首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee BD  Hosomi M 《Chemosphere》2001,43(8):1127-1132
In order to mitigate the strong microbial resistance of benz(a)anthracene [B(a)A] in soil, a hybrid treatment of Fenton oxidation followed microbial culture was carried out. Based on optimal Fenton oxidation, i.e., 1.0 ml of ethanol, 0.2 ml of 0.5 M Fe2+, and 0.3 ml of 30% H2O2 per 1 g of 500 mg B(a)A/kg soil, about 43% of B(a)A-7,12-dione was generated during oxidation of 97% B(a)A. When the comparative biodegradability between B(a)A-contaminated soil and B(a)A-contaminated soil after Fenton oxidation was examined, it was found that 98% of B(a)A-7,12-dione degraded after 63 d in comparison with only 12% of B(a)A over the same period; results demonstrating that Fenton oxidation enhances biodegradability of B(a)A through B(a)A-7,12-dione.  相似文献   

2.
Flotron V  Delteil C  Padellec Y  Camel V 《Chemosphere》2005,59(10):1427-1437
The use of the Fenton's reagent process has been investigated for the remediation of environmental matrices contaminated by polycyclic aromatic hydrocarbons (PAHs). Laboratory experiments were first conducted in aqueous solutions, to study the kinetics of oxidation and adsorption of PAHs. Benzo[a]pyrene was more rapidly degraded than adsorbed, while only partial oxidation of fluoranthene occurred. In the case of benzo[b]fluoranthene, its adsorption prevented its oxidation. Besides competition effects between PAHs were found, with slower oxidation of mixtures as compared to single PAH solutions. Apparition of some by-products was observed, and a di-hydroxylated derivative of benzo[a]pyrene could be identified under our conditions. Consequently, application to solid environmental matrices (soil, sludge and sediment samples) was performed using large amounts of reagents. The efficiency of the Fenton treatment was dependent on the matrix characteristics (such as its organic carbon content) and the PAH availability (correlated to the date and level of contamination). However, no pH adjustment was required, as well as no iron addition due to the presence of iron oxides in the solid matrices, suggesting the potential application of Fenton-like treatment for the remediation of PAH-contaminated environmental solids.  相似文献   

3.
Ndjou'ou AC  Cassidy D 《Chemosphere》2006,65(9):1610-1615
A hydrocarbon-contaminated soil was treated in laboratory slurry reactors using two types of modified Fenton (MF) chemistry. Liquid hydrogen peroxide (HP) with Fe(3+) was compared with a calcium peroxide (CaO(2))-based oxidant (Cool-Oxtrade mark). Bioslurry treatment served as a control. During oxidation, samples of slurry filtrate were tested to quantify hydrocarbon concentrations and bulk surfactant concentrations, using the critical micelle dilution method. The results showed that both oxidants resulted in the temporary accumulation of surfactants to maximum levels of four times the critical micelle concentration, but that surfactants were completely removed by the end of treatment. Removal of surfactants was complete within 2h for liquid HP treatment versus 2 days for the CaO(2)-based oxidant. For both MF oxidants, hydrocarbon concentrations in filtrate were 3-4 orders of magnitude greater than in the biological control. Both MF oxidants also showed enhanced removal of the high molecular weight fractions of the petroleum hydrocarbons relative to biological treatment, though this effect was considerably greater with the CaO(2)-based oxidant. The chemical treatments did not considerably reduce numbers of culturable hydrocarbon-degrading microorganisms relative to the bioreactor, suggesting that chemical and biological oxidation may have occurred simultaneously in the slurry.  相似文献   

4.
Polycyclic aromatic hydrocarbons (PAHs) are well-known carcinogens to humans and ecotoxicological effects have been shown in several studies. However, PAHs can also be oxidized into more water soluble-oxygenated metabolites (Oxy-PAHs). The first purpose of the present project was to (1) assess the effects of a mixture containing three parent PAHs: anthracene, benz[a]anthracene, and benzo[a]pyrene versus a mixture of their oxygenated metabolites, namely: anthracene-9,10-dione, benz[a]anthracene-7,12-dione, and 9,10-dihydrobenzo[a]pyrene-7-(8H)-one on the hepatic fatty acid β-oxidation in chicken embryos (Gallus gallus domesticus) exposed in ovo. The second and also main purpose of the project was to (2) assess the effects of the parent PAHs versus their oxy-PAHs analogues when injected individually, followed by (3) additional testing of the individual oxy-PAHs. The hepatic β-oxidation was measured using a tritium release assay with [9,10-3H]-palmitic acid (16:0) as substrate. The result from the first part (1) showed reduced hepatic β-oxidation after exposure in ovo to a mixture of three PAHs, however, increased after exposure to the mixture of three oxy-PAHs compared to control. The result from the second part (2) and also the follow-up experiment (3) showed that 9,10-dihydrobenzo[a]pyrene-7-(8H)-one was the causative oxy-PAH. The implication of this finding on the risk assessment of PAH metabolite exposure in avian wildlife remains to be determined. To the best of our knowledge, no similar studies have been reported.  相似文献   

