首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The composition and variability of airborne fungal spores were studied using two complementary sampling methods in an outdoor environment in Kolkata suburb for 2 years, from November 2002 to October 2004. For monitoring the total fungal spore burden in the air, Burkard 7-day volumetric sampler was used, whereas Andersen two-sage viable sampler was used for isolating the cultivable airborne fungi. Among the 37 fungal spore types identified in the air samples, the predominant ones were Cladosporium, unidentified ascospores, unidentified basidiospores, Aspergilli/Penicilli, Nigrospora, Periconia, Chaetomium, Drechslera, Alternaria, Coprinus, Ganoderma, Pithomyces, and rust spores. Only six fungal spore types (Alternaria, Aspergilli/Penicilli, Cladosporium, Curvularia, Drechslera, and Nigrospora) were recovered in common by the two samplers. For Aspergilli/Penicilli, Drechslera, and Nigrospora, the spore concentration was underestimated in the non-viable sampling method (Burkard sampler). In general, higher spore count was recorded in winter. The highest fungal species variability was observed in early monsoon (June). Relative humidity could significantly predict the seasonal periodicity of the maximum number of airborne spores. The total airborne fungi concentration recorded in the study (15-16?×?10(3) spores m(-3) of air) was lower than the proposed threshold limit value for clinical significance, suggesting apparently no or less airborne-fungi-exposure-related health risk in the sampling area. Cladosporium cladosporioides was recorded beyond the proposed threshold limit value in January 2003 and March 2004; Aspergillus fumigatus and Aspergillus nidulans in winter that might have posed considerable health risk to sensitized individuals.  相似文献   

2.
Airborne fungal spores are well known to cause respiratory allergic diseases particularly bronchial asthma, allergic rhinitis, rhino-conjunctivitis and allergic broncho-pulmonary aspergillosis in both adults and children. In order to monitor and analyze airborne fungal flora of the Karachi environment, an aeromycological study was conducted using a Burkard 7-Day Recording Volumetric Spore Trap from January to December 2010. The data recorded from the Spore Trap was further analyzed for percent catch determination, total spores concentration, seasonal periodicities and diurnal variations. Cladosporium spp (44.8%), Alternaria spp. (15.5%), Periconia spp (6.1%), Curvularia spp (2.1%), Stemphylium spp (1.3%) and Aspergillus/Penicillium type (1%) emerged to be major components constituting more than 70% of the airborne fungal flora. Cladosporium, Curvularia and Stemphylium displayed a clear seasonal trend, while there were no clear seasonal trends for other fungal spore types. Diurnal variations were observed to be mainly having daytime maxima. Spearman Rank Correlation Coefficient analysis was conducted using various weather parameters. The various fungal types showed a negative correlation with heat index, dew point, wind velocity and wind chill. However, a positive correlation was found with humidity, rain and barometric pressure. In fact, Alternaria, Bipolaris and Periconia showed a negative correlation with temperature, while Cladosporium and Periconia showed a negative correlation with heat index, dew point, wind velocity and wind chill. The barometric pressure was positively correlated with Cladosporium. On the basis of these findings, it can be concluded that a number of fungal spores are present in the atmosphere of Karachi throughout the year, with certain atmospheric conditions influencing the release, dispersion, and sedimentation processes of some genera. It is expected that clinicians will use the identified fungal flora for diagnosis and treatment and/or adopt preventative measures for allergic individuals.  相似文献   

