首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Leaching of heavy metals from land-disposed dredged sediment spoils is a potential environmental hazard. The leaching behavior of Cd, Cu, Pb and Zn in surface soils sampled from abandoned dredged sediment disposal sites was assessed. Using simple mass-balance calculations, the significance of the leaching test results with respect to metal migration into underlying clean soil was appraised. The potential leachability, defined as the amounts released at constant pH 4, decreased in the order (% of total contents): Zn (58%) approximately equal to Cd (49%)>Cu (5%) approximately equal to Pb (2%). The kinetics of metal release were determined in a cascade shaking test using de-mineralized water acidified to pH 4 (HNO(3)). Metal concentrations in the leachates were low and metal migration was, assuming uniform convective flow, predicted to be of no environmental concern. It is emphasized that any long-term prediction of metal migration is uncertain.  相似文献   

2.
Reusing sewage sludge as a soil fertiliser has become a common alternative to disposal. Although this practice has a few benefits, it may contribute to the medium- and long-term contamination of the trophic chain because sewage sludge may contain heavy metals and organic contaminants. As the leaching of contaminants may depend on the sludge pre-treatment, the leaching of heavy metals (Cu, Ni, Pb, Zn and Cr) and alkylphenolic compounds (APCs) (octylphenol (OP), nonylphenol (NP), nonylphenol-mono-ethoxylate (NP1EO)) was investigated in five fresh and 40 °C dried sewage sludge samples from north-eastern Spain. FT-IR analyses and full-scan GC-MS chromatograms showed that sludge drying changed the nature of organic compounds leading to changes in their solubility. Moreover, sludge drying led to a higher relative contribution of dissolved organic carbon than the particulate organic carbon in the leachates. Leaching of Pb, Zn and Cr was below 5 % in both fresh and dried sludge samples, whereas Cu and Ni leached at rates up to 12 and 43 %, respectively, in some of the dried sludge samples. The leaching yields of OP, NP and NP1EO ranged from 1.3 to 35 % for fresh samples, but they decreased from 0.8 to 3.4 % in dried samples. The decrease in the leachability of APCs observed in dried sludge samples might be attributed to the fact that these compounds are associated with particulate organic matter, with significantly lower concentration or even absent in dried sludge than in fresh sludge samples. Therefore, it is recommended to dry the sludge before its disposal.  相似文献   

3.
The mobilisation of metals (Al, Fe, Cd, Cu, Mn, Ni, Pb, Sn, Zn) from contaminated estuarine sediment has been examined using commercially available surfactants. Metal release by the anionic surfactant, sodium dodecyl sulphate (SDS), increased with increasing amphiphile concentration up to and above its critical micelle concentration (CMC). Metal mobilisation by the bile acid salt, sodium taurocholate, and the nonionic surfactant, Triton X-100, however, did not vary with amphiphile concentration. SDS was the most efficient surfactant in mobilising metals from the sample, and Cd, Cu and Ni were released to the greatest extents (12-18% of total metal at [SDS] > CMC). Metal mobilisation appeared to proceed via complexation with anionic amphiphiles and denudation of hydrophobic host phases. Surfactants may play an important role in the solubilisation of metals in the digestive environment of deposit-feeding animals and, potentially, in the remediation of metal-contaminated soil and sediment.  相似文献   

4.
The Cedar and Ortega rivers subbasin is a complex environment where both natural and anthropogenic processes influence the characteristics and distributions of sediments and contaminants, which in turn is of importance for maintenance, dredging and pollution control. This study investigated the characteristics and spatial distribution of heavy metals, including lead (Pb), copper (Cu), zinc (Zn) and cadmium (Cd), from sediments in the subbasin using field measurements and three-dimensional kriging estimates. Sediment samples collected from three sampling depth intervals (i.e., 0-0.10, 0.11-0.56 and 0.57-1.88 m) in 58 locations showed that concentrations of Pb ranged from 4.47 to 420.00 mg/kg dry weight, Cu from 2.30 to 107.00 mg/kg dry weight, Zn from 9.75 to 2,050.00 mg/kg dry weight and Cd from 0.07 to 3.83 mg/kg dry weight. Kriging estimates showed that Pb, Cu and Cd concentrations decreased significantly from the sediment depth of 0.10 to 1.5 m, whereas Zn concentrations were still enriched at 1.5 m. It further revealed that the Cedar River area was a potential source area since it was more contaminated than the rest of the subbasin. Comparison of aluminum (Al)-normalized metal concentrations indicated that most of the metals within the top two intervals (0-0.56 m) had concentrations exceeding the background levels by factors of 2-10. A three-dimensional view of the metal contamination plumes showed that all of the heavy metals, with concentrations exceeding the threshold effect level (TEL) that could pose a threat to the health of aquatic organisms, were primarily located above the sediment depth of 1.5 m.  相似文献   