5.
Cultures of the ligninolytic fungus Irpex lacteus incubated in a nutrient liquid medium degraded more than 70% of the initially applied benz[a]anthracene within 14 days. At the first step of metabolization, benz[a]anthracene was transformed via a typical pathway of ligninolytic fungi to benz[a]anthracene-7,12-dione (BaAQ). The product was further transformed by at least two ways, whereas one is complied with the anthracene metabolic pathway of I. lacteus. Benz[a]anthracene-7,12-dione was degraded to 1,2-naphthalenedicarboxylic acid and phthalic acid that was followed with production of 2-hydroxymethyl benzoic acid or monomethyl and dimethylesters of phthalic acid. Another degradation product of BaAQ was identified as 1-tetralone. Its transformation via 1,4-naphthalenedione, 1,4-naphthalenediol and 1,2,3,4-tetrahydro-1-hydroxynaphthalene resulted again in phthalic acid. None of the intermediates were identified as dead-end metabolites. Metabolites produced by ring cleavage of benz[a]anthracene using the ligninolytic fungus are firstly presented in this work.  相似文献   

6.
We determined concentrations, sources, and vertical distribution of OPAHs and PAHs in soils of Bratislava. The ∑14 OPAHs concentrations in surface soil horizons ranged 88-2692 ng g−1 and those of ∑34 PAHs 842-244,870 ng g−1. The concentrations of the ∑9 carbonyl-OPAHs (r = 0.92, p = 0.0001) and the ∑5 hydroxyl-OPAHs (r = 0.73, p = 0.01) correlated significantly with ∑34 PAHs concentrations indicating the close association of OPAHs with parent-PAHs. OPAHs were quantitatively dominated by 9-fluorenone, 9,10-anthraquinone, 1-indanone and benzo[a]anthracene-7,12-dione. At several sites, individual carbonyl-OPAHs had higher concentrations than parent PAHs. The concentration ratios of several OPAHs to their parent-PAHs and contribution of the more soluble OPAHs (1-indanone and 9-fluorenone) to ∑14 OPAHs concentrations increased with soil depth suggesting that OPAHs were faster vertically transported in the study soils by leaching than PAHs which was supported by the correlation of subsoil:surface soil ratios of OPAH concentrations at several sites with KOW.  相似文献   

7.
Lee BD  Iso M  Hosomi M 《Chemosphere》2001,42(4):431-435
Five recalcitrant polycyclic aromatic hydrocarbons (PAHs) in ethanol were subjected to Fenton oxidation, and following GC-MS identification of respective oxidation products, their oxidation positions were compared to those predicted by Frontier electron density. Quinone forms of oxidation products were identified in each PAH. With the exception of fluorene, oxidation positions of quinone forms of products of acenaphthylene, anthracene, benz(a)anthracene, and benzo(a)pyrene corresponded with predicted positions in which Frontier electron density was high. From these results, it appears that determining the Frontier electron density of a PAH is a promising method for predicting the Fenton oxidation position.  相似文献   