3.
The purpose of this study was to determine the concentration, in terms of monthly and seasonal distribution and in relation to meteorological factors, of indoor and outdoor microfungi at selected sites in several child day care centers in the city of Edirne, Turkey. Samples were collected at one month intervals over a period of 12 months between January-December 2004, by exposing petri plates containing Peptone Dextrose Agar with Rose-Bengal and Streptomycin medium to the air for 10-15 min. A total of 2,071 microfungal colonies were counted on 192 petri plates. Thirty microfungal genera (Acremonium, Alternaria, Arthrinium, Aspergillus, Bahusakala, Beauveria, Ceuthospora, Chaetomium, Cladosporium, Curvularia, Drechslera, Epicoccum, Eurotium, Fusarium, Mycotypha, Myrotechium, Paecilomyces, Penicillium, Pestalotiopsis, Phoma, Ramichloridium, Rhizopus, Scopulariopsis, Stachybotrys, Stemphylium, Torula, Trichoderma, Trichothecium, Ulocladium, Verticillium) and 75 microfungal species were isolated from the air indoor and outdoor of the day care centers. The dominant microfungal genera were Cladosporium, Penicillium and Alternaria (44.11%, 18.94%, 14.67% of the total respectively), while the genus with the most species richness was Penicillium (26 species). Alternaria, Cladosporium, Penicillium and non-sporulating microfungi were found every month. Cladosporium was the dominant genus in both indoor and outdoor air. Although the predominant genus was the same in both indoor and outdoor air, Cladosporium was followed by Penicillium, Alternaria and Aspergillus genera in indoor air and by Alternaria, Penicillium and Aspergillus genera in outdoor air. While a positive correlation was found between the concentration of monthly outdoor microfungi and monthly average temperature, a negative correlation was found between the concentration of monthly outdoor microfungi and monthly average wind velocity. Also, some relationships were found between the monthly concentrations of the most predominant microfungal genera (Cladosporium, Penicillium and Alternaria) and various meteorological factors.  相似文献   

4.
The spores of Cladosporium spp. and Alternaria spp., commonly described as the most allergenic spores, were collected by means of Durham gravimetric sampler from the Sivrihisar (Eskisehir) atmosphere throughout 2005 to 2006. The weekly variations in spores/cm(2) of Cladosporium and Alternaria were recorded. During this period, a total of 6,198 spores belonging to Cladosporium spp. and Alternaria spp. were recorded. Of these spores, 2,969 were identified in 2005 and 3,229 in 2006. While 69.55% of the total spores were those of Cladosporium spp., 30.45% were Alternaria spp. Relationships between airborne fungal spore presence and weather conditions were examined statistically. A Shapiro-Wilk test revealed that the airborne spores of Cladosporium spp. and Alternaria spp. had a normal distribution. Following this, Chi-square test, t test and Pearson correlation analysis were performed. The effects of temperature and relative humidity on the spore numbers of Cladosporium spp. and Alternaria spp. were significant according to the month in which they were collected (p < 0.01). The spore concentrations of each species reached to their highest levels in June 2006.  相似文献   

5.
Alternaria and Cladosporium, known as the most allergenic spores were first collected by means of Durham gravimetric sampler from Eskisehir atmosphere from January 1, 2000 to December 31, 2001. The daily, monthly and annual variations in spores/cm(2) of Cladosporium and Alternaria were recorded. During this period, a total of 10.231 spores belonging to Cladosporium and Alternaria genera were recorded. Of these spores, 5,103 were identified in 2000 and 5,128 in 2001. While 63.09% of the total spores were those of Cladosporium, 36.91% were of Alternaria. Relationships between airborne fungal spore presence and meteorological conditions were statistically investigated. A Shapiro-Wilk test revealed that the airborne Cladosporium and Alternaria spores differed from a normal distribution. Thus, a Friedmann test was performed followed by a Pearson Correlation Analysis. The effects of rainfall, temperature and wind speed on Cladosporium and Alternaria numbers were non-significant according to the sites and months (p > 0.05), but the effects of relative humidity on Cladosporium and Alternaria numbers were significant (p < 0.01). Spore concentrations reached to their highest levels in May 2001.  相似文献   

6.
The monitoring of atmospheric Alternaria spores is of major importance due to their adverse effects on crops and their role as human allergens. Most species act as plant pathogens, prompting considerable economic losses worldwide on important crops such as potato, tomato or wheat. Fungal spores can also have serious detrimental effects on human health, triggering respiratory diseases and allergenic processes. The aim of this study was not only to examine the relationship between the atmospheric Alternaria spore content and the prevailing meteorological parameters, but also to predict the atmospheric Alternaria spore content in the Northwest Spain using a novel data analysis technique, ANNs (Artificial Neural Networks). A Hirst-type LANZONI VPPS 2000 volumetric 7-day recording sampler was used to collect the airborne spores from 1997 to 2008. Neural networks provided us with a good tool for forecasting Alternaria airborne spore concentration, and thus could help the automation of the prediction system in the aerobiological information diffusion to the population suffering from allergic problems or the prevention of considerable economic worldwide losses on important crops. Our proposed model would be applied to different geographical areas; nevertheless, the adjustment of the model, by using the available and adequate variables, would be realised in each case.  相似文献   

