首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 205 毫秒
1.
Summary Gregarious nymphs of the desert locust,Schistocerca gregaria (Forsk.) (Orthoptera: Acrididae) were more attracted to volatiles from mechanically damaged food plants used for rearing than to either the undamaged or damaged food plants not used as diet in Y-tube olfactometer assays. Comparative analysis of the volatile emissions from plants used for rearing and food plants not used for rearing,e.g. Sorghum bicolor, Pennisetum clandestinum, Schouwia thebaica, wheat (Triticum sp., var. Nyangumi),Zygophyllum simplex, Heliotropium undulatum andTribulus terrestris was carried out by GC, GC-EAD and GC-MS. Significant quantitative and qualitative differences were found in the volatile emissions and olfactory responses of nymphs in GC-EAD assays. Up to 33 compounds were identified in volatiles of the plants of which 9 evoked EAGs. EAG-active components included common green leaf compounds (E)-2-pentenal, (E)-2-hexenal, 4-methyl-3-pentenal, (E)-3-hexenyl acetate, (Z)-3-hexenyl acetate, (Z)-2-hexenyl acetate, (Z)-3-hexen-1-ol and (Z)-2-hexen-1-ol. (Z)-3-Hexenyl butyrate and (Z)-3-hexenyl isovalerate were detected in stimulatory amounts only in the volatiles ofS. thebaica. (E, Z)-2,6-Nonadienal was detected as a component in the volatiles ofT. terrestris and was highly stimulatory. In EAG assays with seven common green leaf volatiles, (Z)-3-hexenyl acetate was most stimulatory while hexanal was the least. No significant differences were recorded between antennal responses of males and females to the tested compounds. These results are discussed with regard to current hypotheses on host plant recognition through detection of their airborne volatiles and the learning behaviour by nymphs ofS. gregaria.  相似文献   

2.
Though it is known that flower scent not only attracts pollinators but also herbivores, little is known about the importance of flower scent on the distribution of leaf herbivores among individuals within a plant species. In this study we determined the distribution of galls induced by the sawfly Pontania proxima (Serville 1823) (Hymenoptera, Tenthredinidae, Nematinae) on flowering and non-flowering representatives of several clones belonging to Salix fragilis and S. × rubens (Salicaceae). Further, amounts and composition of scent of flowering and non-flowering twigs were compared (dynamic headspace-gas chromatography–mass spectrometry, DHS-GC–MS), and a scent sample collected from flowering twigs of S. fragilis was tested by coupled gas chromatography and electroantennographic detection (GC-EAD) on the antennae of P. proxima females. The results show that the presence of flower catkins on plants led to a higher degree of allocation with galls, but the number of galls differed not between flowering and non-flowering plants. The DHS-GC–MS analyses revealed that the total amount of flower scent emitted per flowering twig is about 90 times higher than the scent emitted by a non-flowering twig. Further, several compounds were emitted only by flowering but not by non-flowering twigs. In the GC-EAD analyses, antennae consistently responded not only to green leaf volatiles, but also to compounds emitted only by the flowers (e.g. 1,4-dimethoxybenzene). These flower scent compounds are suggested to affect the host plant choice by attracting more sawflies from the distance to flowering plants compared to non-flowering plants. The EAD-active compounds emitted from vegetative plant parts are assumed to act as long-distance signals especially when flowers are absent on host plants, e.g. during the oviposition period of the second generation of P. proxima.  相似文献   

