首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
有机肥与无机肥配施对潮土N2O排放的影响   总被引:3,自引:1,他引:3  
华北平原是我国重要的粮食主产区,由于土壤有机质含量低,增加氮肥用量并不能导致玉米产量持续增加.有机肥和无机肥配施被广泛认为是同时实现粮食增产和提高土壤有机质的双赢措施,但是有机肥和无机肥配施对华北平原农田N_2O排放的影响尚不明确.本研究在华北平原潮土区,通过测定不同种类有机肥与无机肥配施后农田N_2O排放通量和作物产量,旨在揭示不同种类有机肥及其用量对潮土N_2O排放和作物产量的影响效应.田间试验共设置8个处理,分别为不施肥(CK)、化肥氮(NPK)、 40%牛粪氮+60%化肥氮(CM)、 40%鸡粪氮+60%化肥氮(FC)、 40%猪粪氮+60%化肥氮(FP)、 20%牛粪氮+80%化肥氮(1/2CM)、 20%鸡粪氮+80%化肥氮(1/2FC)和20%猪粪氮+80%化肥氮(1/2FP).整个玉米季N_2O排放通量均与土壤WFPS显著正相关(P0.05).除NPK处理外,玉米季N_2O排放量与土壤可溶性有机碳(DOC)平均含量存在显著的线性关系.玉米季CK处理N_2O排放量为0.50 kg·hm~(-2),NPK处理增加到2.28 kg·hm~(-2).相同用量不同种类有机肥处理,N_2O排放未出现显著差异. 40%有机肥氮用量处理下N_2O排放量与NPK处理无显著差异,而用量减少至20%后, 1/2CM、 1/2FC和1/2FP处理N_2O排放量分别较CM、 FC和FP减少了33.6%、 43.7%和12.1%,其主要原因为易分解有机碳输入减少,土壤DOC含量降低,但玉米产量未出现显著差异.因此,从减少温室效应的角度,玉米季80%化肥氮配施20%有机肥氮为本地区农田施肥的较佳选择.  相似文献   

2.
优化施氮对河套灌区氧化亚氮排放和氨挥发的影响   总被引:1,自引:0,他引:1  
以河套灌区盐化潮土为研究对象,采用静态暗箱-气相色谱法和通气法研究了4个施肥处理(不施肥(CK)、传统施肥(CON)、优化处理1(OPT1,减氮53.3%)、优化处理2(OPT2,减氮53.3%+硝化抑制剂))对河套灌区玉米农田氧化亚氮(N_2O-N)排放、氨挥发(NH_3-N)损失和玉米产量的影响.结果表明:氮肥减量显著降低了土壤N_2O-N排放和NH_3-N挥发;相比于CON处理,OPT1处理的N_2O-N排放量和NH_3-N挥发量分别降低了45.2%和68.8%(p0.05),但N_2O-N损失氮素比率增加了9.7%(p0.05).施用硝化抑制剂可显著降低土壤N_2O-N排放,与OPT1处理相比,OPT2处理可降低34.6%(p0.05)的N_2O-N排放和41.5%(p0.05)的N_2O-N损失氮素比率,但NH_3-N挥发增加了47.5%(p0.05).OPT1处理显著降低了玉米产量,降幅达22.1%(p0.05),而OPT2处理相对于OPT1处理增产32.9%(p0.05),与传统施肥处理无差异.因此,综合N_2O-N排放、NH_3-N挥发及玉米产量可知,OPT2是较为合理的施肥措施,值得在河套灌区推广.  相似文献   