7.
Advances in polymerase chain reaction (PCR) have permitted accurate, rapid and quantitative identification of microorganisms in pure cultures regardless of viability or culturability. In this study, a simple sample processing method was investigated for rapid identification and quantification of fungal spores from dust samples using both conventional and real-time PCR. The proposed method was evaluated for susceptibility to interference from environmental dust samples. Stachybotrys chartarum and Aspergillus fumigatus were used as test organisms. The sensitivity of detection in pure culture was 0.1 spore DNA equivalents per PCR reaction corresponding to 20 spores ml(-1) in the sample. However, 1 spore DNA equivalent per PCR reaction corresponding to 200 spores ml(-1) in the sample was the lowest amount of spores tested without interference in dust samples spiked with spores of either fungal species. The extent of inhibition was calculated using conventional and real-time PCR reactions containing fungal spores, specific primers, specific probes (for real-time PCR) and various amounts of dust. The results indicate that the extent of inhibition by dust on PCR varies with the type and amount of dust, and number of spores. No interference in the analysis of spiked samples was detected from 0.2 mg ml(-1) of four real-life dust samples at p-value >0.05 using 2 x 10(4) spores for conventional PCR and 2 x 10(5) spores for real-time PCR. However, samples containing >0.2 mg ml(-1) real-life dust compromised the PCR assay. These results suggest the potential usefulness of a simple sample processing method in conjunction with PCR for monitoring the fungal content of aerosols collected from indoor environments.  相似文献   

8.
A temporary renovation activity releases considerably high concentrations of particulate matter, viable and non-viable, into air. These pollutants are a potential contributor to unacceptable indoor air quality (IAQ). Particulate matter and its constituents lead, sulfate, nitrate, chloride, ammonium and fungi as well as fungal spores in air were evaluated in a building during renovation action. Suspended dust was recorded at a mean value of 6.1 mg m(-3) which exceeded the Egyptian limit values for indoor air (0.15 mg m(-3)) and occupational environments (5 mg m(-3)). The highest particle frequency (23%) of aerodynamic diameter (dae) was 1.7 microm. Particulate sulfate (SO(4)(2-)), nitrate (NO(3)(-)), chloride (Cl(-)), ammonium (NH(4)(+)) and lead components of suspended dust averaged 2960, 28, 1350, 100 and 13.3 microg m(-3), respectively. Viable fungi associated with suspended dust and that in air averaged 1.11 x 10(6) colony forming unit per gram (cfu g(-1)) and 92 colony forming unit per plate per hour (cfu p(-1) h(-1)), respectively. Cladosporium(33%), Aspergillus(25.6%), Alternaria(11.2%) and Penicillium(6.6%) were the most frequent fungal genera in air, whereas Aspergillus(56.8%), Penicillium(10.3%) and Eurotium(10.3%) were the most common fungal genera associated with suspended dust. The detection of Aureobasidium, Epicoccum, Exophiala, Paecilomyces, Scopulariopsis, Ulocladium and Trichoderma is an indication of moisture-damaged building materials. Alternaria, Aureobasidium, Cladosporium, Scopulariopsis and Nigrospora have dae > 5 microm whereas Aspergillus, Penicillium and Verticillium have dae < 5 microm which are suited to penetrate deeply into lungs. Particulate matter from the working area infiltrates the occupied zones if precautionary measures are inadequate. This may cause deterioration of IAQ, discomfort and acute health problems. Renovation should be carefully designed and managed, in order to minimize degradation of the indoor and outdoor air quality.  相似文献   

9.
While several methods are available for bioaerosol monitoring, impaction remains the most common one, particularly for collecting fungal spores. Earlier studies have shown that the collection efficiency of many conventional single-stage bioaerosol impactors falls below 50% for spores with an aerodynamic diameter between 1.7 and 2.5 microm because their cut-off size is 2.5 microm or greater. The cut-off size reduction is primarily done by substantially increasing the sampling flow rate or decreasing the impaction jet size, W, to a fraction of a millimetre, with both measures often impractical to implement. Some success has recently been reported on the utilization of an ultra-low jet-to-plate distance, S (S/W < 0.1), in circular impactors. This paper describes a laboratory evaluation and some field testing of two single-stage, single-nozzle, slit bioaerosol impactors, Allergenco-D and Air-O-Cell, which feature the same jet dimensions and flow rate but have some design configuration differences that were initially thought to be of low significance. The collection efficiency and the spore deposit characteristics were determined in the laboratory using real-time aerosol spectrometry and different microscopic enumeration methods as the test impactors were challenged with the non-biological polydisperse NaCl aerosol and the aerosolized fungal spores of Cladosporium cladosporioides, Aspergillus versicolor, and Penicillium melinii. The tests showed that a relatively small reduction in the jet-to-plate distance of a single-stage, single-nozzle impactor with a tapered inlet nozzle, combined with adding a straight section of sufficient length, can significantly decrease the cut-off size to the level that is sufficient to efficiently collect spores of all fungal species. Furthermore, it appears that the slit jet design may improve the application of partial spore counting methodologies with respect to those applied to circular deposits. Data from a demonstration field study, conducted with the two samplers in environments containing a variety of fungal species, supported the laboratory findings.  相似文献   