3.
Most crop pests find a suitable host through chemical cues released from plants, but little is known about the odorscape encountered by host-seeking gravid females under natural, outdoor conditions. In this field study, the volatile organic compound (VOC) composition of maize (Zea mays, L.), a host for the European corn borer (ECB) (Ostrinia nubilalis Hüb.) was characterized during the oviposition flight and compared with a forest odorscape. VOCs from maize fields and the forest atmosphere were collected by solid phase microextraction and characterized by gas chromatography-mass spectrometry. The electroantennographic (EAG) response of female ECB antennae to candidate VOCs was tested. Analyses revealed clear differences between the maize field and the forest odorscapes, mainly composed of ubiquitous VOCs but in specific ratios. The maize field odorscape is more complex than the forest odorscape for maize found 18 VOCs but only eight in the forest. Both biotopes shared seven VOCs—green leaf volatiles (GLV), monoterpènes (MT) and homoterpenes. In addition, we found in the forest a distinctive sesquiterpene (SQT) identified as isoledene. The highest EAG responses were elicited by two GLVs and a MT shared by the two biotopes. SQT elicited weak EAG responses, except β-farnesene, only found in the maize field odorscape. Our results suggest that the two biotopes produce specific chemical signatures that insects may use as host cues. To the best of our knowledge this paper is the first report on the maize odorscapes under field conditions. The putative role of the VOCs in host plant detection and selection is discussed.  相似文献   

4.
Summary. We investigated the volatile emissions of Manchurian ash seedlings, Fraxinus mandshurica, in response to feeding by the emerald ash borer, Agrilus planipennis, and to exogenous application of methyl jasmonate (MeJA). Feeding damage by adult A. planipennis and MeJA treatment increased volatile emissions compared to unexposed controls. Although the same compounds were emitted from plants damaged by beetles and treated with MeJA, quantitative differences were found in the amounts of emissions for individual compounds. Adult virgin female A. planipennis were similarly attracted to volatiles from plants damaged by beetles and those treated with MeJA in olfactometer bioassays; males did not respond significantly to the same volatiles. Coupled gas chromatographic-electroantennogram detection (GC-EAD) revealed at least 16 antennally-active compounds from F. mandshurica, including: hexanal, (E)-2-hexenal, (Z)-3-hexen-1-ol, 3-methyl-butylaldoxime, 2-methyl-butylaldoxime, (Z)-3-hexen-1-yl acetate, hexyl acetate, (E)-β-ocimene, linalool, 4,8-dimethyl-1,3,7-nonatriene, and E,E-α-farnesene. Electroantennogram (EAG) dose–response curves using synthetic compounds revealed that females had a stronger EAG response to linalool than males; and male responses were greater to: hexanal, (E)-2-hexenal, (Z)-3-hexen-1-ol, 3-methyl-butylaldoxime, 2-methyl-butylaldoxime, and hexyl acetate. These results suggest that females may use induced volatiles in long-range host finding, while their role for males is unclear. If attraction of females to these volatiles in an olfactometer is upheld by field experiments, host plant volatiles may find practical application in detection and monitoring of A. planipennis populations.  相似文献   

5.
Host-plant leaf surface compounds influencing oviposition in Delia antiqua   总被引:1,自引:0,他引:1  
Summary. Delia antiqua (Diptera: Anthomyiidae) females lay eggs between the leaves of onion plants or in the soil around the base of the plants, then the maggots feed on the onion bulb and roots causing rapid secondary infection by fungi and bacteria. It is well known that the first sensory modality used by the onion fly is vision, therefore the shape (vertical narrow cylinders) and colour (yellow) of the plant play a crucial role in the recognition of a potential host plant. In the past it has been shown that n-dipropyl disulfide (Pr2S2), a typical component of onion volatiles, is an important chemical host plant cue. We extracted host leaf surface to verify if Pr2S2 is the major chemical oviposition stimulant and to determine if other as yet unknown substances may play a role in host-plant selection. We confirmed that the females laid more eggs around onion plants with leaves than when only the onion bulb was present and that the odour of chopped onion stimulates oviposition. Extraction of the surface of onion leaves revealed that only the apolar fraction contained substances that stimulate egg-laying in D. antiqua. GC-EAD analysis indicated that a minor constituent, Pr2S2, is perceived by the olfactory receptor on the antennae of the onion fly females. This confirmed the importance of Pr2S2 as oviposition stimulant. Contact with the polar fraction did not stimulate egg-laying behaviour in this Delia species. We discuss the oviposition strategy of D. antiqua in comparison with its closely related species, D. radicum, in which the oviposition behaviour is stimulated mainly through contact with the cabbage leaf surface and only partially by the host volatiles.  相似文献   