3.
One-year winter wheat–summer maize rotation is the most popular double cropping system in north-central China, and this highly productive system is an important source of nitrous oxide (N2O) and nitric oxide (NO) emissions due to the high fertilizer N and irrigation water inputs. To sustain the high crop production and mitigate the detrimental impacts of N2O and NO emissions, improved management practices are extensively applied. The aim of this study is therefore to evaluate the effects of an improved management practice of irrigation, fertilization and crop straw on grain yield and N2O and NO emissions for a wheat–maize rotation field in northern China. Using automated and manual chamber measuring systems, we monitored N2O and NO fluxes for the conventional (CT, 2007–2008), improved (IT, 2007–2008), straw-amended (WS, 2008–2009), straw-not-amended (NS, 2008–2009), and no N-fertilizer treatments (WS–NN, 2008–2009), respectively, for one rotation-year. The grain yields were determined for CT and IT for three rotation-years (2005–2008) and for WS, NS and WS–NN for one rotation-year (2008–2009). The improved management of irrigation and fertilization reduced the annual N fertilization rate and irrigation amount by 17% and 30%, respectively; increased the maize yield by 7–14%; and significantly decreased the N2O and NO emissions by 7% (p < 0.05) and 29% (p < 0.01), respectively. The incorporation of wheat straw increased the cumulative N2O and NO emissions in the following maize season by 58% (p < 0.01) and 13%, respectively, whereas the effects of maize straw application were not remarkable. The N2O and NO emission factors of applied N were 2.32 ± 2.32% and 0.42 ± 1.69% for wheat straw and 0.67 ± 0.23% and 0.54 ± 0.15% for chemical N-fertilizers, respectively. Compared to conventional management practices using high application rates of irrigation water and chemical N-fertilizer as well as the field burning of crop straw, the improved management strategy presented here has obvious environmentally positive effects on grain yield and mitigation of N2O and NO emissions.  相似文献   

4.
以湖南典型红壤双季稻田系统为研究对象,采用静态箱-气相色谱法研究了水稻生长季基肥配施猪粪条件下CH4和N2O的排放特征,并估算了排放的CH4和N2O的全球增温潜势(GWP).结果表明,与施用化肥处理相比,猪粪化肥配施对稻田CH4和N2O排放的季节变化模式无明显影响,但影响其排放量大小.两个稻季,猪粪替代50%化学氮肥处理(1/2N+PM)CH4累积排放量较不施氮肥处理(0N)、50%化学氮肥处理(1/2N)、100%化学氮肥处理(N)分别提高54.83%、33.85%和43.30%(P<0.05);1/2N+PM处理N2O累积排放量较N处理显著降低67.50%,较0N处理、1/2N处理分别提高129.43%、119.23%(P<0.05).水稻生长季CH4是GWP的主要贡献者,占CH4和N2O综合GWP的99%以上.1/2N+PM处理的GWP显著高于其他处理(P<0.05),且1/2N+PM处理单位产量GWP最高,较N处理、1/2N处理、0N处理分别提高58.21%、26.82%、20.63%.因此,双季稻田猪粪替代部分化学氮肥较全部施用化学氮肥增加了双季稻田CH4和N2O排放的综合温室效应,其对温室气体排放的影响需在区域温室气体排放清单中加以考虑.  相似文献   

5.
Nitrous oxide (N2O) atmospheric emission from differentagricultural soil types in Russia was evaluated based on published data onsingle input of nitrogen (N) fertilizers. For most of experiments the rates offertilization varied from 40 to 75 and from 160 to 264 kg/ha in activematter and they were considered separately. The higher rates ofsynthetic fertilizers (160 to 264 kg/ha) reduced relative gaseous loss ofN as N2O (N2O-N). Evidently, if nitrate (NO3) concentrationswere high, the low content of organic carbon (C) and oxygen (O) restricted soilmicrobiological activity and consequently formation of N2O. Themajority of gaseous loss of N2O-N occurred within 140 days afterthe input of fertilizers. The N2O emission factors derived forchernozem and soddy podzolic soil are 0.0126 and 0.0238 kgN2O-N/kg N respectively. In 1990, the use of N fertilizers innational agriculture caused the release of 53 Gg N2O-N thatconstituted 6% of global N2O emission. Later on, the emissiondropped because of decreased use of N fertilizers, and in 1998 itwas almost 21% of the 1990 level.  相似文献   

