首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用UASB反应器在改变NO2--N/NH4+-N比条件下,考察厌氧氨氧化系统对NH4+-N的超量去除特征、相关酶的催化活性以及污泥菌群结构.结果表明,随着进水NO2--N浓度降低,反应器对NH4+-N的去除量相比理论较大,在停供NO2--N情况下,反应器内NH4+-N去除可达55 mg/L.反应器内NH4+-N的去除并不是是来自进水中SO42-和Fe3+/EDTA络合物,而是存在NH4+-N的好氧硝化.过氧化氢酶测定联合分子生物学技术分析显示,好氧硝化的所需氧量分别来自进水和过氧化氢酶产氧.反应器底部污泥层的氨氧化菌(AOB)、厌氧氨氧化菌(AnAOB)活性优于上部污泥层,相反,上部污泥层的异养反硝化菌(HDB)活性优于底部污泥层,二者协同将NH4+-N转化为N2.  相似文献   

2.
通过连续流实验和批式实验研究了有机物和NO2--N对厌氧氨氧化菌和反硝化菌耦合脱氮特性的影响.在连续流实验中,保证底物NO2--N充足,研究了葡萄糖有机物对厌氧氨氧化颗粒污泥反应器脱氮性能的影响.当进水葡萄糖有机物的COD浓度为100mg/L时,颗粒污泥具有良好的厌氧氨氧化耦合反硝化脱氮活性,当COD浓度为200mg/L时,颗粒污泥的厌氧氨氧化耦合反硝化脱氮活性较差.当进水COD浓度分别为100,200mg/L时,反应器中颗粒污泥的厌氧氨氧化NH4+-N去除活性分别为0.096,0.071kg NH4+-N/(kgVSS-d),厌氧氨氧化NO2--N去除活性分别为0.153,0.092kg NO2--N/(kgVSS-d),反硝化NO2--N去除活性分别为0.111,0.212kg NO2--N/(kgVSS-d).在批式实验中,研究了碳源种类和COD/NO2--N比对厌氧氨氧化耦合反硝化颗粒污泥脱氮性能的影响.控制COD/NO2--N比为1~4,以葡萄糖为碳源时,厌氧氨氧化菌在亚硝态的竞争过程中占据优势;以乙酸钠为碳源时,控制COD/NO2--N比为1~4,厌氧氨氧化菌在亚硝态的竞争过程中处于劣势.  相似文献   

3.
采用序批式反应器-厌氧序批式反应器(SBR-ASBR)组合工艺处理常温低C/N比实际生活污水,通过调控SBR缺氧:好氧时间分别为80min:60min、120min:60min和150min:60min时,实现半亚硝化,将其出水直接泵入ASBR反应器中,考察不同进水NO2--N/NH4+-N和COD/NH4+-N对厌氧氨氧化耦合反硝化同步脱氮除碳的影响,并采用响应面法设计正交批次试验.结果表明:在NO2--N/NH4+-N为1.55,COD/NH4+-N为4.22时,出水NH4+-N、NO2--N和COD的浓度分别为2.79,0.47,38.37mg/L,其去除率分别高达87.56%,98.45%和62.69%.ΔNO2--N/ΔNH4+-N为2.23,生成的NO3--N的量比理论值小2.47mg/L,厌氧氨氧化和异养反硝化共同完成氮素去除,系统脱氮除碳性能最佳.当NO2--N/NH4+-N和COD/NH4+-N分别由0.84增加到1.55和3.24增加到4.22时,厌氧氨氧化和异养反硝化对脱氮贡献率分别由80.40%降至53.33%和19.60%增加到46.67%.NO2--N/NH4+-N和COD/NH4+-N对TN和COD去除的正交影响显著,均呈现正相关,R2分别为0.9243和0.9700.  相似文献   

4.
徐贵达  李冬  刘志诚  陶博  张杰 《中国环境科学》2021,41(11):5133-5141
鉴于厌氧氨氧化工艺进水必须包含NO2--N和NH4+-N两种基质,且只能脱氮,为在此基础上进一步实现除磷,提出辅以短程硝化技术,将除磷、脱氮技术相耦合,即短程硝化反硝化除磷串联厌氧氨氧化工艺.生活污水首先进入短程硝化反硝化除磷单元,主要实现NH4+-N转化为NO2--N并去除COD,其部分出水与生活污水原水相混合再进入厌氧氨氧化单元,同时短程硝化反硝化除磷单元于缺氧条件下反硝化吸磷,待反应结束后两个处理单元的出水混合排放.实验结果表明,控制进水混合比为4.2可保证Anammox单元中C/N和NO2--N/NH4+-N值分别为2和1.5,平均△NO2--N/△NH4+-N=1.41,△NO3--N/△NH4+-N=0.12,Anammox脱氮平均占比为85.2%,反硝化与Anammox反应耦合良好.整个系统稳定运行后出水COD、P、NH4+-N、NO2--N和NO3--N浓度分别为15.2,0.85,0.59,5.56,3.33mg/L,TN去除率为89.4%,通过PNDPR-Anammox耦合新工艺成功实现模拟生活污水的高效处理.  相似文献   

