首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
接种降解菌对土壤中邻苯二甲酸二异辛酯降解的影响   总被引:2,自引:0,他引:2  
邻苯二甲酸二异辛酯〔Di-(2-Ethylhexyl)phthalate,DEHP〕是农田土壤中常被检出的有毒有机污染物,在土壤中有较长的持留性,微生物降解是其从土壤中消失的主要途径.本文采用温室盆栽试验研究了接种两株从污水处理厂活性污泥中分离得到的高效DEHP降解菌及其混合菌悬液降解土壤中DEHP污染的效果,以及土壤中添加葡萄糖和种植作物对其降解效率的影响.结果表明,在土壤初始DEHP浓度为100mg kg-1的条件下,接种两种降解菌及其混合菌悬液都可显著提高土壤中DEHP消失的速率,其残留半衰期比不接种对照缩短了32~48d,但在相同条件下接种不同降解菌的处理之间没有显著差异.土壤中添加0.6%的葡萄糖虽然可以强烈地促进土壤微生物的整体活性,但并没有提高修复效率,反而在短期内延缓了降解菌对DEHP的降解,延长了DEHP在土壤中持留的半衰期;植物生长可显著提高降解菌的降解效率,降低土壤中DEHP的残留浓度.研究结果同时也表明,只添加葡萄糖或只种植植物对土壤中DEHP的降解并没有显著的影响.图3表4参14  相似文献   

2.
《Ecological modelling》2007,201(2):233-242
There is increased interest in vegetation spatial pattern as an indicator of transition shifts following catastrophes. Much, however, remains unknown about the mechanisms that underlie spatial pattern formations. In this study, we examined how the spatial heterogeneity of species distributions in the grasslands of the Central Pyrenees and Middle Atlas Mountains is associated with plant species diversity and the importance of self-organizing processes in the control of pattern formations. In the grasslands of the Central Pyrenees and Middle Atlas, the spatial heterogeneity of species distributions increased along a habitat degradation gradient defined by an increase in bare soil. In Central Pyrenees grasslands, however, the increase in heterogeneity was associated with self-organizing bare soil formations, rather than the self-organizing distribution of plant species. In Middle Atlas grasslands, the increased heterogeneity of species spatial distributions was a consequence of the self-organizing capacity of the composing species; the increase in bare soil was randomly distributed. In the more heavily grazed grasslands (Middle Atlas), but not in the more lightly grazed and better preserved ecosystem (Central Pyrenees), plant species richness and diversity declined significantly with an increase in grazing pressure because fewer species were able to colonize empty space. On the contrary, the colonization of bare soil by new species increased the diversity and spatial organization of new colonizing species in Central Pyrenees grassland.  相似文献   

3.
宁夏东北部典型荒漠草原植物群落与土壤养分特征   总被引:1,自引:0,他引:1  
以宁夏东北部荒漠草原为研究区,采用野外样方调查、采样和室内植物鉴定、土壤样品测定等方法,探析研究区内植物群落物种组成与土壤养分特征,以及植物多样性指数与土壤养分的相关关系,以期为中国荒漠治理、生物资源保护与可持续性利用提供依据。结果显示:(1)研究区植物共86种,隶属61属21科,其中禾本科(18种)、豆科(16种)、菊科(13种)和藜科(11种)植物占总物种数的67.44%;(2)研究区土壤总体上呈碱性,pH值平均为8.81,全氮、全磷、有机质的质量分数(0-10 cm土层)分别为0.07-0.54、0.16-0.51、0.51-6.24 g·kg^-1;(3)研究区植物多样性指数中的Margalef丰富度指数和Shannon-Wiener多样性指数与土壤pH值呈显著负相关,与其他土壤养分的相关关系未达到显著水平,其他植物多样性指数与土壤养分的关系均未达到显著水平。研究表明,宁夏东北部荒漠草原植物种类少,禾本科、豆科植物优势明显,土壤养分条件差,土壤全氮、全磷、有机质对植物多样性指数的影响不大。  相似文献   