6.
通过室内培养试验和实时荧光定量PCR技术,研究了田间施用生物炭和有机肥对菜地土壤氧化亚氮(N_2O)排放、氨单加氧酶(amo A)和亚硝酸盐还原酶(nir S、nir K)、氧化亚氮还原酶(nos Z)基因丰度的影响,并探讨功能基因丰度对N_2O排放的影响.试验设置5个处理:CK(对照)、N(尿素)、N+BC(尿素和生物炭)、N+M(尿素和有机肥)和N+BC+M(尿素、生物炭和有机肥).结果表明,与CK处理相比,各施肥处理均降低了土壤氨氧化细菌(AOB)和氨氧化古菌(AOA)丰度,增加了nir K、nir S和nos Z基因丰度,并提高了培养期间N_2O累积排放量.与N处理相比,N+BC处理的土壤p H值提高了11.1%,并增加了AOB、AOA、nir S、nir K和nos Z基因丰度,增幅分别为105.8%、57.3%、22.0%、176.2%和204.9%,同时显著降低了培养期间N_2O累积排放量,降幅为58.1%;N+M处理增加了nir K和nir S基因丰度,增幅分别为58.8%和7.1%,对N_2O排放的影响不显著;N+BC+M处理增加了AOB、nir K、nir S和nos Z基因丰度,增幅分别为30.7%、68.7%、6.5%和84.5%,降低了N_2O累积排放量,降幅为14.4%.生物炭通过增加amo A、nir S和nir K基因丰度间接增加N_2O排放,同时通过增加nos Z基因丰度促进N_2O还原,综合效应表现为降低了菜地土壤N_2O排放.因此,通过施用生物炭改善土壤性质,增加功能基因丰度,降低土壤N_2O排放,是一种较好的N_2O减排措施.施用有机肥可以增加反硝化作用功能基因丰度,但对N_2O减排效果不显著.  相似文献   

7.
Tillage practices affect the fate of fertilizer nitrogen (N) through influencing transformations of N, but few studies have examined N2O and NH3 emissions, and N leaching from different rice tillage systems. Thus the objective of this study was to assess N2O emission, NH3 volatilization and N leaching from direct seeded rice in conventional tillage (CT) and no-tillage (NT) production systems in the subtropical region of China during the 2008 and 2009 rice growing seasons. Treatments were established following a split-plot design of a randomized complete block with tillage practices as the main plot and N fertilizer level as the sub-plot treatment, and there were four treatments: NT + no fertilizer (NT0), CT + no fertilizer (CT0), NT + compound fertilizer (NTC) and CT + compound fertilizer (CTC), respectively. Results showed that N fertilization significantly increased (p < 0.01) N2O emissions, NH3 volatilization and N leaching from rice fields in both years. In general, there was no significant difference in N2O emissions and NH3 volatilization between NT0 and CT0 in both years, while NTC had significantly higher (p < 0.05) N2O emissions and NH3 volatilization compared to CTC. Over the two rice growing seasons, NTC showed 32% and 47% higher N2O emissions, and 29% and 52% higher NH3 losses than CTC. Higher (p < 0.05) N2O emissions from NTC than CTC were presumably due to higher soil organic C and greater denitrification. Total N and NO3? concentrations were higher (p < 0.05) in CTC than NTC, but larger volumes of percolation water in NTC than CTC resulted in no significant difference in leakage of total N and NO3?. Hence, application of N fertilizer in combination with NT appeared to be ineffective in reducing N losses from N fertilizer in paddy fields.  相似文献   