6.
Plant volatile cues are considered the main source of information for ovipositing moths, which use chemical information to locate and recognize the host plant. In Europe, two sympatric populations of European corn borer (ECB; Ostrinia nubilalis, Hübner), the Z and E-pheromone races, feed mainly on maize and hop or mugwort, respectively. We studied the mechanisms of host-plant recognition and fidelity in ECB pheromone races by testing the attractiveness of host plants to gravid females in a flight tunnel and by analyzing the volatiles released from maize, mugwort, and hop during the scotophase, when the ovipositing flight of the ECB females occurs. In the wind tunnel bioassay, the Z-race and E-race females engaged in upwind flight and expressed a strong host fidelity to their respective main host plants; all three of these host plants possess distinctive volatile profiles specific as to blend and ratio. The host plants shared a certain number of ubiquitous volatiles present in various ratios that likely constitute a species-specific cue to host-seeking ECB moths. Our observations therefore suggest that ECB host fidelity is steered by plant volatiles that are present in species-specific ratios of ubiquitous volatile organic compounds.  相似文献   

7.
Summary. Feeding by Pieris brassicae or P. rapae caterpillars on Brussels sprouts plants induces the emission of synomones that attract natural enemies of the caterpillars, Cotesia glomerata, a generalist parasitoid, and C. rubecula, a specialist on P. rapae. Previous research on this tritrophic system has identified a large number of volatiles in the headspace of herbivore-damaged Brussels sprouts plants, and this paper addresses the question which of these volatiles are perceived by the two parasitoid species. Headspace odors from both P. brassicae- and P. rapae-damaged Brussels sprouts plants were analyzed by coupled gas chromatography electro- antennogram (GC-EAG) detection. Twenty volatiles evoked consistent EAG reactions in the antennae of both species and nineteen of these volatiles could be identified with GC-MS. One component that could not be identified due to its low concentration, evoked EAG responses in antennae of C. rubecula only. Possible consequences for searching behavior of the two parasitoid species are discussed.  相似文献   

8.
Summary. Stem volatile extracts from ten trees that are sympatric with the western pine beetle, Dendroctonus brevicomis LeConte (Coleoptera: Curculionidae) were assayed by gas chromatographic-electroantennographic detection analysis (GC-EAD). The extracts were from the primary host, ponderosa pine, Pinus ponderosa Dougl. ex Laws. (Pinaceae); two nonhost angiosperms, California black oak, Quercus kelloggii Newb. (Fagaceae), and quaking aspen, Populus tremuloides Michx. (Salicaceae); and seven nonhost conifers, white fir, Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. (Pinaceae), incense cedar, Calocedrus decurrens (Torr.) Florin (Cupressaceae), Sierra lodgepole pine, P. contorta murrayana Grev. & Balf. (Pinaceae), Jeffrey pine, P. jeffreyi Grev. & Balf. (Pinaceae), sugar pine, P. lambertiana Dougl. (Pinaceae), Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco (Pinaceae), and mountain hemlock, Tsuga mertensiana (Bong.) Carr. (Pinaceae). Sixty-four compounds were identified from the ten trees, 42 of which elicited antennal responses in D. brevicomis, usually in both sexes. In addition, several synthetic compounds, including a number of the antennally-active compounds from the extracted trees and some bark beetle pheromone components, elicited antennal responses in a manner similar to that observed with the extracts. Of the antennally-active compounds known to be present in trees sympatric with D. brevicomis, only geraniol was unique to its host. Four antennally-active compounds were found in the host and in other conifers; five compounds were found only in nonhost conifers; eight compounds were found in either or both of the nonhost angiosperms; eight compounds were found in either or both of the angiosperms and in nonhost conifers, but not in the host; and 19 were found in both the host and in angiosperms and/or nonhost conifers. Several bark beetle pheromone components were found in the stem volatile extracts. Conophthorin was identified from both nonhost angiosperms; exo-brevicomin was identified in A. concolor; verbenone was identified from a number of nonhost conifers; and chalcogran was identified from P. tremuloides. The number of nonhost volatile chemicals that D. brevicomis encounters and is capable of detecting, and the diversity of sources from which they emanate, highlight the complexity of the olfactory environment in which D. brevicomis forages. This provides a basis for further work related to chemically-mediated aspects of foraging in this insect and perhaps other coniferophagous bark beetles, and highlights the need to consider foraging context in the design and implementation of semiochemical-based management tactics for tree protection.  相似文献   