8.
A study has been conducted to enhance degradation of a mixture of polycyclic aromatic hydrocarbons (PAHs) by combining biodegradation with hydrogen peroxide oxidation in a former manufactured gas plant (MGP) soil. An active bacterial consortium enriched from the MGP surface soil (0-2 m) biodegraded more than 90% of PAHs including 2-, 3-, and 4-ring hydrocarbons in a model soil. The consortium was also able to transform about 50% of 4- and 5-ring hydrocarbons in the MGP soil. As a chemical oxidant, Fenton's reagent (H2O2 + Fe2+) was very efficient in the destruction of a mixture of PAHs (i.e., naphthalene (NAP), fluorene (FLU), phenanthrene (PHE), anthracene (ANT), pyrene (PYR), chrysene (CHR), and benzo(a)pyrene (BaP)) in the model soil; noticeably, 84.5% and 96.7% of initial PYR and BaP were degraded, respectively. In the MGP soil, the same treatment destroyed more than 80% of 2- and 3-ring hydrocarbons and 20-40% of 4- and 5-ring compounds. However, the low pH requirement (pH 2-3) for optimum Fenton reaction made the process incompatible with biological treatment and posed potential hazards to the soil ecosystem where the reagent was used. In order to overcome such limitation, a modified Fenton-type reaction was performed at near neutral pH by using ferric ions and chelating agents such as catechol and gallic acid. By the combined treatment of the modified Fenton reaction and biodegradation, more than 98% of 2- or 3-ring hydrocarbons and between 70% and 85% of 4- or 5-ring compounds were degraded in the MGP soil, while maintaining its pH about 6-6.5.  相似文献   

9.
Usman M  Faure P  Ruby C  Hanna K 《Chemosphere》2012,87(3):234-240
In this study, feasibility of magnetite-activated persulfate oxidation (AP) was evaluated for the degradation of polycyclic aromatic hydrocarbons (PAHs) in batch slurry system. Persulfate oxidation activated with soluble Fe(II) (FP) or without activation (SP) was also tested. Kinetic oxidation of PAHs was tracked in spiked sand and in aged PAH contaminated soils at circumneutral pH. Quartz sand was spiked with: (i) single model pollutant (fluorenone) and (ii) organic extract isolated from two PAH contaminated soils (H and NM sampled from ancient coking plants) and was subjected to oxidation. Oxidation was also performed on real H and NM soils with and without an extraction pretreatment. Results indicate that oxidation of fluorenone resulted in its complete degradation by AP while abatement was very low (<20%) by SP or FP. In soil extracts spiked on sand, significant degradation of 16 PAHs was observed by AP (70-80%) in 1 week as compared to only 15% by SP or FP systems. But no PAH abatement was observed in real soils whatever the treatment used (AP, FP or SP). Then soils were subjected to an extraction pretreatment but without isolation of organic extract from soil. Oxidation of this pretreated soil showed significant abatement of PAHs by AP. On the other hand, very low degradation was achieved by FP or SP. Selective degradation of PAHs was observed by AP with lower degradation efficiency towards high molecular weight PAHs. Analyses revealed that no by-products were formed during oxidation. The results of this study demonstrate that magnetite can activate persulfate at circumneutral pH for an effective degradation of PAHs in soils. However, availability of PAHs and soil matrix were found to be the most critical factors for degradation efficiency.  相似文献   

10.
Impact of chemical oxidation on soil quality   总被引:2,自引:0,他引:2  
Oxidation treatment helps to reduce the polycyclic aromatic hydrocarbon (PAH) load in contaminated soils but it may also have an effect on the soil quality. The impact of permanganate and Fenton oxidation on soil quality is investigated. Soil quality is restricted here to the potential for plant growth. Soil samples were collected from an agricultural field (S1) and a former coking plant (S4). Agricultural soil was spiked with phenanthrene (PHE) and pyrene (PYR) at two concentrations (S2: 700 mg PHE kg−1, S3: 700 mg PHE kg−1 and 2100 mg PYR kg−1). Soils were treated with both oxidation processes, and analyzed for PAHs and a set of agronomic parameters. A plant germination and growth test was run with rye-grass on treated soils. Results showed that both treatments produced the expected reduction of PAH concentration (from 64% to 97%). Besides, a significant loss of organic C and N, and strong changes in available nutrients were observed. Permanganate treatment increased the specific surface area and the cation exchange capacity in relation to manganese dioxide precipitation, and produced a rise in pH. Fenton oxidation decreased soil pH and increased the water retention capacity. Plant growth was negatively affected by permanganate, related to lower soil permeability and aeration. Both treatments had an effect on soil properties but Fenton oxidation appeared to be more compatible with revegetation.  相似文献   