8.
Agricultural production plays an important role in affecting atmospheric greenhouse gas concentrations. Field measurements were conducted in Quzhou County, Hebei Province in the North China Plains to quantify carbon dioxide (CO2) and nitrous oxide (N2O) emissions from a winter wheat–maize rotation field, a common cropping system across the Chinese agricultural regions. The observed flux data in conjunction with the local climate, soil and management information were utilized to test a process-based model, Denitrification–Decomposition or DNDC, for its applicability for the cropping system. The validated DNDC was then used for predicting impacts of three management alternatives (i.e., no-till, increased crop residue incorporation and reduced fertilizer application rate) on CO2 and N2O emissions from the target field. Results from the simulations indicated that (1) CO2 emissions were significantly affected by temperature, initial SOC, tillage method, and quantity and quality of the organic matter added in the soils; (2) increases in temperature, initial SOC, total fertilizer N input, and manure amendment substantially increased N2O emissions; and (3) temperature, initial SOC, tillage, and quantity and quality of the organic matter added in the soil all had significant effects on global warming. Finally, five 50-year scenarios were simulated with DNDC to predict their long-term impacts on crop yield, soil C dynamics, nitrate leaching losses, and N2O emissions. The modelled results suggested that implementation of manure amendment or crop residue incorporation instead of increased fertilizer application rates would more efficiently mitigate GHG emissions from the tested agro-ecosystem. The multi-impacts provided a sound basis for comprehensive assessments on the management alternatives.  相似文献   

9.
利用生物炭吸附面源污染水体NH4+-N并将其进行还田可实现此氮资源由水体到农田的安全有效迁移,而探索负载NH4+-N生物炭对N2O-N排放和NH3-N挥发的影响则对于减施化肥和降低土壤氮素损失意义重大.本研究采用土柱试验,设置4个处理:对照(不施氮肥,CK)、单施化肥(NPK)、负载氮+化学磷钾肥(N-BC+PK)和生物炭+化肥(BC+NPK).结果表明,相较NPK和BC+NPK处理,N-BC+PK处理N2O-N累积排放量、NH3-N累积挥发量、气态氮素累积损失量(以N计)分别显著降低了33.62%和24.64%、70.64%和79.29%、64.97%和73.75%(P<0.05).特别需要说明的是,BC+NPK处理相比NPK处理显著增加了NH3-N累积挥发量(P<0.05).综上所述,负载NH4+-N生物炭可显著减少N2O-N排放和NH3-N挥发,且其减排效果显著优于传统的生物炭化肥配施.本研究结果将为富营养化水体NH4+-N农田回用和土壤气态氮素减排提供理论依据和数据支持.  相似文献   

10.
Using revised 1996 IPCC guidelines for national greenhouse gases and statistic data in China Agricultural Yearbook, we estimated the direct nitrous oxide (N2O) emissions from agricultural fields in China for the following years: 1949, 1954, 1960, 1965, 1970, 1975, 1980, 1985, 1990 and 1995. Direct N2O emissions have been increasing continuously, from 26 Gg N in 1949 to 336 Gg N in 1995, at a rate of 7 Gg N y−1. The main reason for the rapid increase in N2O emissions was the increase in the use of synthetic fertilizer, which contributed 0.28% to the total emissions from soils in 1949, compared with 73.7% in 1990.Modifications to some equations and parameters were made according the local agricultural practices, such as the type of crops, the use of crop residue, cultivation of leguminous green manure and the application of animal manure as fertilizer in China. The trend of direct N2O emissions from agricultural fields in China is discussed in this paper.  相似文献   