4.
Plant-soil feedbacks have been implicated in several successful plant invasions. However, simple identification of a feedback alone may not be enough to establish feedbacks as a mechanism behind plant invasion. I suggest that the relationship between soil community density and plant growth is an important unknown that strongly influences the impact of plant-soil feedbacks. I developed a mathematical model of two-plant species competition with plant-soil feedbacks. Each plant species obligately generates its own soil community. Each soil community then influences both plant species’ growth. The model allows for every possible combination of positive and negative effects of the soil community on plant growth. I model the relationship between soil community density and plant growth with non-linear functional responses. I use a range of plant competitive abilities and feedback scenarios from the literature to explore how different functional responses influence the outcome of plant competition. Sensitivity analysis of the model reveals that altering the relationship between feedback strength and soil community development can reverse the outcome of plant competition. Analysis of the model also shows how the importance of different feedback scenarios depends on the strength of plant competition.  相似文献   

5.
简要地介绍了土壤微形态研究方法及其在农业生态与土地退化研究中的应用,并回顾了近20a的国际土壤微形态研究的内容与进展.在过去的20a中,土壤微形态学在概念、现象的解释、分析技术'以及应用上都取得了前所未有的进展.特别在样品脱水方法、荧光分析、图象处理及定量分析技术上得到很大的发展.植物根系与土壤微结构的关系,土壤改良对结构的影响等方面研究取得一定的成就.利用土壤微形态研究农业生态系统中的根系与根际的生态过程,作物对水分和养分的吸收过程,人为活动对土壤退化,熟化的微形态指标,以及利用微形态指标评价人为因素在现代土壤过程中的作用等,是土壤微形态研究的最新动态.  相似文献   

6.
闫东锋  杨喜田 《生态环境》2010,19(12):2826-2831
研究选取14个分别代表植被群落、地形因子、土壤因子的指标,利用宝天曼自然保护区32块样地资料,研究了物种分布与环境之间关系。采用DCCA法可将该地区木本植物群落划分为3个类型;物种与9个环境因子之间存在显著的相关关系,前4轴可解释物种总变异的94.1%;海拔、坡度、土壤含水量、坡向是影响该地区物种分布的主要因子,其中海拔是指示物种分布变化的最敏感因子。不同指标集团的典型相关分析结果表明:地形与植被因子之间、土壤因子与植被因子之间第1对典范相关系数分别为0.712和0.783,存在着显著的相关关系,影响植被特征的最重要地形因子是海拔和坡度,土壤因子为土壤厚度和土壤含水量,而对地形和土壤反应最敏感的植被指标分别为林分密度和平均树高,群落分布状态是由地形和土壤因子共同作用所控制的。  相似文献   

7.
Plant biomass and plant abundance can be controlled by aboveground and belowground natural enemies. However, little is known about how the aboveground and belowground enemy effects may add up. We exposed 15 plant species to aboveground polyphagous insect herbivores and feedback effects from the soil community alone, as well as in combination. We envisaged three possibilities: additive, synergistic, or antagonistic effects of the aboveground and belowground enemies on plant biomass. In our analysis, we included native and phylogenetically related range-expanding exotic plant species, because exotic plants on average are less sensitive to aboveground herbivores and soil feedback than related natives. Thus, we examined if lower sensitivity of exotic plant species to enemies also alters aboveground-belowground interactions. In a greenhouse experiment, we exposed six exotic and nine native plant species to feedback from their own soil communities, aboveground herbivory by polyphagous insects, or a combination of soil feedback and aboveground insects and compared shoot and root biomass to control plants without aboveground and belowground enemies. We observed that for both native and range-expanding exotic plant species effects of insect herbivory aboveground and soil feedback added up linearly, instead of enforcing or counteracting each other. However, there was no correlation between the strength of aboveground herbivory and soil feedback. We conclude that effects of polyphagous aboveground herbivorous insects and soil feedback add up both in the case of native and related range-expanding exotic plant species, but that aboveground herbivory effects may not necessarily predict the strengths of soil feedback effects.  相似文献   