5.
The solubility as a function of pH for metals in a reduced dredged sediment, subjected to different redox conditions, was studied in a laboratory experiment. The redox conditions imposed simulated (i) the undisturbed sediment (flooded), (ii) a dredged material stored in a confined pond (aerated once and then flooded), (iii) an upland stored dredged material (drained and dried), and (iv) an upland stored sediment subjected to tillage (drained, dried and mixed). Minor differences in the solubility as a function of pH were observed between the treatments after two weeks. After three months, the solubility of Cd, Cu, Pb and Zn increased strongly in the oxidized sediments. Leachability of Fe decreased, while Mn, Ni and Co were mostly unaffected. Both short- and long-term mobility of metals (except Fe) is expected to be lowest when a reduced sediment remains in reduced conditions. Studying the solubility as a function of pH may provide additional information on the chemical association of metals in sediments.  相似文献   

6.
Extractability of Cd, Cr, Cu, Ni, Pb, and Zn in a dredged sediment disposal site was assessed using single extraction procedures (H2O; 0.01 M CaCl2; 1 M NH4OAc; NH4OAc-EDTA; CaCl2-TEA-DTPA). Only Cd and Zn were found to exceed statutory threshold values for total content. The field was planted with Salix viminalis "Orm" and accumulation of heavy metals in bark, leaves, roots, and wood was evaluated at seven sampling locations along an observed gradient in texture and pollution. Biomass production was high, ranging from 13.2 to 17.8 t ha(-1) y(-1) dry weight. Metal accumulation in aboveground plant parts was low, amounting to the following annually extracted mass of metals per ha: 5034 g Zn, 83 g Cd, 145 g Cu, 83 g Pb, 12 g Ni and 6 g Cr. The use of accumulating clones and the use of soil amendments might enhance extraction efficiency in future research.  相似文献   

7.
The aim of this study was to survey the alluvial plains of the Sea Scheldt river in Belgium for the presence of old sediment-derived soils, and to appraise the heavy metal contamination at these sites. Historically, sediments of periodical dredging operations have been disposed in the alluvial plain without concern for the potential presence of contaminants. Up to 96% of the areas that were affected by sediment disposal (ca. 120 ha) was found to be polluted by at least one of the metals Cd, Cr, Zn or Pb. Concentrations of Cd, Cr and Zn were, in 10% of the cases, higher than 14, 1400 and 2200 mg/kg DM, respectively. Based on the Flemish decree on soil sanitation, Cu and Ni concentrations were of less environmental concern on any site. The pollution in the Sea Scheldt alluvial plain nevertheless is lower than for the Upper Scheldt alluvial plain. The sediment-derived soils in the most upstream part near Ghent were used for disposal of sediments from dredging operations elsewhere. Metal concentrations were explored and both spatial and temporal trend were analysed. The pollution levels encountered warrant caution as most of the soils affected by historical dredged sediment disposal are currently in use for pasture.  相似文献   