11.
为探究不同钝化剂对畜禽粪便处理效果,以鸡粪和稻草秸秆为原料,采用高温酵素快速堆肥方法,研究添加海泡石(SE)、钙镁磷肥(NP)、生物炭(BI)单一及复配钝化剂海泡石+钙镁磷肥(S+N)、海泡石+生物炭(S+B)、钙镁磷肥+生物炭(N+B)、海泡石+钙镁磷肥+生物炭(SNB)对鸡粪有机肥的理化性质、重金属形态分布及有机质变化的影响.结果表明,添加不同钝化剂堆肥后显著增加鸡粪有机肥pH(P 0. 05),种子发芽率有所增加(80%以上),发芽抑制率相应降低,而电导率(EC)、有机碳全氮含量和碳氮比(C/N)均较堆肥前有所降低,各项指标均达到有机肥腐熟标准.但堆肥后各组间差异为:在pH方面复配处理pH增加较高,在电导率方面单一海泡石和钙镁磷肥处理下EC值降幅较大,而有机碳全氮含量和碳氮比各组差异不明显.虽然由于"浓缩效应"导致鸡粪有机肥重金属总量有所增加,但鸡粪有机肥中重金属可溶态比例下降,残渣态比例均有所增加,添加钝化材料后发现复配钝化剂对重金属钝化效果好于单一钝化剂,其中SNB处理对Ni、Zn、As和Pb钝化效果最好.堆肥处理后,腐殖酸(HS)和胡敏酸(HA)浓度均显著上升(P 0. 05),最高分别增加19. 8%和78. 9%,富里酸(FA)则较初始条件下降低4. 47%~20. 11%.红外光谱分析发现堆肥后多糖小分子类物质均不同程度增加.综上所述,投加钝化剂对鸡粪有机肥重金属钝化有一定的促进作用,从而使堆肥达到无害化效果.  相似文献   

12.
IntroductionNitrousoxide (N2 O)isaveryimportantgreenhousegasintheatmosphere.InterestintheincreaseofatmosphericN2 OhasbeenrecentlystimulatedbytheunderstandingthatN2 Ogasplaysanimportantroleinthechemistryandozonelayerdestructionofthestratosphere.Theradiativ…  相似文献   

13.
不同水分管理方式下水稻生长季N2O排放量估算:模型建立   总被引:2,自引:0,他引:2  
我国水稻生产中往往采用多种水分管理方式,如持续淹水、淹水-烤田-淹水和淹水-烤田-淹水-湿润灌溉等. 水分管理方式的不同会引起水稻生长季N2O排放的显著变化. 本研究收集和整理了2005年以前17篇国内外文献报道的有关我国稻田N2O季节排放通量的71组田间原位测定资料,每组资料包括稻田氮肥施用的种类和施用量、水分管理方式、N2O季节排放量等数据,旨在建立不同水分管理方式下水稻生长季N2O直接排放量的估算模型. 分析结果表明,持续淹水稻田N2O季节排放量与施氮量无明显相关关系,在淹水-烤田-淹水和淹水-烤田-淹水-湿润灌溉的水分管理方式下,两者呈极显著线性正相关关系. 持续淹水稻田N2O季节排放总量相当于施氮量的0.02%. 基于普通最小二乘法(OLS)分析技术建立的线性回归模型估算结果表明,淹水-烤田-淹水的水分管理方式下稻田肥料氮的N2O排放系数为0.42%,但N2O季节背景排放量不显著. 在淹水-烤田-淹水-湿润灌溉的水分管理方式下,水稻生长季肥料N的N2O排放系数和N2O-N背景排放量分别为0.73%和0.79 kg·hm-2. 残差分析和效能分析显示模型具有较好的适切性. 综合3种水分管理方式,我国稻田水稻生长季N的N2O排放系数和N2O-N背景排放量平均分别为0.54%和0.43 kg·hm-2. 相对于旱作农田而言,水稻生长季肥料N的N2O排放系数较低,意味着水稻生产较旱地作物可能更有利于减缓我国农业N2O排放. 本研究建立的模型可以用于我国稻田水稻生长季N2O直接排放量的估算.  相似文献   