10.
Cladosporium is one of the most common airborne molds found in indoor and outdoor environments. Cladosporium spores are important aeroallergens, and prolonged exposure to elevated spore concentrations can provoke chronic allergy and asthma. To accurately quantify the levels of Cladosporium in indoor and outdoor environments, two real-time PCR systems were developed in this study. The two real-time PCR systems are highly specific and sensitive for Cladosporium detection even in a high background of other fungal DNAs. These methods were employed to quantify Cladosporium in aerosols of five different indoor environments. The investigation revealed a high spore concentration of Cladosporium (10(7) m(-3)) in a cow barn that accounted for 28-44% of the airborne fungal propagules. In a countryside house that uses firewood for heating and in a paper and pulp factory, Cladosporium was detected at 10(4) spores m(-3), which accounted for 2-6% of the fungal propagules in the aerosols. The concentrations of Cladosporium in these three indoor environments far exceeded the medical borderline level (3000 spores m(-3)). In a power station and a fruit and vegetable storage, Cladosporium was found to be a minor component in the aerosols, accounted for 0.01-0.1% of the total fungal propagules. These results showed that monitoring Cladosporium in indoor environments is more important than in outdoor environments from the public health point of view. Cladosporium may not be the dominant fungi in some indoor environments, but its concentration could still be exceeding the threshold value for clinical significance. The methods developed in this study could facilitate accurate detection and quantification of Cladosporium for public health related risk assessment.  相似文献   

11.
A survey to assess the occurrence of airborne fungal spores in three different industries, dairies, carpentries and greenhouses, was carried out. The results revealed considerable fungal pollution in the environments of the industries sampled. Noteworthy was the occurrence of fungal genera frequently implicated in allergic and non-allergic diseases, or well known for the production of mycotoxins in foods or characterized by a marked degradative activity on different substrata. Penicillium, Candida, Mucor and Geotrichum were the most common genera identified in the dairies; Penicillium, Cladosporium, yeasts, Trichoderma and Rhizopus occurred more frequently in the carpentries; Cladosporium, Alternaria, Penicillium and Stemphilium were prevailing in the greenhouse.The results of our survey support the idea that, due to their high incidence and variety, fungal spores may represent a potential health hazard in working environments, where their concentration can be affected by many operations and handling.  相似文献   

12.
This study was investigated the density and monthly distribution of indoor and outdoor microfungi in six different residential houses in Tekirdag City through the exposure of Petri dishes containing Rose-Bengal Streptomycin Agar media. Samples were collected in 1-month intervals over a period of 12 months between March, 2001, and February, 2002. We used 432 Petri dishes and counted a total of 4,205 microfungi colonies, 1,790 from indoor air and 2,415 from outdoor air. As a result, 42 species belonging to 12 genera were identified. The most frequent fungal genera were Penicillium (28.61%), Cladosporium (16.08%) and Alternaria (15.98%). While Penicillium (40.61%) and Cladosporium (15.92%) were the dominant genera of indoor air, Alternaria (20.62%) and Penicillium (19.71%) were isolated most frequently from outdoor air (Table 3). Alternaria citri (10.15%) and Penicillium brevicompactum (10.15%) were found to be the most frequent among the 42 identified species. While P. brevicompactum (19.55%) and Aspergillus niger (6.37%) were the most frequent indoor species, A. citri (13.37%) and Cladosporium cladosporioides (8.20%) were the most frequent outdoor species. Linear Regression Analysis was applied to determine whether or not there was a relationship between the number of colonies of isolated fungal genera and meteorological factors during the research period. Correlations between the presence of Aspergillus and temperature, relative humidity, duration of sunny periods and agents of air pollution such as SO(2) and PM were statistically significant. No significant correlations, however, were found between other fungal genera and environmental variables.  相似文献   