9.
To better understand the attractiveness of host tree, Chinese white pines (Pinus armandi Fr.) to Chinese white pine beetle (Dendroctonus armandi Tsai and Li), the antennal responses of D. armandi to the host volatile, as well as the pure enantiomers and racemates of some monoterpenes, were examined using an electroantennogram (EAG). EAG responses of male and female D. armandi to blended volatiles extracted from the host and some synthetic terpenes (α-phellandrene, (−)-β-pinene, (+)-α-pinene, (−)-α-pinene, (−)-camphene, β-myrcene, (S)-(−)-limonene, (+)-camphene and (R)-(+)-limonene) showed significant variation due to different compound concentrations and sex of the beetles. EAG responses to extracted blended volatiles were significantly greater in females than in males, but the EAG response was not always proportional to the volatile concentration. At lower concentrations, females responded strongly to α-phellandrene and males to (−)-β-pinene, while at higher concentrations, females responded most strongly to α-phellandrene and males to (+)-α-pinene. Females were significantly responsive to (−)-α-pinene, α-phellandrene and (−)-camphene, while males were more responsive to (S)-(−)-limonene, (+)-α-pinene and (R)-(+)-limonene. The EAG responses of the female D. armandi to the volatile oil were significantly higher than that of the males, and the infested pine volatiles could evoke higher EAG response. Most of the test compounds elicited similar responses, which suggested that several of the compounds may be used in combination by D. armandi in habitat and/or host community location at the Qinling forest ecosystem.  相似文献   

10.
This study was carried out to evaluate water quality, sediment and plant vegetation in eight tributaries of the Mankyeong River for enhancement of natural purification. Among the tributaries, the Iksancheon water had the highest concentration of BOD, T–N and NH4–N due to inflow of swine wastes from the livestock district. The Yucheon water had the highest level of electrical conductivity and SO 4 2– due to inflow of mis-treated wastewater from industrial districts. The Tabcheon had generally similar concentrations of nitrogen and phosphate to that of the upstream of the Mankyeong River: agricultural activity along the Tabcheon appeared to have little negative influence to the water quality. Among various sediments, concentration of organic matter, nitrogen and phosphate were high in the Iksancheon and the Yucheon due to the livestock wastes and industrial wastes. There were 282 species of plants during summer with 43 aquatic plants, 57 hydrophytes, 178 waterside plants and 4 terrestrial plants. Some plant resources were recommended due to much absorption of nitrogen and phosphate for enhancement of natural purification. C. demersum and H. verticillata were recommended in the submerged aquatic plants, H. dubia, N. indica and N. subinteperrimum in the floating leaf aquatic plants, P. communis, Z. latifolia and T. orientalis in the emerged aquatic plants, C. scutata and P. distichum in the waterside plants.  相似文献   