8.
In recent decades sulphate concentrations in the ground water in many parts of The Netherlands have increased dramatically resulting in increased production of iron-(di)sulphides in sediments of ecosystems fed by this water. A sediment survey was carried out to study the potential sensitivity of wetlands to drought and subsequent acidification as a consequence of iron-(di)sulphide oxidation. Dessication led to severe acidification and mobilisation of heavy metals when the sediment S/(Ca + Mg) ratio exceeded 2/ 3. A total of 47% of the investigated locations contained S/(Ca + Mg) ratios higher than 2/3 and in 100, 75 and 50% of the locations mobilisation of Zn, Cd and Ni exceeded the Dutch signal value for ground water. Consistent with the sediment survey, lime addition experiments confirmed that increasing the buffer capacity, down to a S/(Ca + Mg) ratio 2/3, led to a drastic inhibition of the acidification and heavy metal percolation from dredged sediments. The performance of the same processes under drained field conditions demonstrates the relevance of these processes during dry summers.  相似文献   

9.
The growth and metal uptake of two willow clones (Salix fragilis 'Belgisch Rood' and Salix viminalis 'Aage') was evaluated in a greenhouse pot experiment with six sediment-derived soils with increasing field Cd levels (0.9-41.4 mg kg-1). Metal concentrations of eight elements were measured in roots, stems and leaves and correlated to total and soil water metal concentrations. Dry weight root biomass, number of leaves and shoot length were measured to identify eventual negative responses of the trees. No growth inhibition was observed for both clones for any of the treatments (max. 41.4 mg kg-1 Cd, 1914 mg kg-1 Cr, 2422 mg kg-1 Zn, 655 mg kg-1 Pb), allowing their use for phytoextraction on a broad range of contaminated sediments. However, dry weight root biomass and total shoot length were significantly lower for S. viminalis compared to S. fragilis for all treatments. Willow foliar Cd concentrations were strongly correlated with soil and soil water Cd concentrations. Both clones exhibited high accumulation levels of Cd and Zn in aboveground plant parts, making them suitable subjects for phytoextraction research. Cu, Cr, Pb, Fe, Mn and Ni were found mainly in the roots. Bioconcentration factors of Cd and Zn in the leaves were highest for the treatments with the lowest soil Cd and Zn concentration.  相似文献   

10.
Goal, Scope and Background The presence or absence of vegetation can condition sediment characteristics. The main aim of this work was to investigate the influence of the sea rush Juncus maritimus on metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) availability to organisms living on or in estuarine sediments, from Douro River (NW Portugal), by comparing the characteristics and chemical behaviour of rhizosediments (collected within the plant assemblage) and those of sediment (collected around the plant). In order to evaluate whether and how sediment characteristics condition the role of plants on metal availability, sandy and muddy sediments colonised by J. maritimus were studied in parallel. Methods Metal availability was estimated by enzymatic digestion with pepsin (ED), which may provide an estimate of metal availability to organisms living at estuarine sediments. Nevertheless, since no consensus exists yet on the most suitable methodologies to estimate metal bioavailability in sediments, two more conventional approaches, BCR sequential extraction (SE) and AVS/SEM model, were also used, in parallel, and the information these approaches provided was compared with that provided by ED. Total-recoverable metal contents were determined by atomic absorption spectrophotometry after sediment digestion using a high-pressure microwave system. Results and Discussion Plants could concentrate metals around its roots and rhizomes. In addition, they were capable of oxidizing (release of oxygen by the roots) the anaerobic medium surrounding their roots in muddy sediment (reducing AVS). As sulphide oxidation renders metals (Cd, Cu, Ni, Pb and Zn) into more soluble forms, according to the AVS/SEM model, metals from muddy sites would be more available in rhizosediment than in sediment. The SE approach led to a similar conclusion. Nevertheless, the results provided by ED pointed at opposite conclusion, particularly for Cd and Zn, indicating less availability at rhizosediments than in the surrounding sediment. ED results were interpreted as a consequence of an enrichment of the rhizosediment in organic ligands exuded by the roots or liberated by dead plants. The effect of complexation of metals by organic compounds, which ED could not decompose/dissolve, seemed to overcome that caused by sediment oxidation. In general, a comparison of the information about metal availability by ED, SE, AVS/SEM, showed that it did not always match and in few cases it was even contradictory. Conclusion and Outlook Therefore, a thorough evaluation of the metal availability in sediments requires a combination of different chemical approaches, so as to take into consideration differences in ways of organism exposure (interstitial water and/or ingestion of sediment particles). - * The basis of this peer-reviewed paper is a presentation at the 9th FECS Conference on 'Chemistry and Environment', 29 August to 1 September 2004, Bordeaux, France.  相似文献   