8.
化学农药污染土壤植物修复中的环境化学问题   总被引:7,自引:1,他引:7  
报道了利用植草修复受DDT,BHC和Dicofol污染的研究,讨论了化学农药污染土壤植物修复中,农药在植物中富集与在土壤中降解以及结合残留等环境化学问题。研究表明,在植物修复的过程中,通过草对农药吸收的途径而去除土壤中污染物的作用所作的贡献很小,植草的作用可能是通过草的根部向土壤释放酶和某些分泌物,从而激发土壤中微生物的活性,并加速农药生物降解作用的结果。草在不同土壤中修复能力的差异,可能与不同土壤中所存土著微生物的差异以及其活性受酶和某些分泌物所激发差异的结果。选择能使根际区产生强烈的生物降解作用的草品种,是利用草作为化学农药污染土壤修复的关键。土壤与植株中农药结合残留的形成可能是土壤中污染物消除的又一个重要因素。  相似文献   

9.
以野外样地调查和室内分析法研究了不同退化演替阶段高寒小嵩草草甸的植被根系空间变化和土壤环境因子间的关系。结果表明,不同退化演替阶段高寒小嵩草草甸群落植被根系和蕴育植被根系的土壤量发生了明显的变化。特别是0~10 cm土层的植被根系在重度退化阶段显著高于其它退化演替阶段(P〈0.05),而蕴育植被根系的"载体"量在重度退化阶段显著低于其它退化演替阶段(P〈0.05),根土比(根和土的重量比)明显高于其它退化演替阶段(P〈0.05);随着退化演替阶段的进行,高寒小嵩草草甸群落物种数、地上部分、植被根系锐减,群落结构和功能明显发生变化;不同退化演替阶段,植被根系(0~40 cm)的垂直分布、根土比与土壤容重、土壤含水量以及土壤中N、P含量存在一定的相关性;不同退化演替阶段高寒小嵩草草甸土壤理化特性的变化影响草地群落地上部分和植被根系;土壤的稳定性是草地生产稳定和恢复的重要因素,在评价与改良退化草地时,要充分了解土壤的退化程度。在高寒草甸地下根系取样方法难以统一,而且土壤表层根系和土壤很难难以分离,加之根系采样破坏性大、工作量大,根土比可能是指示高寒草甸退化程度相对可靠的量化指标。  相似文献   

10.
Terrestrial plant community responses to herbivory depend on resource availability, but the separate influences of different resources are difficult to study because they often correlate across natural environmental gradients. We studied the effects of excluding ungulate herbivores on plant species richness and composition, as well as available soil nitrogen (N) and phosphorus (P), across eight grassland sites in Serengeti National Park (SNP), Tanzania. These sites varied independently in rainfall and available soil N and P. Excluding herbivores decreased plant species richness at all sites and by an average of 5.4 species across all plots. Although plant species richness was a unimodal function of rainfall in both grazed and ungrazed plots, fences caused a greater decrease in plant species richness at sites of intermediate rainfall compared to sites of high or low rainfall. In terms of the relative or proportional decreases in plant species richness, excluding herbivores caused the strongest relative decreases at lower rainfall and where exclusion of herbivores increased available soil P. Herbivore exclusion increased among-plot heterogeneity in species composition but decreased coexistence of congeneric grasses. Compositional similarity between grazed and ungrazed treatments decreased with increasing rainfall due to greater forb richness in exclosures and greater sedge richness outside exclosures and was not related to effects of excluding herbivores on soil nutrients. Our results show that plant resources, especially water and P, appear to modulate the effects of herbivores on tropical grassland plant diversity and composition. We show that herbivore effects on soil P may be an important and previously unappreciated mechanism by which herbivores influence plant diversity, at least in tropical grasslands.  相似文献   

11.
Mycorrhizal fungal identity and diversity relaxes plant-plant competition   总被引:1,自引:0,他引:1  
There is a great interest in ecology in understanding the role of soil microbial diversity for plant productivity and coexistence. Recent research has shown increases in species richness of mutualistic soil fungi, the arbuscular mycorrhizal fungi (AMF), to be related to increases in aboveground productivity of plant communities. However, the impact of AMF richness on plant-plant interactions has not been determined. Moreover, it is unknown whether species-rich AMF communities can act as insurance to maintain productivity in a fluctuating environment (e.g., upon changing soil conditions). We tested the impact of four different AMF taxa and of AMF diversity (no AMF, single AMF taxa, and all four together) on competitive interactions between the legume Trifolium pratense and the grass Lolium multiflorum grown under two different soil conditions of low and high sand content. We hypothesized that more diverse mutualistic interactions (e.g., when four AMF taxa are present) can ease competitive effects between plants, increase plant growth, and maintain plant productivity across different soil environments. We used quantitative PCR to verify that AMF taxa inoculated at the beginning of the experiment were still present at the end. The presence of AMF reduced the competitive inequality between the two plant species by reducing the growth suppression of the legume by the grass. High AMF richness enhanced the combined biomass production of the two plant species and the yield of the legume, particularly in the more productive soil with low sand content. In the less productive (high sand content) soil, the single most effective AMF had an equally beneficial effect on plant productivity as the mixture of four AMF. Since contributions of single AMF to plant productivity varied between both soils, higher AMF richness would be required to maintain plant productivity in heterogeneous environments. Overall this work shows that AMF diversity promotes plant productivity and that AMF diversity can act as insurance to sustain plant productivity under changing environmental conditions.  相似文献   