5.
郑照明  李军  马静  杜佳  赵白航 《中国环境科学》2016,36(10):2957-2963
通过批试实验研究了氨氮浓度对SNAD生物膜厌氧氨氧化性能的影响.SNAD生物膜反应器以生活污水为进水.进水NH4+-N和COD浓度平均值分别为70mg/L和180mg/L,出水NH4+-N,NO2--N,NO3--N和COD浓度平均值分别为2mg/L,2mg/L,7mg/L和50mg/L.SNAD生物膜具有良好的厌氧氨氧化活性.初始NH4+-N和NO2--N浓度都为70mg/L时,厌氧氨氧化批试NH4+-N、NO2--N和TIN去除速率分别为0.121kg N/(kg VSS·d),0.180kg N/(kg VSS·d)和0.267kg N/(kg VSS·d).采用Haldane模型可以很好的拟合氨氮浓度对厌氧氨氧化活性的影响.在高FA和低FA工况下氨氮浓度对厌氧氨氧化活性的抑制动力学常数相差不大.M1(FA浓度为0.7~20.4mg/L)和M2(FA浓度为6.3~190.5mg/L)的最大NO2--N理论去除速率rmax分别为0.209kg N/(kg VSS·d)和0.221kg N/(kg VSS·d),氨氮半饱和常数Ks分别为9.5mg/L和6.1mg/L,氨氮自身抑制常数KI分别为422mg/L和597mg/L.氨氮(而不是游离氨)对SNAD生物膜的厌氧氨氧化活性起主要抑制作用.  相似文献   

6.
采用ASBR厌氧氨氧化反应器,在全海水条件下,通过固定进水NH4+-N 110mg/L,逐渐提高进水NO2--N的方式研究了NO2--N对厌氧氨氧化脱氮的影响及抑制动力学和脱氮过程动力学.结果表明:进水NO2--N浓度达到170mg/L时,厌氧氨氧化反应开始受到明显抑制, NH4+-N的去除率下降8.41%;修正的Logistic过程动力学研究结果显示,进水NO2--N低于151.49mg/L会促进厌氧氨氧化反应的进行,进水NO2--N高于170mg/L时开始抑制厌氧氨氧化反应的进行;Luong模型适合描述全海水条件下高浓度NO2--N对厌氧氨氧化脱氮效能的抑制动力学.Luong模型得到的最大基质转化速率(NRRmax)为0.53kg N/(m3·d),出水NO2--N半饱和常数(KS)为0.10mg/L,净生长停止的出水NO2--N浓度(Sm)为338.22mg/L,Luong动力学常数(n)为0.41,相关系数为0.97801.  相似文献   

7.
采用无机含氨和硫酸盐(SO42-)废水作为升流式污泥床(USB)反应器进水,研究了其对铵(NH4+)和SO42-的去除以及不同高度污泥层含氮、硫元素的转化途径.结果表明在反应器进水口处由于进水自含氧(外源性氧)和兼性厌氧菌受到氧化应激产生过氧化氢(内源性氧),两种“氧”共同存在下,反应器内生物脱氨量(以氮计)最高达40mg/L左右,且在USB反应器不同高度污泥层含氮化合物和含硫化合物的转化途径不同.在反应器底部污泥层,颗粒污泥表面氨氧化菌利用O2将氨(NH4+)氧化成亚硝酸盐(NO2-),在颗粒污泥内部厌氧氨氧化菌利用NH4+和NO2-生成氮气(N2)和硝酸盐(NO3-);同时,O2的存在使得反应器底部污泥层部分厌氧颗粒污泥裂解,产生少量有机物,在颗粒污泥内部硫酸盐还原菌利用有机物将SO42-还原生成硫离子(S2-);硫自养反硝化菌利用NO2-/ NO3-将S2-重新氧化为SO42-.在反应器上部污泥层,由于只有少量内源性氧的存在,硫自养反硝化菌只能利用少量NO2-/ NO3-将S2-氧化为硫单质(S0);在USB反应器底部污泥层实现NH4+的去除和SO42-的循环,在上部污泥层实现了SO42-的去除.  相似文献   