11.
Arsenic speciation is important not only for understanding the mechanisms of arsenic accumulation and detoxification by hyperaccumulators, but also for designing disposal options of arsenic-rich biomass. The primary objective of this research was to understand the speciation and leachability of arsenic in the fronds of Chinese brake (Pteris vittata L.), an arsenic hyperaccumulator, with an emphasis on the implications for arsenic-rich biomass disposal. Chinese brake was grown for 18 weeks in a soil spiked with 50 mg As kg(-1) as arsenate (AsO4(3-)), arsenite (AsO3(3-)), dimethylarsinic acid (DMA), or methylarsonic acid (MMA). Plant samples were extracted with methanol/water (1:1) and arsenic speciation was performed using high performance liquid chromatography coupled with atomic fluorescence spectrometry. The impacts of air-drying on arsenic species and leachability in the fronds were examined in the laboratory. After 18 weeks, water-soluble arsenic in soil was mainly present as arsenate with little detectable organic species or arsenite regardless of arsenic species added to the soil. However, arsenic in the fronds was primarily present as inorganic arsenite with an average of 94%. Arsenite re-oxidation occurred in the old fronds and the excised dried tissues. Arsenic species in the fronds were slightly influenced by arsenic forms added to the soil. Air-drying of the fronds resulted in leaching of substantial amounts of arsenic. These findings can be of significance when looking at disposal options of arsenic-rich biomass from the point of view of secondary contamination.  相似文献   

12.
Metal mobility and degradation of organic pollutants were investigated in a contaminated canal sediment in NW England. Sediment was dredged and exposed above the water surface, planted with multiple taxa of Salix, Populus and Alnus and monitored over 32 months. Short-term metal fractionation and phytotoxicity during sediment oxidation were also evaluated in separate laboratory studies. Zinc and Pb redistributed into more mobile fractions, which increased toxicity of the sediment to plants in the laboratory. In contrast, at the canal site, mobility of most elements decreased and total concentrations of Zn, Pb, Cu and Cd fell. Petroleum hydrocarbon concentrations decreased, but the tree-planted treatments appeared less effective at reducing PAH concentrations than treatments colonised by invasive plants. Tree survivorship decreased over time, suggesting increasing phytotoxicity of the exposed sediment in the longer term. Trees provided little benefit in terms of sediment remediation. Options for future management of the sediment are evaluated.  相似文献   

13.
A significant emerging environmental problem is the disturbance and oxidation of soils with high levels of iron sulphide minerals resulting in acidification and causing the mobilization of metals into groundwater. This process is occurring in many parts of the world. In Western Australia, impacted groundwater is extracted by residents for domestic use. We sought to establish domestic use patterns of bore water and the concentration of metals. Sixty-seven domestic bore water samples clearly indicated oxidation of sulphidic materials with heavy metal concentrations ranging for aluminium (相似文献   

14.
A five-stage sequential leaching procedure was used to fractionate heavy metals (Cd, Cu, Pb, Cr, Zn, Fe, Mn, Ni, Co, As, V, Ba and Ti) in green liquor dregs into the following fractions: (1) water-soluble fraction (H2O), (2) exchangeable fraction (CH3COOH), (3) easily reduced fraction (HONH3Cl), (4) oxidizable fraction (H2O2 + CH3COONH4), and (5) residual fraction (HF + HNO3 + HCl). The green liquor dregs were derived from a causticizing process at a pulp mill at Kemi, Northern Finland. According to the leaching studies, the leachability of heavy metals in the water-soluble fraction varied between 0.5 and 2 mg kg(-1) expressed on a dry weight (d.w.) basis, indicating relatively low bioavailability of the metals. However, the concentration of Mn (2065 mg kg(-1); d.w.) showed a strong and of Zn (17.6 mg kg(-1); d.w.), Ni (39.7 mg kg(-1); d.w.) and Ba (32.0 mg kg(-1); d.w.) slightly tendency to be extracted in the exchangeable fraction. In addition, Zn, Mn, Ni, Co, V and Ba showed clear leachability in the easily reduced fraction, as well as Cd, Cu, Cr, Zn, Mn, As and Ba in the oxidizable fraction. For Cd, Cu, Cr, Zn, Mn, Ni, Co, Ba and Ti, the sum of leachable heavy metal concentrations in fractions 1-5 agreed relatively well with the "total" heavy metal concentrations. Recoveries of the sum of fractions 1-5 were 84-56% of those obtained by the US EPA method 3052 (i.e. concentrations obtained after microwave oven digestion with a mixture of HF and HNO3).  相似文献   