11.
An innovative process that combines soil electrokinetic remediation and liquid electrochemical oxidation for the degradation of organic compounds present in a polluted soil was developed and evaluated by using benzo[a]pyrene spiked kaolin. In order to increase benzo[a]pyrene solubility during electrokinetic treatment, the addition of a co-solvent or surfactant, such as ethanol or Brij 35, as flushing solution was tested. The research carried out demonstrated the influence of the desorption agent employed on benzo[a]pyrene remediation from the kaolin matrix. Thus, if the flushing solution was ethanol at 40%, there was no presence of contaminant in either chamber. On the contrary, when a solution of surfactant Brij 35 was used, benzo[a]pyrene was transported towards the cathode chamber, where it was collected. Moreover, the extent of this recovery depends on the pH profile on the soil. When no pH control was used, around 17% of initial contaminant was detected in the cathode chamber; however, when pH control was applied, the recovery of benzo[a]pyrene could be higher than 76%, when the pH control in the anode chamber was set at 7.0.In order to obtain the total degradation of mobilised benzo[a]pyrene from the contaminated soil, the liquid collected by electrokinetic remediation was oxidised by electrochemical treatment. This oxidation was accomplished via an electrochemical cell with a working volume of 0.4 L, and graphite as electrode material. The benzo[a]pyrene was almost totally degraded in 1 d, reaching a degradation of about 73% in 16 h.  相似文献   

12.
Environmental implications of soil remediation using the Fenton process   总被引:2,自引:0,他引:2  
This work evaluates some collateral effects caused by the application of the Fenton process to 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) and diesel degradation in soil. While about 80% of the diesel and 75% of the DDT present in the soil were degraded in a slurry system, the dissolved organic carbon (DOC) in the slurry filtrate increased from 80 to 880mgl(-1) after 64h of reaction and the DDT concentration increased from 12 to 50microgl(-1). Experiments of diesel degradation conducted on silica evidenced that soluble compounds were also formed during diesel oxidation. Furthermore, significant increase in metal concentrations was also observed in the slurry filtrate after the Fenton treatment when compared to the control experiment leading to excessive concentrations of Cr, Ni, Cu and Mn according to the limits imposed for water. Moreover, 80% of the organic matter naturally present in the soil was degraded and a drastic volatilization of DDT and 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene was observed. Despite the high percentages of diesel and DDT degradation in soil, the potential overall benefits of its application must be evaluated beforehand taking into account the metal and target compounds dissolution and the volatilization of contaminants when the process is applied.  相似文献   

13.
The biodegradation of polycyclic aromatic hydrocarbons in microecosystems containing long-term contaminated soil was investigated. Soil was contaminated by different chemicals, including PAHs since World War II. Aging of the soil was expected to act as a principal factor limiting biodegradation. Half of the microecosystems contained ryegrass (Lolium perenne) and long-term selected natural soil microflora originally present in contaminated soil. The others contained contaminated soil with natural microflora only. Half of the microecosystems in each parallel experiment was fertilised with N-P-K fertiliser. Cultivation was carried out at 12 and 18 months in a greenhouse with a natural photoperiod and the ability to degrade 15 chosen PAH was investigated. For analysis, the soil from each pot was divided into three horizontal layers for mutual comparison among layers and each layer was further divided into four equal samples. Soil extracts were analysed using HPLC. After a one-year-cultivation period the content of the monitored PAHs declined to 50%. Mostly, there were no significant differences between the microecosystems. Best degraded were fluoranthene and pyrene, which were the major contaminants present in original soil. Also, other compounds were successfully degraded, even benzo[a]pyrene and benzo[ghi]perylene. Dibenz[a,h]anthracene and indeno[1,2,3-cd]pyrene were the only PAHs, examined that showed no significant degradation. Although some differences between the soil layers were detected, no conclusive trends could be found. However, significantly lower concentrations of PAHs were determined mostly in the bottom layer of the analysed profiles. In vegetated microecosystems the decline of PAHs concentrations was more remarkable after 18 months cultivation.  相似文献   