12.
Fire is a natural part of most forest ecosystems in the western United States, but its effects on nonnative plant invasion have only recently been studied. Also, forest managers are engaging in fuel reduction projects to lessen fire severity, often without considering potential negative ecological consequences such as nonnative plant species introductions. Increased availability of light, nutrients, and bare ground have all been associated with high-severity fires and fuel treatments and are known to aid in the establishment of nonnative plant species. We use vegetation and environmental data collected after wildfires at seven sites in coniferous forests in the western United States to study responses of nonnative plants to wildfire. We compared burned vs. unburned plots and plots treated with mechanical thinning and/or prescribed burning vs. untreated plots for nonnative plant species richness and cover and used correlation analyses to infer the effect of abiotic site conditions on invasibility. Wildfire was responsible for significant increases in nonnative species richness and cover, and a significant decrease in native cover. Mechanical thinning and prescribed fire fuel treatments were associated with significant changes in plant species composition at some sites. Treatment effects across sites were minimal and inconclusive due to significant site and site x treatment interaction effects caused by variation between sites including differences in treatment and fire severities and initial conditions (e.g., nonnative species sources). We used canonical correspondence analysis (CCA) to determine what combinations of environmental variables best explained patterns of nonnative plant species richness and cover. Variables related to fire severity, soil nutrients, and elevation explained most of the variation in species composition. Nonnative species were generally associated with sites with higher fire severity, elevation, percentage of bare ground, and lower soil nutrient levels and lower canopy cover. Early assessments of postfire stand conditions can guide rapid responses to nonnative plant invasions.  相似文献   

13.
Abstract:  Rural indigenous people are often very knowledgeable about plant and animal species, including their identification and ecology. The use of indigenous knowledge has increasingly attracted attention in scientific circles. The Dai people, a dominant nationality in southwestern Yunnan, China, have developed their own traditional plant classification system. In a case study in Xishuangbanna, we compared the differences in number of plant species identified between scientific and Dai folk classification. The Dai people identified more than 80% of the plant species, and the correspondence between folk and scientific plant species was 87.7%. Our results indicate that folk plant classification could be used in rapid assessment of plant species in certain regions. The use of folk systems of plant classification for rapid biodiversity assessment will contribute to conservation of both indigenous knowledge and regional biodiversity.  相似文献   

14.
Few studies have considered whether plant taxa can be used as predictors of belowground faunal diversity in natural ecosystems. We examined soil mite (Acari) diversity beneath six grass species at the Konza Prairie Biological Station, Kansas, USA. We tested the hypotheses that soil mite species richness, abundance, and taxonomic diversity are greater (1) beneath grasses in dicultures (different species) compared to monocultures (same species), (2) beneath grasses of higher resource quality (lower C:N) compared to lower resource quality, and (3) beneath heterogeneous mixes of grasses (C3 and C4 grasses growing together) compared to homogeneous mixes (C3 or C4 grasses) using natural occurrences of plant species as treatments. This study is the first to examine the interaction between above- and belowground diversity in a natural setting with species-level resolution of a hyper-diverse taxon. Our results indicate that grasses in diculture supported a more species and phylogenetically rich soil mite fauna than was observed for monocultures and that this relationship was significant at depth but not in the upper soil horizon. We noted that mite species richness was not linearly related to grass species richness, which suggests that simple extrapolations of soil faunal diversity based on plant species inventories may underestimate the richness of associated soil mite communities. The distribution of mite size classes in dicultures was considerably different than those for monocultures. There was no difference in soil mite richness between grass combinations of differing resource quality, or resource heterogeneity.  相似文献   