15.
A kinetic approach was employed to determine the rates of metal uptake (Cd, Cr and Zn) from the dissolved phase and the rate constants of metal depuration in the mussel Perna viridis and the clam Ruditapes philippinarum. The effects of ambient metal concentration, salinity, and body size on the metal influx rate were examined. A linear positive relationship was observed between the metal influx rate and the metal concentration in ambient seawater. There was some evidence that Zn uptake was regulated by the bivalves in response to an increase in ambient Zn concentration. The uptake rate constant was highest for Zn and lowest for Cr in both bivalves, and was higher in mussels than in clams. The metal influx rate decreased by 1.6-1.8 times for the three metals when the salinity was increased from 15 ppt to 30 ppt. However, the effect of salinity on Zn influx in mussels was not statistically significant. A negative relationship of Cd and Zn influx rates with tissue dry weight was also found in both bivalves. Cr uptake in mussels was not significantly correlated with body size, but its uptake in clams was significantly correlated with body size. Metal concentration in ambient seawater appeared to be the most determining factor on metal uptake from the dissolved phase in both bivalves. The efflux rate constants of the three metals were within the range of 0.01-0.03 d-1, and were comparable between the mussels and the clams. Using a simple bioenergetic-based kinetic model, it was shown that both dissolved uptake and food ingestion can contribute to metal accumulation in the bivalves. However, Zn accumulation in the clam R. philippinarum was dominated by uptake from food ingestion. Metal partitioning in ingested food was found to be critical in affecting the relative importance of metal uptake from the dissolved phase and food source, primarily because of the large variability of this parameter in natural environments.  相似文献   

16.
The concentrations of Cd, Co, Cu, Ni, Pb, Zn, Fe and Mn in different inorganic fertilizers (urea, calcium superphosphate, iron sulphate and copper sulphate) and in pesticides (two herbicides and one fungicide) are evaluated together with the contribution of these metals in soils from their use. The study was made in rice farming areas to the north of Albufera Natural Park (Valencia, Spain). The results obtained show that superphosphate is the fertilizer that contains the highest concentrations of Cd, Co, Cu and Zn as impurities. Copper sulphate and iron sulphate have the most significant concentrations of Pb, and are the only fertilizers in which Ni was detected. The three pesticides analysed show similar Cd contents and the highest levels of Fe, Mn, Zn, Pb and Ni are found in the herbicides. The most significant additions of heavy metals as impurities that soil receives from agricultural practices, are Mn, Zn, Co and Pb. Three contamination indexes have been applied to provide a basis for comparison of potential heavy metal toxicity. These results denote the potential toxicity of heavy metals in the studied soils.  相似文献   

17.
The potential impact of indigenous bacterial processes on the release of heavy metals from dredged sediment deposits was investigated. Batch re-suspension experiments were conducted in order to investigate the release of Zn, Cd, Cu and Pb from a polluted anoxic sediment submitted to oxidative perturbations. The concentrations of heavy metals, sulphate and dissolved organic carbon (DOC) were periodically recorded, and cell counts were performed to follow the evolution of several bacterial species. The specific effects of microbial processes were quantified by performing re-suspension assays on sterilised samples. Moreover, the effect of an initial acidification of the system was studied. The results showed that metal release was mainly due to oxidation of sulphide minerals contained in the sediment. Sulphur-oxidising bacteria such as Acidithiobacillus thiooxidans were identified to play a major role in the process, by enhancing the oxidation kinetic. However, the acid production resulting from these reactions was almost totally buffered by the dissolution of the calcite present in the sediment. Copper was released to a lesser extent, and a strong association with organic matter was observed. Lead was not observed in solution, because of its low solubility at neutral conditions and of its re-adsorption on the solid phase. The initial acidification of the system resulted in an faster growth of the acidophilic A. thiooxidans. A subsequent pH drop originating from microbial processes was then observed during the first stages of the experiment. As a consequence, drastic increases in metal (Zn, Cd) release were observed.  相似文献   