11.
Summary. Summary. Oilseed rape, Brassica napus L. (cv Express), plants were grown under three different sulphur regimes: sulphur-free (S0), normal sulphur (Sn, normal field concentration) and a sulphur-rich (S+, 2 × concentration of Sn). We performed dual choice oviposition assays with the diamondback moth, Plutella xylostella, using real plants and, for the first time with this insect, artificial leaves sprayed with methanolic leaf-surface extracts. The results mirrored those of a separate study of preferences for whole plants. Females laid more eggs on surrogate leaves that were treated with Sn extracts than on S0 plants, while only a slight, not significant, difference was observed between extracts of normal and sulphur-rich plants. This shows that chemical compounds on the leaf surface mediate the oviposition preference and that the female insect can perceive the quality of the host-plants in terms of their fertilisation status.Since leaf volatiles are known to be oviposition stimulants, we investigated the effects of leaf-surface extracts on insect olfactory responses using electroantennograms (EAGs). In agreement with the behavioural data, we found that extracts of sulphur-treated plants yielded higher EAG amplitudes than the S0 extracts. Since the leaf content of the volatiles isothiocyanates is influenced by sulphur nutrition, we analysed the extracts for these compounds. Above the detection threshold of our GC-MS system, no isothiocyanates were found. Thus, other compounds present in the surface extracts must be perceived by the antenna.However, the HPLC analysis revealed 11 different glucosinolates. Progoitrin (2-Hydroxy-3-butenyl) and gluconapoleiferin (2-Hydroxy-4-pentenyl), which belong to the hydroxy-alkene class of glucosinolates, were the most abundant compounds. The total glucosinolate content sharply increased from S0 to Sn plants, whereas it was slightly lower in n versus S+ plants. Since it is known that glucosinolates can stimulate oviposition, it seems likely that the increased content we observed was influencing the insect preference in this study too.  相似文献   

12.
Summary. In earlier investigations on host plant discrimination of leaf beetles glucosinolates were described as feeding stimulants for the Brassicaceae specialist Phaedon cochleariae F. (Coleoptera: Chrysomelidae). However, since these findings could not be confirmed in later studies offering 2-propenylglucosinolate in concentrations corresponding to those detected in host plant leaf material, the identification of feeding stimulants of this leaf beetle species remained unclear. In order to investigate which compounds of the host plant Sinapis alba (Brassicaceae) are involved in feeding stimulation, leaf extracts of different polarities were tested in bioassays with adults of P. cochleariae. Number of feeding beetles and net consumption rates were highest on pea leaves painted with methanol extracts of S. alba, whereas weak feeding responses were also detectable for hexane extracts. In subsequent bioassay-guided fractionations of methanol extracts with semi-preparative high performance liquid chromatography, two distinct fractions, one containing glucosinolates and another containing flavonoids, were found to stimulate beetles to feed to variable degrees. Other collected fractions had zero activity. The combination of both active fractions evoked significantly higher consumption rates and stimulated more beetles to feed than fractions tested individually. At least one compound of each fraction, among these the main glucosinolate of S. alba, 4-hydroxybenzylglucosinolate, act additively. Effects of two different naturally-occurring ratios of glucosinolates and flavonoids on the strength of feeding responses were investigated by use of extracts of two sets of host plants differently exposed to radiation. One set was outdoors-exposed, whereas the second set was kept in the greenhouse. However, the feeding behaviour of P. cochleariae was not affected by the significantly different relative compositions of both compound classes in the host material. In conclusion, mustard leaf beetles need a combination of distinct plant metabolites acting in concert for feeding stimulation, whereby the mere presence of these stimulants, but probably not the ratio of involved compounds, determines their feeding response.  相似文献   