14.
Biological nitrogen fixation (BNF) by promiscuous cultivars of soybeans (Glycine max (L.) Merr.) in cereal-based cropping systems of Nigeria’s moist savanna zone offers a potential for minimizing the investment made by resource-poor farmers on nitrogen fertilizers. A 3-year trial was conducted on five farmers’ fields in the southern Guinea savanna zone of Nigeria to assess the residual effects of two successive crops of promiscuous soybean cultivars on the yield of a following maize (Zea mays L.) crop. The soybean cultivars, TGX1456-2E (medium maturity) and TGX1660-19F (late maturity), were grown in 1996 and 1997. Treatments, imposed only in the first year of the trial, were: (i) uninoculated, (ii) inoculated with a mixture of two Bradyrhizobium strains, and (iii) fertilized with 60 kg N ha−1. A fourth treatment was a plot left to fallow. In 1998, all the previous soybean and fallow plots were sown to maize without any fertilizer application. Results in 1996 and 1997 showed a soybean response to inoculation in the first year, but differences due to the residual effect of inoculation in the second year were not significant. Both cultivars showed a similar response to inoculation but responses at the five sites were varied. Soybean cultivar 1456-2E fixed 43–52% of its N amounting to 56–70 kg N ha−1 and cultivar 1660-19F derived 39–54% of its N from N2-fixation which amounted to 51–78 kg N ha−1. Both cultivars had a high N harvest index resulting in a net removal of 52–95 kg N ha−1 when both grain and stover were exported. Even when the stover was returned, there was a depletion of 23–65 kg N ha−1, with 1456-2E removing more N than 1660-19F. Arbuscular-mycorrhizal infection on maize roots was 11–27% and dependent on previous soybean treatments and farmers’ fields. Plant height, shoot biomass, grain yield, and N uptake of maize were significantly greater in plots previously sown to soybean than in the fallow plots. In general, plots sown to the late maturing cultivar 1660-19F exhibited better residual effect, producing larger yield parameters than the plots planted with medium maturing 1456-2E.  相似文献   

15.
Minimizing soil ammonia (NH3) and nitrous oxide (N2O) emission factors (EFs) has significant implications in regional air quality and greenhouse gas (GHG) emissions besides nitrogen (N) nutrient loss. The aim of this study was to investigate the impacts of different N fertilizer treatments of conventional urea, polymer-coated urea, ammonia sulfate, urease inhibitor (NBPT, N-(n-butyl) thiophosphoric triamide)-treated urea, and nitrification inhibitor (DCD, dicyandiamide)-treated urea on emissions of NH3 and GHGs from subtropical wheat cultivation. A field study was established in a Cancienne silt loam soil. During growth season, NH3 emission following N fertilization was characterized using active chamber method whereas GHG emissions of N2O, carbon dioxide (CO2), and methane (CH4) were by passive chamber method. The results showed that coated urea exhibited the largest reduction (49%) in the EF of NH3-N followed by NBPT-treated urea (39%) and DCD-treated urea (24%) over conventional urea, whereas DCD-treated urea had the greatest suppression on N2O-N (87%) followed by coated urea (76%) and NBPT-treated urea (69%). Split fertilization of ammonium sulfate-urea significantly lowered both NH3-N and N2O-N EF values but split urea treatment had no impact over one-time application of urea. Both NBPT and DCD-treated urea treatments lowered CO2-C flux but had no effect on CH4-C flux. Overall, application of coated urea or urea with NPBT or DCD could be used as a mitigation strategy for reducing NH3 and N2O emissions in subtropical wheat production in Southern USA.  相似文献   