14.
The microbial degradation of 14C-pyrene and 14C-benzo[a]pyrene by a bacterial mixed culture was studied within a mixture of the PAHs phenanthrene, anthracene, pyrene, fluoranthene, and benzo[a]pyrene as sole carbon source in the different culture systems: (i) liquid medium, (ii) soil slurry (surface and grinding influence), and (iii) soil. The fate of these two labeled compounds was followed in these systems with an emphasis on mineralization to carbon dioxide, extractability, and adsorption to humic materials and formation of unextractable residual. Mineralization showed the most obvious differences: soil slurries achieved the best results both concerning the extent of mineralization and the time required. The highest extent of pyrene mineralization (54% within 21 days) was observed in soil slurries; in liquid media, pyrene mineralization was slower, but reached approximately the same extent (54% in 150 days); in soils, mineralization reached only 36% of added pyrene after 160 days. Benzo[a]pyrene was mineralized in a mixture of PAHs in soil slurries to an extent of 34% within 70 days, whereas mineralization in liquid medium and soil occurred in the range of 5% (70 days). Mineralization of benzo[a]pyrene in sand slurries was lower compared to soil slurries (19% in sand slurries vs. 32% in soil slurries within 50 days).  相似文献   

15.
Accumulation and elimination of polycyclic aromatic hydrocarbons (PAHs) were studied in the fungus Fusarium solani. When the fungus was grown on a synthetic medium containing benzo[a]pyrene, hyphae of F. solani contained numerous lipid vesicles which could be stained by the lipid-specific dyes: Sudan III and Rhodamine B. The fluorescence produced by Rhodamine B and PAH benzo[a]pyrene were at the same locations in the fungal hyphae, indicating that F. solani stored PAH in pre-existing lipid vesicles. A passive temperature-independent process is involved in the benzo[a]pyrene uptake and storage. Sodium azide, a cytochrome c oxidation inhibitor, and the two cytoskeleton inhibitors colchicine and cytochalasin did not prevent the transport and accumulation of PAH in lipid vesicles of F. solani hyphae. F. solani degraded a large range of PAHs at different rates. PAH intracellular storage in lipid vesicles was not necessarily accompanied by degradation and was common to numerous other fungi.  相似文献   

16.
In this work, the treatment of an actual industrial waste with three advanced oxidation processes (AOP) has been studied: conductive-diamond electrooxidation (CDEO), ozonation and Fenton oxidation. The wastewater comes from olive-oil mills (OMW) and contains a COD of nearly 3000 mg dm(-3). CDEO allowed achieving the complete mineralization of the waste with high current efficiencies. Likewise, both ozonation and Fenton oxidation were able to treat the wastes, but they obtained very different results in terms of efficiency and mineralization. The accumulation of oxidation-refractory compounds as final products excludes the use of ozonation and Fenton oxidation as a sole treatment technology. This confirms that besides the hydroxyl-radical mediated oxidation, CDEO combines other important oxidation processes such as the direct electro-oxidation on the diamond surface and the oxidation mediated by other electrochemically formed compounds generated on this electrode.  相似文献   

17.

The microbial degradation of 14C-pyrene and 14C-benzo[a]pyrene by a bacterial mixed culture was studied within a mixture of the PAHs phenanthrene, anthracene, pyrene, fluoranthene, and benzo[a]pyrene as sole carbon source in the different culture systems: (i) liquid medium, (ii) soil slurry (surface and grinding influence), and (iii) soil. The fate of these two labeled compounds was followed in these systems with an emphasis on mineralization to carbon dioxide, extractability, and adsorption to humic materials and formation of unextractable residual. Mineralization showed the most obvious differences: soil slurries achieved the best results both concerning the extent of mineralization and the time required. The highest extent of pyrene mineralization (54% within 21 days) was observed in soil slurries; in liquid media, pyrene mineralization was slower, but reached approximately the same extent (54% in 150 days); in soils, mineralization reached only 36% of added pyrene after 160 days. Benzo[a]pyrene was mineralized in a mixture of PAHs in soil slurries to an extent of 34% within 70 days, whereas mineralization in liquid medium and soil occurred in the range of 5% (70 days). Mineralization of benzo[a]pyrene in sand slurries was lower compared to soil slurries (19% in sand slurries vs. 32% in soil slurries within 50 days).  相似文献   

18.
The biodegradation of polycyclic aromatic hydrocarbons (PAHs) in aqueous deoxyribonucleic acid (DNA) solution from contaminated soil washing was investigated. Initial data with a model effluent consisting of anthracene, phenanthrene, pyrene and benzo[a]pyrene that were individually dissolved in 1% aqueous DNA solution confirmed their positive degradation by Sphingomonas sp. at around 10(8)CFU mL(-1) initial cell loading. For anthracene and phenanthrene, complete removal was achieved within 1h treatment. Degradation of pyrene and benzo[a]pyrene took a relatively longer time of a few days and weeks, respectively. DNA-dissolved PAHs were also degraded relatively faster than PAH crystals in aqueous medium to suggest that the binding of the PAHs in the polymer does not pose serious constraint to bacterial uptake. The DNA was stable against the PAH-degrading bacteria. Parallel experiments with actual DNA solutions obtained during pyrene extraction from an artificially spiked soil also showed similar results. Close to 100% pyrene degradation was achieved after 1d treatment. With its chemical stability, the cell-treated DNA was re-used up to four cycles without a considerable decline in extraction performance.  相似文献   