13.
Summary. Domestic apple (Malus pumila)- and hawthorn (Crataegus sp.)-infesting races of Rhagoletis pomonella, Walsh (Diptera: Tephritidae) provide an excellent model to examine the role that host plant specificity plays during sympatric speciation (i.e., divergence in the absence of geographic isolation). Previous work has shown that these races differ in their propensities to accept apple and hawthorn fruits in behavioral choice assays, and that this discrimination translates into "host fidelity" in the field (i.e., apple flies tend to mate on and oviposit into apples and hawthorn flies on hawthorns). ?We present the results of a study examining possible physiological factors contributing to host choice differences in R. pomonella. We tested whether apple and hawthorn flies differ in their electroantennogram (EAG) responses to biologically relevant volatile compounds emitted from apples and hawthorns. Significant differences were found in the relative EAG responses of apple and hawthorn flies to host fruit compounds at five of six paired study sites across the eastern United States. The geographic pattern of EAG variation was complex, however, with local populations of apple and hawthorn flies tending to be more similar to one another than to flies of the same race at distant sites. This pattern was largely due to EAG responses for several compounds showing longitudinal or latitudinal clines, the latitudinal clines being similar to those observed for allozyme loci in the host races. We also found evidence for sex-related differences, as males tended to have higher mean EAG responses to compounds than females. Host-associated differences were therefore nested within geographic and sex-related differentiation in R. pomonella.?Further behavioral studies are needed to distinguish whether the EAG differences are responsible for, as opposed to being a consequence of, host-plant fidelity and adaptation. Crosses are also required to establish a genetic basis for the EAG responses, although we did find significant correlations between EAG scores for several compounds and the allozymes NADH-Diaphorase-2 and Hydroxyacid dehydrogenase at one of the study sites. Questions therefore remain concerning the evolutionary significance of the EAG response differences between apple and hawthorn fly races. Nevertheless, these differences raise the possibility that antennal responses to fruit-related volatile compounds contribute to host plant discrimination in R. pomonella. Regardless, the EAG responses represent another set of traits, in addition to diapause/eclosion time phenotypes and allozyme frequencies, differing between apple and hawthorn host races of R. pomonella. Received 17 March 1998; accepted 21 September 1989.  相似文献   

14.
Summary. The scope of this work was to examine whether leaf constitutive secondary metabolites play a role in determining bacterial colonization of the phyllosphere. To this aim, we surveyed nineteen native or cultivated plant species that share a common bacterial pool in a North Mediterranean area, and estimated the size of total and ice nucleation active (INA) bacterial populations on their leaves. Large differences in the colonization of their phyllosphere were found; the population size of epiphytic bacteria ranged from 7.5 × 102 to 1 × 106 CFU/g fresh weight, in eucalypt and celery, respectively. Species native in Mediterranean-type climate areas, particularly those belonging to the group of aromatic plants, are characterized by scarce presence of INA bacteria. The antibacterial activity of essential oils, surface phenolics and leaf tissue extracts was also estimated against the INA strains P. syringae and E. herbicola, isolated from two of these plant species. E. herbicola proved more sensitive than P. syringae. Of the species examined, oregano [Origanum vulgare L. subsp. hirtum (Link.) Ietswaart], an aromatic plant, had the highest antimicrobial activity, whereas six species showed no activity at all. Further experiments were performed with oregano and bean (Phaseolus vulgaris L.) that represent two extremes in their secondary metabolite content. Both plants were inoculated with P. syringae. By the end of incubation, the bacterial population on bean plants was about 100 times higher than that on oregano leaves. Scanning electron micrographs showed that bacterial growth on oregano leaves was confined to sites away from glandular hairs. Results from the bacterial colonization survey together with those from the toxicity tests showed that all species rich in antibacterial secondary metabolites harbored low leaf bacterial populations. These results provide substantial evidence that leaf secondary metabolites function as constitutive defense chemicals against microbial invasions. However, the fact that species with non- or moderately active leaf secondary metabolites are not always highly colonized suggests mediation of other unknown factors, the contribution of which requires further investigation.  相似文献   

15.
Summary. The turnip sawfly Athalia rosae sequesters glucosinolates from its cruciferous host plants in the larval stage. Investigation of the chemosensory and behavioural responses of adult A. rosae to glucosinolates and their volatile hydrolysis products, isothiocyanates, revealed that females detect glucosinolates by contact chemoreception and isothiocyanates by antennal olfaction. In electroantennogram recordings, four isothiocyanates (allyl [2-propenyl] isothiocyanate, benzyl isothiocyanate, butyl isothiocyanate and iberverin [3-methylthiopropyl isothiocyanate]) were active at all doses presented, including the lowest (0.1 μg), whilst the threshold for detection of three others, iberin [3-methylsulphinylpropyl isothiocyanate], methyl isothiocyanate, and sulforaphane [4-methylsulphinylbutyl isothiocyanate], was higher, at between 1 and 10 μg (source concentration of volatiles). Allyl isothiocyanate attracted experienced females in a four-chambered olfactometer, whilst na?ve females showed no response. Allyl isothiocyanate also attracted mature females to baited yellow water traps in field trials, although immature females were repelled at high isothiocyanate concentrations. In laboratory behavioural bioassays the glucosinolates sinigrin (allyl [2-propenyl] glucosinolate) and sinalbin (p-hydroxybenzyl glucosinolate), stimulated ovipositor probing in mature female A. rosae to an extent comparable to hot-water extracts of their host plants. These responses show that glucosinolates and isothiocyanates play an important role in host finding and host recognition in A. rosae.  相似文献   