8.
为探明在土壤环境有利于氨氧化作用发生的条件下,稻壳生物炭对酸性农田土壤N2O排放的影响,将生物炭分别按质量比0%(对照)、2%、5%和10%与土壤充分混匀,开展为期17d的室内静态土壤培养实验,研究土壤N2O排放速率的日变化以及整个培养期间的N2O累积排放量.同时,测定了培养终态土壤样品的pH值、NH4+-N、NO3--N、NO2--N和溶解性有机碳(DOC)含量,分析稻壳生物炭对土壤N2O排放影响的机理.结果表明,不同稻壳生物炭添加量均显著抑制了酸性农田土壤的N2O排放(P<0.001),且以5%和10%处理的抑制作用最明显;与对照处理相比,2%、5%和10%处理的N2O累积排放量分别减少了87.68%、94.59%和96.90%.培养前后土壤pH值、NH4+-N和NO3--N含量的变化表明,稻壳生物炭显著促进了土壤的硝化作用,尤其是5%和10%处理.线性回归分析表明,土壤N2O排放速率与NO2--N含量显著正相关(P<0.01),且NO2--N含量对N2O排放速率的解释程度为45%.由于稻壳生物炭促进了土壤的硝化作用,使NO2-更易转化为NO3-,减少了NO2-积累,进而减少了通过硝化菌反硝化作用途径产生的N2O.培养结束时,5%和10%处理的DOC含量显著高于对照处理,但培养过程中,稻壳生物炭并未显著促进土壤有机碳矿化.  相似文献   

9.
考察了进水中NaHCO3投加量对废铁屑耦合厌氧氨氧化系统脱氮效能的影响.结果表明,NaHCO3投加量由250mg/L逐渐减少至125mg/L,常规厌氧氨氧化系统(R1)TN去除率下降至65%以下,污泥比活性下降约16%,而废铁屑(10g)耦合厌氧氨氧化系统(R2和R3)TN去除率提升至76.9%~82.2%,并且污泥比活性比R1高39.5%~51.4%;NaHCO3投加量的减少同时造成R1中ΔNO3--N/ΔNH4+-N比逐渐升高至0.34,而R2和R3中ΔNO3--N/ΔNH4+-N比低至0.2~0.21.进水中无机碳源(IC)不足(而非pH值或碱度)是导致R1脱氮效能恶化的主要原因,废铁屑耦合厌氧氨氧化系统可以有效应对无机碳源不足产生的不利影响并提升系统的脱氮效能.此外,在无机碳源不足(IC/TN=0.04)的条件下,废铁屑与厌氧氨氧化直接耦合系统(R2)比间接耦合系统(R3)具有更高的脱氮效能、污泥比活性以及NO3--N还原能力.  相似文献   

10.
为探明焦作市大气湿沉降中硝态氮的污染水平,识别其来源及其形成过程,于2020年1月-2021年12月采集了焦作市大气湿沉降样品41个,测定并分析了TN、NH4+-N、NO3--N浓度以及δ15N-NO3-、δ18O-NO3-值.结果表明:(1)TN、NH4+-N、NO3--N浓度范围分别为2.52~13.27、0.11~1.70、1.64~8.31 mg/L,焦作市湿沉降中氮的主要存在形态为NO3--N,占比为52.11%~83.92%.(2)δ18O-NO3-、δ15N-NO3-值的范围分别为54.9‰~93...  相似文献   

11.
玉米秸秆和玉米芯生物炭对水溶液中无机氮的吸附性能   总被引:6,自引:0,他引:6  
为探明玉米秸秆和玉米芯生物炭对水溶液中无机氮的吸附性能,研究了其对NH4+-N、NO3--N和NO2--N的吸附动力学过程;并用等温吸附模型对NH4+-N和NO3--N的吸附过程进行拟合,探讨制得生物炭对无机氮的吸附机理.结果表明,400℃和600℃制得玉米秸秆和玉米芯生物炭均呈碱性,表现为400℃ < 600℃;同种原材料,与400℃制得生物炭相比,600℃制得生物炭碱性含氧官能团数量较多,而酸性含氧官能团数量较少.400℃制得生物炭对NH4+-N的吸附能力较强(玉米秸秆和玉米芯生物炭的平衡吸附量分别为4.22和4.09mg/g);而600℃制得生物炭对NO3--N和NO2--N的吸附能力较强(玉米秸秆和玉米芯生物炭对NO3--N的平衡吸附量分别为0.73和0.63mg/g;对NO2--N的平衡吸附量分别为0.55和0.35mg/g).与NO3--N和NO2--N相比,玉米秸秆和玉米芯生物炭对NH4+-N的吸附能力更强,4种生物炭对NH4+-N的平衡吸附量是NO3--N/NO2--N的4.29~20.2倍.等温吸附模型拟合研究表明,玉米秸秆和玉米芯生物炭对水溶液中NH4+-N和NO3--N的吸附过程均可用Freundlich模型描述,其在生物炭表面的吸附是多分子层吸附.  相似文献   