19.
Chen L  Ran Y  Xing B  Mai B  He J  Wei X  Fu J  Sheng G 《Chemosphere》2005,60(7):879-890
We investigated contents, distribution and possible sources of PAHs and organochlorine pesticides (Ops) in 43 surface and subsurface soils around the urban Guangzhou where variable kinds of vegetables are grown. The results indicate that the contents of PAHs (16 US EPA priority PAHs) range from 42 to 3077 microg/kg and the pollution extent is classified as a moderate level in comparison with other investigations and soil quality standards. The ratios of methylphenanthrenes to phenanthrene(MP/P), anthracene to anthracene plus phenanthrene (An/178), benz[a]anthracene to benz[a]anthracene plus chrysene (BaA/228), indeno[1,2,3-cd]pyrene to indeno[1,2,3-cd]pyrene plus benzo[ghi]perylene (In/In+BP) suggest that the sources of PAHs in the soil samples are mixed with a dominant contribution from petroleum and combustion of fossil fuel. The correlation analysis shows that the PAHs contents are significantly related to total organic carbon contents (TOC) (R2=0.75) and black carbon contents (BC) (R2=0.62) in the soil samples. Dichlorodiphenyltrichloroethane and metabolites (DDTs) and hexachlorocyclohexanes and metabolites (HCHs) account largely for the contaminants of OPs. The concentrations of DDTs range from 3.58 to 831 microg/kg and the ratios for DDT/(DDD+DDE) are higher than 2 in some soil samples, suggesting that DDT contamination still exists and may be caused by its persistence in soils and/or impurity in the pesticide dicofol. The concentrations of HCHs are 0.19-42.3 microg/kg.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) are a group of toxic, persistent, bioaccumulating organic compounds containing two or more fused aromatic rings. They are listed by the U.S. Environmental Protection Agency as priority pollutants because of their carcinogenicity and toxicity. Employing ozonation as a remediation technique, this work investigated the treatability of a sediment sample from a freshwater boat slip subjected to coal tar contamination over a long period. The contaminated sediment sample contained high levels of PAHs in the forms of naphthalene, phenanthrene, pyrene, and benzo[a]pyrene, among other byproducts present in the humic and solid phases of the sediment. The objectives of this work were to examine (1) the degradation of PAHs in the contaminated sediment as treated by ozonation in the slurry form, (2) the effects of ozonation upon the soil matrix and the biodegradability of the resultant PAH intermediates, and (3) the feasibility of a combined technique using O3 as a pretreatment followed by biological degradation. The sediment was made into 3% w/w soil slurries and ozonated in a 1.7-L semi-batch, well-stirred reactor equipped with pH control and a cold trap for the gaseous effluent. Samples were collected after different ozonation durations and tested for biochemical oxygen demand (BOD), chemical oxygen demand (COD), UV absorbance, and toxicity, along with quantitative and qualitative determinations of the parent and daughter intermediates using gas chromatography/flame ionization detection (GC/FID), GC/mass spectrometry (MS), and ion chromatography (IC) techniques. The GC/MS technique identified 16 compounds associated with the humic and solid phases of the sediment. Intermediates identified at different ozonation times suggested that the degradation of PAHs was initiated by an O3 attack resulting in ring cleavage, followed by the intermediates' oxidation reactions with O3 and the concomitant OH radical toward their mineralization. Results suggested that ozonation for 2 hr removed 50-100% of various PAHs in the solid and liquid phases (as well as the aqueous and gaseous media resulting from the treatment process) of the sediment sample and that organic and inorganic constituents of the sediment were also altered by ozonation. Measurements and comparisons of BOD, COD, UV absorbance, and toxicity of the samples further suggested that ozonation improved the bioavailability and biodegradability of the contaminants, despite the increased toxicity of the treatment effluent. An integrated chemical-biological system appeared to be feasible for treating recalcitrant compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号