16.
不同种类有机肥施用对稻田CH4和N2O排放的综合影响   总被引:19,自引:4,他引:15  
以麦茬稻田为对象,研究基肥施用不同有机肥对稻田CH4和N2O排放的综合影响.结果表明:有机肥施用对稻田CH4和N2O排放的季节变化模式无明显影响,但影响其排放量.与施用化肥(化肥处理)相比,施用菜饼+化肥(菜饼处理)促进CH4和N2O的排放,其季节排放总量分别增加了252%和22%;施用小麦秸秆+化肥(秸秆处理)和牛厩肥+化肥(牛厩肥处理)明显增加CH4排放,增加量分别为250%和45%,同时却减少N2O排放,分别减少18%和21%;施用猪厩肥+化肥(猪厩肥处理)降低CH4和N2O的排放,分别降低4%和18%.对CH4和N2O排放的综合温室效应分析表明,菜饼和秸秆处理的全球增温潜势(GWP)约为化肥处理的2.5倍,牛厩肥和化肥处理基本持平,但施用猪厩肥可减少10%~15%.各处理的GWP从高到低依次为菜饼、秸秆、牛厩肥、化肥和猪厩肥.单位产量的GWP以秸秆处理最高,菜饼次之,牛厩肥比化肥处理略高,猪厩肥处理最低.从本生长季来看,猪厩肥的施用对于实现环境效益与生产效益的协调发展具有一定作用.  相似文献   

17.
黄河上游灌区连作稻田N2O排放特征及影响因素   总被引:1,自引:1,他引:0  
黄河上游灌区高产连作稻田氮肥的过量施用引起土壤氮素盈余,进而导致稻田N2O排放量增大.为了探明水稻连作模式下稻田N2O排放特征及影响因素,采用静态箱-气相色谱法,开展了为期2年的连作水稻田试验研究.试验共设置3个施氮处理,包括常规氮肥300kg.hm-2(N300)、优化氮肥240kg.hm-2(N240)和对照不施氮肥(N0),并在稻田连作的第2年,对N240处理灌溉节水30%.2年连作试验结果表明,水稻生长季稻田N2O排放主要发生在水稻施基肥后及水稻生长的中后期,在稻田灌水泡田后N2O排放速率达最大值.稻田高氮肥(300kg.hm-2)施用显著增加N2O的排放量,优化氮肥(240kg.hm-2)处理可有效降低土壤N2O排放量(p<0.01).水稻生长季稻田淹水状态时N2O排放量极低,稻田灌溉节水会相应增加土壤N2O排放量.土壤温度变化对稻田N2O的生成和排放会产生较大影响,但受稻田肥水管理等因素的影响,温度与N2O排放量相关性不显著.灌区稻田土壤N2O排放通量与田面水NO3--N含量变化及耕层0~40cm土壤NO3--N积累量变化有显著的相关性.稻田连作显著增加了耕层土壤剖面0~40cm土层NO3--N的积累量,耕层土壤NO3--N积累量的增加进而加大了土壤N2O排放的风险.在宁夏黄灌区稻田常规灌水和高氮肥(300kg.hm-2)水平下,2年连作稻田水稻生长季土壤N2O总排放量分别达55.98×104kg.a-1和51.48×104kg.a-1,在100a时间尺度上的全球增温潜势(GWPs)均值为16.02×107kg.hm-2(以CO2计),表明黄灌上游灌区高氮肥施用导致稻田N2O排放量增大,由此引起的增温潜势严重.  相似文献   

18.
桑蒙蒙  范会  姜珊珊  蒋静艳 《环境科学》2015,36(9):3358-3364
为了解农田常规施肥条件下的不同途径氮素损失特征,本文通过田间原位试验同步研究了长江中下游地区夏玉米生长季氮肥施用后的农田N2O排放、NH3挥发、氮渗漏和地表径流的变化.结果表明,在复合肥为基肥,尿素为追肥,基追肥氮素水平均为150 kg·hm-2的条件下,整个玉米生长季N2O排放系数为3.3%,NH3挥发损失率为10.2%,氮渗漏和地表径流损失率分别为11.2%和5.1%.此外,基肥施用以氮素渗漏损失为主,而追肥氮素损失以氨挥发和渗漏为主,表明不同途径化肥氮素损失主要受氮肥品种影响,玉米季追肥可改用低氨挥发氮肥品种以减少氮素损失.  相似文献   