15.
St John MG  Wall DH  Hunt HW 《Ecology》2006,87(5):1314-1324
Associations between plants and animals in aboveground communities are often predictable and specific. This has been exploited for the purposes of estimating the diversity of animal species based on the diversity of plant species. The introduction of invasive alien plants into an ecosystem can result in dramatic changes in both the native plant and animal assemblages. Few data exist at the species level to determine whether belowground animal assemblages share the same degree of association to plants. The hypotheses that soil mites (Acari) form assemblages specifically associated with different native grass species in an unmanipulated natural ecosystem and that invasive alien grasses will impact soil mite assemblage composition in this setting were tested. Soil mites sampled beneath five native and two invasive alien species of grasses at the Konza Prairie Biological Station, Kansas, USA, were similarly abundant, species rich, diverse, and taxonomically distinct. No mite species had affinities for a specific grass species. There was no evidence from analysis of similarity, canonical correspondence analysis, or a nonparametric assemblage analysis that the assemblage composition of soil mites was specific to grass species. Results suggest that soil mite assemblages were more related to characteristics of the plant assemblage as a whole or prevailing soil conditions. The most recent invasive alien grass did not support a successionally younger mite fauna, based on the ratio of mesostigmatid to oribatid mites, and neither of the two invasive grasses influenced mite assemblage structure, possibly because they had not yet substantially altered the soil environment. Our results suggest that extrapolations of soil mite diversity based on assumptions of plant specificity would be invalid.  相似文献   

16.
Evolutionary theory suggests that divergent natural selection in heterogeneous environments can result in locally adapted plant genotypes. To understand local adaptation it is important to study the ecological factors responsible for divergent selection. At a continental scale, variation in climate can be important while at a local scale soil properties could also play a role. We designed an experiment aimed to disentangle the role of climate and (abiotic and biotic) soil properties in local adaptation of two common plant species. A grass (Holcus lanatus) and a legume (Lotus corniculatus), as well as their local soils, were reciprocally transplanted between three sites across an Atlantic-Continental gradient in Europe and grown in common gardens in either their home soil or foreign soils. Growth and reproductive traits were measured over two growing seasons. In both species, we found significant environmental and genetic effects on most of the growth and reproductive traits and a significant interaction between the two environmental effects of soil and climate. The grass species showed significant home site advantage in most of the fitness components, which indicated adaptation to climate. We found no indication that the grass was adapted to local soil conditions. The legume showed a significant home soil advantage for number of fruits only and thus a weak indication of adaptation to soil and no adaptation to climate. Our results show that the importance of climate and soil factors as drivers of local adaptation is species-dependent. This could be related to differences in interactions between plant species and soil biota.  相似文献   

17.
木麻黄(Casuarina equisetifolia)是我国东南沿海海岸防护林骨干树种。本文对广东省茂名市木麻黄防护林开展了不同林龄的种群结构、植物多样性、以及土壤养分特征的研究。结果表明,滨海沙地木麻黄群落在生长过程中有明显的自疏现象,18年林个体数(975株·hm-2)不足3年林个体数一半(2350株·hm-2),3年至6年龄木麻黄生长最快。调查林地内共有植物27种,其中灌木8种,草本植物18种。随林龄的增长,林下植物种数显著增加,多样性指数、均匀度指数逐步增加,优势度指数下降。林地土壤有机碳、全氮与速效氮供应水平极低;土壤磷供应相对较好,表层有效磷一般高于3.5mg·kg-1。土壤有效养分与植物多样性显著相关,显示养分是植物定居的主要限制因素。结果表明,木麻黄林结构简单,生物多样性低,土壤养分贫乏。  相似文献   