18.
Effect of soil on microbial responses to metal contamination   总被引:9,自引:0,他引:9  
An experiment was conducted to investigate microbial responses to metal inputs in five soils with varying clay and organic contents; one soil had also a higher pH. These soils were treated with a low metal, sewage sludge control or with this sludge contaminated to achieve Cu=112, Ni=58 and Zn=220 mg kg(-1) in medium and Cu=182, Ni=98 and Zn=325 mg kg(-1) in high metal soils. CO(2) evolution rates were measured at 1 week and at 4-5-day intervals thereafter until the end of the incubation (7 weeks). Extractable metals (CaCl(2) and water), biomass C, metabolic quotient, ergosterol, bacterial-fungal phospholipid fatty acid (PLFA-3 weeks only) ratio and mineral N were measured at 3 and 7 weeks. Metal inputs caused a marked increase in metal availability in the slightly acidic sandy loams, a smaller increase in slightly acidic clays and had little effect in the alkaline loam. After an initial increase in CO(2) evolution with metal inputs in all soils, the high metal treatment alone caused a significant decrease at later stages, mainly in sandy loams. Although biomass C and metabolic quotient decreased in all soils with higher metal inputs, the effect was more pronounced in the sandy loams. Metal inputs increased ergosterol and decreased bacterial-fungal PLFA ratios in most soils. Larger mineral N contents were found in all high metal soils at 3 weeks but, after 7 weeks, metals caused a significant decrease in sandy loams. CaCl(2) and water-extractable Cu, Ni and Zn contents were closely correlated with microbial indices in sandy loam but not in clay soils. Overall, the effect of treatments on microbial and extractable metal indices was greater in loams. Within a single series, higher organic soils showed less pronounced responses to metal inputs, although this trend was not always consistent.  相似文献   

19.
This study examines the effectiveness of remediating a well-recognized case of heavy metal pollution at Foundry Cove (FC), Hudson River, New York. This tidal freshwater marsh was polluted with battery-factory wastes (1953-1979) and dredged in 1994-1995. Eight years after remediation, dissolved and particulate metals (Cd, Co, Cu, Pb, Ni, and Ag) were found to be lower than levels in the lower Hudson near New York City. Levels of metals (Co, Ni, Cd) on suspended particles were comparatively high. Concentrations of surface sediment Cd throughout the marsh system remain high, but have decreased both in the dredged and undredged areas: Cd was 2.4-230mg/kg dw of sediment in 2005 vs. 109-1500mg/kg in the same area in 1983. The rate of tidal export of Cd from FC has decreased by >300-fold, suggesting that dredging successfully stemmed a major source of Cd to the Hudson River.  相似文献   

20.
Total,dissolved, and bioavailable metals at Lake Texoma marinas   总被引:2,自引:0,他引:2  
Dissolved metals in water and total metals in sediments were measured at marina areas in Lake Texoma during June 1999 to October 2001, and October 2001, respectively. The metals most often found in the highest concentrations in marina water were Na and Ca, followed by Mg and K. Elevated Cu levels detected in lake water appeared to be associated with Cu based anti-fouling paint used on boats. Metal concentrations in sediment were much higher than in water. The relative order of the concentration in sediment was Ca > Al > Fe > K > Mg > Na. Elevated Cu level at specific locations appeared to be associated with local anthropogenic sources of boat repair activities. There were positive relationships between several metal elements in water and sediment. Metals in 16 sediments from lake marinas were extracted with a weak electrolyte solution [0.1 M Ca(NO3)2] to predict the bioavailability of metals. Among the five heavy metals studied (As, Cd, Cr, Cu and Zn), Cu was the most bioavailable in Lake Texoma marinas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号