16.
Summary. The autumn gum moth, Mnesampela privata (Guenée) (Lepidoptera: Geometridae), is native to Australia and can be a pest of plantation eucalypts. Field-collected and laboratory-reared female autumn gum moths were dissected to remove glands likely to contain components of the sex pheromone. Using gas chromatography (GC) and combined gas chromatography–mass spectrometry (GC-MS), three compounds were identified from female extracts, namely (3Z,6 Z,9 Z)-3,6,9-nonadecatriene, 1-hexadecanol and 1-octadecanol (confirmed by comparison with synthetic samples). Nonadecatriene elicited an antennal response in male autumn gum moth during gas chromatographic analyses combined with electroantennographic detection (GC-EAD). In electroantennogram (EAG) recording male M. privata antennae responded to the nonadecatriene. Nonadecatriene was synthesised via Kolbe electrolysis, starting with (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid (linolenic acid) and propanoic acid or via an alternative four-step method also starting from linolenic acid. In field trials (3Z,6Z,9Z)-3,6,9-nonadecatriene proved attractive to male moths. Thus, we conclude that (3Z,6Z,9Z)-3,6,9- nonadecatriene is a sex pheromone component of autumn gum moth. This component has been identified in extracts from other geometrids in the same subfamily, Ennominae. However, to our knowledge this is the first example where (3Z,6Z,9Z)-3,6,9-nonadecatriene has been found in females and also proved attractive to male moths when presented on its own. Our results are discussed in relation to other geometrid pheromones.  相似文献   

17.
Many plant families have aromatic species that produce volatile compounds which they release when damaged, particularly after suffering herbivory. Monarda fistulosa (Lamiaceae) makes and stores volatile essential oils in peltate glandular trichomes on leaf and floral surfaces. This study examined the larvae of a specialist tortoise beetle, Physonota unipunctata, which feed on two M. fistulosa chemotypes and incorporate host compounds into fecal shields, structures related to defense. Comparisons of shield and host leaf chemistry showed differences between chemotypes and structures (leaves vs. shields). Thymol chemotype leaves and shields contained more of all compounds that differed than did carvacrol chemotypes, except for carvacrol. Shields had lower levels of most of the more volatile chemicals than leaves, but more than twice the amounts of the phenolic monoterpenes thymol and carvacrol and greater totals. Additional experiments measured the volatiles emitted from M. fistulosa in the absence and presence of P. unipunctata larvae and compared the flower and foliage chemistry of plants from these experiments. Flowers contained lower or equal amounts of most compounds and half the total amount, compared to leaves. Plants subjected to herbivory emitted higher levels of most volatiles and 12 times the total amount, versus controls with no larvae, including proportionally more of the low boiling point chemicals. Thus, chemical profiles of shields and volatile emissions are influenced by the amounts and volatilities of compounds present in the host plant. The implications of these results are explored for the chemical ecology of both the plant and the insect.  相似文献   