13.
The concentrations and composition of airborne fungal spores in homes fitted with portable HEPA filtration units were examined to provide information to evaluate the importance of varying levels of fungal spores in residential environments in Perth, Australia. A novel method for simulating activity/impaction on carpeted environments was also investigated. Reductions in fungal (35%) and particulate (38%) levels were achieved in the air filter homes. Penicillium, Cladosporium and yeasts were the most common and widespread fungi recovered indoors and outdoors. Fungal range decreased over the study period but this could be due to an overall reduced dissemination of spores (less spores in the air).  相似文献   

14.
A pilot study was conducted to estimate fungal spore penetration for wall service outlets subjected to a constant air pressure. During the laboratory experiment, a wall chamber was fabricated, and telephone, electrical, and cable service outlets were installed. Penicillium chrysogenum spores were aerosolized into the chamber that was held under pressure. Spores that penetrated the outlets were funneled into an impinger for microscopic enumeration. Thirty trials were conducted for each of the five outlets (N?= 150), and the wall chamber was decontaminated between trials. Results of an analysis of variance suggest wall service outlets allow spore penetration. The penetration factor for the telephone outlet was significantly greater than all other outlets (p?< 0.05), and there was no difference in penetration between electrical outlets with and without plugs. Penetration factor differences were attributed to air leakage rates across the outlets. Due to the experimental design and equipment limitations, further research is needed to support these findings.  相似文献   

15.
The aim of the study was to identify fungal spores, in particular plant pathogenic fungi, occurring in the air in selected mountain ranges. The results revealed not only the array of fungal species migrating with air currents from the Czech Republic and Slovakia but also how the season of the year affects the distribution of spores. Such studies may lay a foundation for future aeromycological monitoring, in accordance with the requirements for integrated plant protection. Aeromycological research was carried out between 2013 and 2016 at 3-month intervals in mountainous areas along the southern borders of Poland: the Bieszczady, the Pieniny, the Giant Mountains (Karkonosze) and the Babia Góra Massif. The research relied on impact method employing Air Ideal 3P sampler, which, by drawing in atmospheric air, also collects fungal spores. Regardless of altitudinal zonation, the changing weather conditions appeared to be the main reason for the variations in the number of the fungal spores under study in those years.  相似文献   

16.
In this study, the effect of relative humidity, temperature, and wind on airborne fungal allergens in the 11 different districts of Manisa City was investigated from January 2004 to December 2005. The aim of this study was to conduct a survey to get to know the relation between wind, temperature, and relative humidity and population of allergenic fungal spores in the atmosphere. A total of 792 samples were observed by using the Merck MAS100 air sampler and 12,988 fungal colonies were counted. Fourteen fungal genera could be determined; Cladosporium that was generally found as the predominant genus followed by Penicillium, Aspergillus, and Alternaria. During the entire study, seasonal variation was found to be related to atmospheric conditions especially. The optimal conditions of meteorological factors for the fungi growth resulted in the increased number of mycoflora, qualitatively and quantitatively.  相似文献   

17.
Soil and air samples of seven different localities around Hamitabat Thermic Power Plant, 10 km far away from Luleburgaz/Kirklareli (Turkey), were taken between the years 2003 and 2004 with seasonal intervals. The samples were brought to the laboratory and their microfungal identifications were done. From the air samples, 737 microfungi colonies were isolated comprising 26 species belonging to eight genera. From soil samples, 170.6 × 104 colony-forming unit (CFU)/g was isolated from 33 species belonging to 16 genera. The most isolated genus from air samples was Alternaria (324 CFU, 43.96%), followed by Cladosporium (208 CFU, 25.52%) and Phoma (44 CFU, 5.40%). Penicillium was the most isolated genus from the soil samples with a value of 560,000 CFU/g (32.8%), followed by Fusarium (226,000 CFU/g, 13.12%) and Aspergillus (154,000 CFU/g, 9.03%). Among these species, Alternaria citri and Alternaria alternata are the most abundant species in air with 164 and 107 CFU, respectively, whereas Fusarium graminearum and Penicillium citrinum are the most abundant species in soil with CFU per gram values of 17.8 × 104 and 1.3 × 105. Correlation analysis was applied to determine whether or not there was a relationship between colony number of isolated fungal genera and meteorological factors. Some parameters of soil samples’ incontent during the research period were calculated using a computer analysis program. From the air samples, a positive correlation was found between relative humidity and Alternaria colonial counts and Cladosporium spore counts (r?=?0.912 and r?=?1.000, respectively). Similarly, with the analysis of soil samples, a positive correlation between colonial counts of Alternaria and soil pH and a positive correlation between colonial counts of Aspergillus and Penicillium and salt percentage concentration of soil were found.  相似文献   