18.
Partsch S  Milcu A  Scheu S 《Ecology》2006,87(10):2548-2558
Decomposer invertebrates influence soil structure and nutrient mineralization as well as the activity and composition of the microbial community in soil and therefore likely affect plant performance and plant competition. We established model grassland communities in a greenhouse to study the interrelationship between two different functional groups of decomposer invertebrates, Lumbricidae and Collembola, and their effect on plant performance and plant nitrogen uptake in a plant diversity gradient. Common plant species of Central European Arrhenatherion grasslands were transplanted into microcosms with numbers of plant species varying from one to eight and plant functional groups varying from one to four. Separate and combined treatments with earthworms and collembolans were set up. Microcosms contained 15N labeled litter to track N fluxes into plant shoots. Presence of decomposers strongly increased total plant and plant shoot biomass. Root biomass decreased in the presence of collembolans and even more in the presence of earthworms. However, it increased when both animal groups were present. Also, presence of decomposers increased total N concentration and 15N enrichment of grasses, legumes, and small herbs. Small herbs were at a maximum in the combined treatment with earthworms and collembolans. The impact of earthworms and collembolans on plant performance strongly varied with plant functional group identity and plant species diversity and was modified when both decomposers were present. Both decomposer groups generally increased aboveground plant productivity through effects on litter decomposition and nutrient mineralization leading to an increased plant nutrient acquisition. The non-uniform effects of earthworms and collembolans suggest that functional diversity of soil decomposer animals matters and that the interactions between soil animal functional groups affect the structure of plant communities.  相似文献   

19.
Seasonal variations in plant species effects on soil N and P dynamics   总被引:6,自引:0,他引:6  
Eviner VT  Chapin FS  Vaughn CE 《Ecology》2006,87(4):974-986
It is well established that plant species influence ecosystem processes, but we have little ability to predict which vegetation changes will alter ecosystems, or how the effects of a given species might vary seasonally. We established monocultures of eight plant species in a California grassland in order to determine the plant traits that account for species impacts on nitrogen and phosphorus cycling. Plant species differed in their effects on net N mineralization and nitrification rates, and the patterns of species differences varied seasonally. Soil PO4- and microbial P were more strongly affected by slope position than by species. Although most studies focus on litter chemistry as the main determinant of plant species effects on nutrient cycling, this study showed that plant species affected biogeochemical cycling through many traits, including direct traits (litter chemistry and biomass, live-tissue chemistry and biomass) and indirect traits (plant modification of soil bioavailable C and soil microclimate). In fact, species significantly altered N and P cycling even without litter inputs. It became particularly critical to consider the effects of these multiple traits in order to account for seasonal changes in plant species effects on ecosystems. For example, species effects on potential rates of net N mineralization were most strongly influenced by soil bioavailable C in the fall and by litter chemistry in the winter and spring. Under field conditions, species effects on soil microclimate influenced rates of mineralization and nitrification, with species effects on soil temperature being critical in the fall and species effects on soil moisture being important in the dry spring. Overall, this study clearly demonstrated that in order to gain a mechanistic, predictive understanding of plant species effects on ecosystems, it is critical to look beyond plant litter chemistry and to incorporate the effects of multiple plant traits on ecosystems.  相似文献   

20.
Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and providers of resources to the soil food web, are of vital importance for the composition, structure, and functioning of soil communities. However, whether natural soil food webs that are completely open to immigration and emigration differ underneath individual plants remains unknown. In a biodiversity restoration experiment we first compared the soil nematode communities of 228 individual plants belonging to eight herbaceous species. We included grass, leguminous, and non-leguminous species. Each individual plant grew intermingled with other species, but all plant species had a different nematode community. Moreover, nematode communities were more similar when plant individuals were growing in the same as compared to different plant communities, and these effects were most apparent for the groups of bacterivorous, carnivorous, and omnivorous nematodes. Subsequently, we analyzed the composition, structure, and functioning of the complete soil food webs of 58 individual plants, belonging to two of the plant species, Lotus corniculatus (Fabaceae) and Plantago lanceolata (Plantaginaceae). We isolated and identified more than 150 taxa/groups of soil organisms. The soil community composition and structure of the entire food webs were influenced both by the species identity of the plant individual and the surrounding plant community. Unexpectedly, plant identity had the strongest effects on decomposing soil organisms, widely believed to be generalist feeders. In contrast, quantitative food web modeling showed that the composition of the plant community influenced nitrogen mineralization under individual plants, but that plant species identity did not affect nitrogen or carbon mineralization or food web stability. Hence, the composition and structure of entire soil food webs vary at the scale of individual plants and are strongly influenced by the species identity of the plant. However, the ecosystem functions these food webs provide are determined by the identity of the entire plant community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号