19.
In the last 40 years, a large area of savanna vegetation in Central Brazil (Cerrado) has been converted to agriculture, with intensive use of fertilizers, irrigation and management practices. Currently, the Cerrado is the main region for beef and grain production in Brazil. However, the consequences of these agricultural practices on NO, N2O and CO2 emissions from soil to atmosphere are still poorly investigated. The objectives of this study were to quantify soil emissions of NO-N, N2O-N and CO2-C in different no-till cultivation systems in comparison with native savanna vegetation. The agricultural areas included: (a) the maize and Brachiaria ruzizienses intercropping system followed by irrigated bean in rotation; (b) soybean followed by natural fallow; and (c) cotton planting over B. ruzizienses straw. The study was performed from August 2003 to October 2005 and fluxes were measured before and after planting, after fertilizations, during the growing season, before and after harvesting. NO-N fluxes in the soybean field were similar to those measured in the native vegetation. In the cornfield, higher NO-N fluxes were measured before planting than after planting and pulses were observed after broadcast fertilizations. During Brachiaria cultivation NO-N fluxes were lower than in native vegetation. In the irrigated area (bean cultivation), NO-N fluxes were also significantly higher after broadcast fertilizations. Most of the soil N2O-N fluxes measured under cultivated and native vegetation were very low (<0.6 ng N2O-N cm−2 h−1) except during bean cultivation when N2O-N fluxes increased after the first and second broadcast fertilization with irrigation and during nodule senescence in the soybean field. Soil respiration values from the soybean field were similar to those in native vegetation. The CO2-C fluxes during cultivation of maize and irrigated bean were twice as high as in the native vegetation. During bean cultivation with irrigation, an increase in CO2-C fluxes was observed after broadcast fertilization followed by a decrease after the harvest. Significantly lower soil C stocks (0-30 cm depth) were determined under no-tillage agricultural systems in comparison with the stocks under savanna vegetation. Fertilizer-induced emission factors of N oxides calculated from the data were lower than those indicated by the IPCC as default.  相似文献   

20.
胡磊  刘韵  朱波 《环境科学》2017,38(8):3442-3450
利用紫色土长期施肥试验平台,采用静态箱-气相色谱法开展紫色土"冬小麦-夏玉米"轮作系统N_2O和NO_x排放的连续两周年(2014年11月~2016年9月)定位观测.研究了氮肥总量相同条件下的常规氮磷钾化肥(NPK)、猪厩肥(OM)、秸秆还田配施氮磷钾化肥(RSDNPK)、猪厩肥配施氮磷钾化肥(OMNPK)和氮磷钾化肥配合硝化抑制剂(DCDNPK)等施肥方式对N_2O和NO_x排放的影响,短期不施肥处理(CK)作为排放系数计算的对照.结果表明,所有施肥方式下紫色土N_2O排放峰均出现在施肥初期和大降雨过程期;NO_x排放过程与N_2O类似,排放峰出现在施肥初期,但强降雨期未出现明显排放峰.NPK、OM、RSDNPK、OMNPK和DCDNPK处理的N_2O年均累积排放量分别为:1.35、4.38、1.43、2.46、0.92 kg·hm~(-2),排放系数分别为:0.33%、1.41%、0.36%、0.73%、0.18%;相应处理的NO_x年均累积排放量分别为:0.11、0.38、0.10、0.27、0.04kg·hm~(-2),排放系数分别为:0.03%、0.13%、0.03%、0.09%、0.01%.较常规化肥,增加有机物料如施用猪厩肥和猪厩肥配施氮磷钾肥分别显著增加226%和83%的N_2O排放(P0.01),同时NO_x排放分别显著增加262%和157%(P0.01);常规化肥配合硝化抑制剂(DCDNPK)使用减少32%的N_2O排放和62%的NO_x排放(P0.01),秸秆还田配施氮磷钾肥对N_2O排放略有增加(P0.05),NO_x排放略有减少(P0.05).统计分析进一步表明,土壤无机氮含量是N_2O和NO_x二者排放的主控因子,而土壤孔隙充水率与温度分别作为N_2O与NO_x各自排放的主控因子之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号