18.
Specific PCR amplification and probe hybridization techniques were applied to examine the compositions of airborne fungi in samples from three different environments. The results from microscopic and CFU counting were compared to those of the molecular-based detections. The detection sensitivity for PCR amplifications was 9 to 73 spores and 1.3 to 19.3 CFUs per PCR reaction. The hybridization detection limit was 2 to 4 spores and 0.2 to 1.2 CFU. The hybridization method was more sensitive than PCR amplification and showed less variation among samples. Using specific PCR primers and probes we identified the presence of several fungal groups and species in the air samples. Specific detections through probe hybridization to PCR products amplified with universal or group-specific fungal primers have promising applications in the examination of air samples for environmental monitoring.  相似文献   

19.
Vacuum filter socks were evaluated for recovery efficiency of powdered Bacillus atrophaeus spores from two non-porous surfaces, stainless steel and painted wallboard and two porous surfaces, carpet and bare concrete. Two surface coupons were positioned side-by-side and seeded with aerosolized Bacillus atrophaeus spores. One of the surfaces, a stainless steel reference coupon, was sized to fit into a sample vial for direct spore removal, while the other surface, a sample surface coupon, was sized for a vacuum collection application. Deposited spore material was directly removed from the reference coupon surface and cultured for enumeration of colony forming units (CFU), while deposited spore material was collected from the sample coupon using the vacuum filter sock method, extracted by sonication and cultured for enumeration. Recovery efficiency, which is a measure of overall transfer effectiveness from the surface to culture, was calculated as the number of CFU enumerated from the filter sock sample per unit area relative to the number of CFU enumerated from the co-located reference coupon per unit area. The observed mean filter sock recovery efficiency from stainless steel was 0.29 (SD = 0.14, n = 36), from painted wallboard was 0.25 (SD = 0.15, n = 36), from carpet was 0.28 (SD = 0.13, n = 40) and from bare concrete was 0.19 (SD = 0.14, n = 44). Vacuum filter sock recovery quantitative limits of detection were estimated at 105 CFU m(-2) from stainless steel and carpet, 120 CFU m(-2) from painted wallboard and 160 CFU m(-2) from bare concrete. The method recovery efficiency and limits of detection established in this work provide useful guidance for the planning of incident response environmental sampling for biological agents such as Bacillus anthracis.  相似文献   

20.
Louis Pasteur described the first measurements of airborne microorganisms in 1861. A century later, the inhalation of spores from thermophilic microorganisms was shown to induce attacks of farmers' lung in patients with this disease, while endotoxins originating from Gram-negative bacteria were identified as causal agents for byssinosis in cotton workers. Further epidemiological and toxicological studies have demonstrated inflammatory, respiratory, and pathogenic effects following exposure to bioaerosols. Exposure assessment is often confounded by the diversity of bioaerosol agents in the environment. Microorganisms represent a highly diverse group that may vary in toxicity. Fungi and bacteria are mainly quantified as broad groups using a variety of viable and nonviable assessment methods. Endotoxins and β(1 → 3)-glucans are mainly measured by their activity in the Limulus amebocyte lysate assay, enzymes by immuno-chemical methods and mycotoxins by liquid chromatography-mass spectrometry. Few health-based occupational exposure limits (OELs) are available for risk assessment. For endotoxins, a health-based OEL of 90 endotoxin units m(-3) has been proposed in the Netherlands. A criteria document for fungal spores recently proposed a lowest observed effect level of 100,000 spores m(-3) for non-pathogenic and non-mycotoxin producing species based on inflammatory respiratory effects. Recent developments in bioaerosol assessment were presented at the Organic Dust Troms? Symposium including molecular biological methods for infectious agents and organisms that are difficult to cultivate; studies of submicronic and hyphal fragments from fungi; the effect of biodiversity of microorganisms in asthma studies; and new/improved measurement methods for fungal antigens, enzymes and allergens. Although exposure assessment of bioaerosol agents is complex and limited by the availability of methods and criteria, the field is rapidly evolving.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号