18.
Summary. In order to elucidate the composition of the female sex pheromone of the northern (beech) winter moth, Operophtera fagata Scharf. (Lepidoptera: Geometridae), ovipositor extracts of unmated, calling females were analysed by gas chromatography with simultaneous electroantennographic and flame ionization detection (GC-EAD/FID). Male antennal responses indicated three active components, two of which had distinct matching peaks in the FID trace. Using coupled gas chromatography- mass spectrometry (GC-MS), these two compounds were identified as (9Z)-nonadecene (9Z-19:Hy), and (6Z,9Z)-nonadecadiene (6Z9Z-19:Hy), respectively. The third component, present in very small amounts only, was identified as (1,3Z,6Z,9Z)-nonadecatetraene (1,3Z6Z9Z-19:Hy), known as the sex pheromone of the common winter moth, O. brumata. Field tests revealed that traps baited with 6Z9Z-19:Hy and 1,3Z6Z9Z-19:Hy caugth large numbers of male O. fagata. Both compounds were found to be essential for attraction of O. fagata. In addition, the diene prevented captures of co-occurring O. brumata. In contrast, 9Z-19:Hy neither influenced the attractiveness of the two-component mixture towards O. fagata nor contributed to bait specificity. A binary mixture of 6Z9Z-19:Hy and 1,3Z6Z9Z-19:Hy in a ratio of 10:1, applied to pieces of rubber tubing, constituted a highly attractive and species-specific bait for O. fagata, which can be used for monitoring of the flight of this defoliator pest of deciduous forests.  相似文献   

19.
Baur  Robert  Feeny  Paul 《Chemoecology》1994,5(1):26-36
Summary Antennae of femalePapilio butterflies perceive many volatile plant constituents with widely differing, constituent-specific sensitivities. We compared the responses of threePapilio species to volatiles from host and non-host plants to assess species-specificity and the degree of evolutionary conservatism in olfactory responses.Since previous studies had demonstrated that the polar constituents in odor fromDaucus carota stimulate oviposition behavior inPapilio polyxenes, we collected headspace volatiles fromD. carota, Pastinaca sativa (both Apiaceae) andArtemisia dracunculus (Asteraceae) and separated the polar fraction of these volatiles by gas chromatography. GC-coupled electroantennograms (GC-EAG) were recorded from the speciesPapilio polyxenes, P. machaon hippocrates andP. troilus. In addition, the responses of the three species to five compounds known as generally occurring constituents of plant odor were recorded. The relative sensitivities for these compounds were nearly identical in all threePapilio species. The response spectra to the separated plant volatiles also showed considerable similarities among the species.From the limited set of GC peaks evoking a response in one of the species, 64% (D. carota), 44% (P. sativa) and 29% (A. dracunculus) also evoked a response in both of the other species. The responses of the two closely related Apiaceae feeders (P. polyxenes, P. m. hippocrates) to volatiles fromD. carota were more similar to each other than was either to the response ofP. troilus, which feeds on Lauraceae. However, this was not true for the responses to volatiles fromP. sativa. The least congruence among the three species was found in the responses to volatiles fromA. dracunculus, a non-host for all of them. The differences and similarities found in the response profiles of the threePapilio species are discussed with respect to evolutionary adaptation to host odor versus evolutionary conservatism in adaptation of olfactory receptors.  相似文献   

20.
Two wetland plant species, Phragmites australis and Oryza sativa, were grown in a glasshouse under hydroponics conditions. Enzyme extracts from different parts of the plants were used to determine the transformation rate of o,p-DDT, p,p-DDT and PCBs. The organic pollutants were directly spiked into the enzyme extracts, and samples were collected every 30 min and analyzed with a GC-ECD. Root extracts of P. australis readily degraded and transformed DDT and some PCB congeners with a low degree of chlorination. In contrast, crude extracts of O. sativa showed no appreciable degradation or transformation of DDT or PCBs. Inhibition studies indicated that the degradation and transformation of both DDT and PCBs by P. australis enzymes were partly mediated by peroxidase and the plant P-450 system. PCBs with a high degree of chlorination were highly resistant to transformation or degradation by plant enzymes. Both wetland plant species accumulated substantial quantities of the persistent organic chemicals but had different degradation capacities. The enzyme systems in P. australis were much more effective that those in rice in the degradation and transformation of the organic pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号