by phytoextraction from the smelting slag, Zn-contaminated soil, and background soil, respectively.  相似文献   

16.
Lindane removal by pure and mixed cultures of immobilized actinobacteria   总被引:1,自引:0,他引:1  
Stereoselective dissipation of epoxiconazole had been studied in grape and soil during plant growing under field conditions in this paper. A sensitive and rapid chiral method was developed and validated for the determination of epoxiconazole stereoisomers in grape and soil based on liquid chromatography coupled with triple quadrupole mass spectrometry (LC-MS/MS). Phenomenex Lux Cellulose-1 column was used for enantioseparation with a mixture of acetonitrile/water (90/10, v/v) as mobile phase at flow rate of 0.3 mL min−1. Fortified recoveries in grape and soil samples ranged from 76.0% to 91.9% and relative standard deviations were less than 11.4% with fortified levels of 0.025-1.0 mg kg−1. The limits of detection and quantification were 0.005 mg kg−1 and 0.025 mg kg−1, respectively, with linear calibration curves extending up to 5.0 mg kg−1. The field experimental results showed that dissipations of epoxiconazole stereoisomers in grape followed first-order kinetics (R2 > 0.92) and stereoselectivity occurred in 2 h after spraying. The (−)-stereoisomer with half-life of 9.3 d degraded faster than (+)-stereoisomer with that of 13.2 d, and resulted in relative enrichment of (+)-stereoisomer. However, the stereoisomeric dissipations in soil were triphasic (“increase-decrease-steady”) with lower dissipation rates, and also occurred with preferential degradation of (−)-stereoisomer under field condition. The results for stereoselective dissipations can be applied for food and environmental assessments of chiral pesticides.  相似文献   

17.
Characterization of produced waters (PWs) is an initial step for determining potential beneficial uses such as irrigation and surface water discharge at some sites. A meta-analysis of characteristics of five PW sources [i.e. shale gas (SGPWs), conventional natural gas (NGPWs), conventional oil (OPWs), coal-bed methane (CBMPWs), tight gas sands (TGSPWs)] was conducted from peer-reviewed literature, government or industry documents, book chapters, internet sources, analytical records from industry, and analyses of PW samples. This meta-analysis assembled a large dataset to extract information of interest such as differences and similarities in constituent and constituent concentrations across these sources of PWs. The PW data analyzed were comprised of 377 coal-bed methane, 165 oilfield, 137 tight gas sand, 4000 natural gas, and 541 shale gas records. Majority of SGPWs, NGPWs, OPWs, and TGSPWs contain chloride concentrations ranging from saline (>30 000 mg L−1) to hypersaline (>40 000 mg L−1), while most CBMPWs were fresh (<5000 mg L−1). For inorganic constituents, most SGPW and NGPW iron concentrations exceeded the numeric criterion for irrigation and surface water discharge, while OPW and CBMPW iron concentrations were less than the criterion. Approximately one-fourth of the PW samples in this database are fresh and likely need minimal treatment for metal and metalloid constituents prior to use, while some PWs are brackish (5000-30 000 mg Cl L−1) to saline containing metals and metalloids that may require considerable treatment. Other PWs are hypersaline and produce a considerable waste stream from reverse osmosis; remediation of these waters may not be feasible. After renovation, fresh to saline PWs may be used for irrigation and replenishing surface waters.  相似文献   

18.
19.
Fluoride (F) contamination is a global environmental problem, as there is no cure of fluorosis available yet. Prosopis juliflora is a leguminous perennial, phreatophyte tree, widely distributed in arid and semi-arid regions of world. It extensively grows in F endemic areas of Rajasthan (India) and has been known as a “green” solution to decontaminate cadmium, chromium and copper contaminated soils. This study aims to check the tolerance potential of P. juliflora to accumulate fluoride. For this work, P. juliflora seedlings were grown for 75 d on soilrite under five different concentrations of F viz., control, 25, 50, 75 and 100 mg NaF kg−1. Organ-wise accumulation of F, bioaccumulation factor (BF), translocation factor (TF), growth ratio (GR) and F tolerance index (TI) were examined. Plant accumulated high amounts of F in roots. The organ-wise distribution showed an accumulation 4.41 mg kg−1dw, 12.97 mg kg−1dw and 16.75 mg kg−1dw F, in stem, leaves and roots respectively. The results indicated significant translocation of F from root into aerial parts. The bioaccumulation and translocation factor values (>1.0) showed high accumulation efficiency and tolerance of P. juliflora to F. It is concluded that P. juliflora is a suitable candidate for phytoremediation purpose and can be explored further for the decontamination of F polluted soils.  相似文献   

20.
Mature Lumbricus terrestris were host soils and leaf litter were collected from a former arsenic mine in Devon, UK (Devon Great Consols), a former gold mine in Ontario, Canada (Deloro), and an uncontaminated residential garden in Nottingham, UK. Arsenic concentrations determined by inductively coupled plasma-mass spectrometry (ICP-MS) in soils were 16-348 mg kg−1, 6.0-239 mg kg−1 in the earthworms and 8.6 mg kg−1 in leaf litter sampled at Deloro (all dry weight). High performance liquid chromatography (HPLC-ICP-MS) analysis revealed arsenite (AsIII), arsenate (AsV) and five organoarsenic species; arsenobetaine (AB), methylarsonate (MAV), dimethylarsinate (DMAV), arsenosugar 1 (glycerol sugar), arsenosugar 2 (phosphate sugar), and trimethylarsineoxide (TMAO) in field-collected L. terrestris. Differences were observed in the variety of organoarsenic species present between field sites. Several organoarsenic species were observed in the leaf litter (DMAV, arsenosugar 2 and TMAO) but not AB. Depuration resulted in higher concentrations of inorganic As being detected in the earthworm whereas the concentration or variety of organoarsenic species was unchanged. Commercially sourced L. terrestris were exposed to As contaminated soil in laboratory mesocosms (1.0, 98, 183, 236, 324 and 436 mg kg−1) without leaf litter and were additionally analyzed using X-ray absorption near edge structure (XANES). Only inorganic AsIII and AsV was observed. It is proposed that ingestion of leaf litter and symbiotic processes in the natural soil environment are likely sources of organoarsenic compounds in field-collected L. terrestris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号