12.
采用晚期垃圾渗滤液对UASB反应器中无机环境培养条件下厌氧氨氧化菌进行驯化,探讨基质浓度和水力停留时间对系统运行性能的影响,通过批式试验分别对基质和垃圾渗滤液抑制厌氧氨氧化动力学进行测定并建立相应的动力学模型.结果表明,经过75d的运行,系统逐渐适应垃圾渗滤液并实现高效脱氮.基质的去除量随进水基质浓度的升高呈先升高后降低的变化趋势.随着HRT的延长,进水基质及渗滤液浓度逐渐升高,系统脱氮效果降低.厌氧氨氧化基质抑制的阈值是NH4+-N浓度为489.03mg/L和NO2--N浓度为192.36mg/L.当以铵盐为抑制剂时,Vmax(NH4+-N)为0.1893mg/(mg·d),半饱和常数为39.39mg/L,抑制动力学常数为3482.27mg/L.当以亚硝酸盐为抑制剂时,Vmax(NO2--N)为0.246mg/(mg·d),半饱和常数为43.19mg/L,抑制动力学常数为701.15mg/L.厌氧氨氧化受垃圾渗滤液影响尤为显著,垃圾渗滤液条件下厌氧氨氧化活性被完全抑制的浓度为1450.69mg/L (以COD计) .  相似文献   

13.
通过批式实验,得到超声波强化Anammox菌活性的最优工作参数,超声频率25kHz、超声时间3min、超声强度0.2 W/cm2,而后在此最优超声强化条件下采用固定床反应器接种传统活性污泥启动Anammox工艺.整个试验过程,温度维持在35℃.在启动阶段,水力停留时间(HRT)为2d,控制进水NH4+-N和NO2--N浓度为70mg/L.反应器运行至第38d,首次表现Anammox活性.运行至53d时,NH4+-N、NO2--N去除速率和去除率分别为30.81,34.97mgN/(L·d)和88.03%、99.91%,总氮去除速率和去除率达60.34mgN/(L·d)和86.20%.R1和R2分别稳定在1.14和0.18.在负荷提升阶段(53~135d),当进水NH4+-N和NO2--N负荷维持在最高值380mg/(L·d)时,NH4+-N和NO2--N平均去除效率分别为82.74%和97.89%.NH4+-N和NO2--N最大去除速率分别为320.67和379.85mgN/(L·d),最大总氮去除速率和去除率为698.00mgN/(L·d)和91.84%.负荷提高阶段末,R1稳定在1.18左右,R2接近于0.反应器内Anammox菌占主导,存在少量反硝化菌强化总氮去除.  相似文献   

14.
为实现常温下高氨氮废水中氮的高效去除,选取8:1、12:1和15:1等3个气水比(GWR)条件,考察常温下曝气生物滤池(BAF)短程硝化-厌氧氨氧化(ANAMMOX)一体化自养脱氮工艺稳定运行的性能.研究结果表明:进水氨氮(NH4+-N)浓度为400mg/L、回流比为1:1的条件下,GWR为15:1脱氮效果最好,氨氮去除率(ARE)达90%以上,总氮(TN)去除负荷为1.1kgN/(m3·d),去除率达83%.GWR为15:1时,溶解氧(DO)为2.41~4.22mg/L,进水NH4+-N转化为亚硝(NO2--N)量增加,ANAMMOX活性增强.对生物膜进行功能菌种实时荧光定量PCR(qPCR)分析得出,GWR为15:1时,ANAMMOX和氨氧化菌(AOB)两者丰度均最高,高达1012 copies/g dry sludge以上,一体化脱氮效果最好.同时,研究表明提高GWR后ANAMMOX反应增强,而过程中无N2O生成,GWR为15:1时,N2O总释放量最小,释放因子为0.0012.  相似文献   

15.
实验采用生物膜-活性污泥复合工艺(IFAS),探究了不同进水NH4+-N负荷以及游离氨(FA)浓度下的好氧氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)的动力学特性,考察了不同微生物聚集体(悬浮污泥和载体生物膜)对于NH4+-N去除的贡献,同时对其中的生物吸附和生物降解进行定量分析.利用荧光原位杂交(FISH)技术观察了总菌、AOB和NOB的数量以及空间结构的变化.结果表明,随着进水NH4+-N浓度逐渐升高,出水NO3--N浓度逐渐下降,NO2--N得到大量积累,当进水NH4+-N浓度为480mg/L时,NH4+-N去除率和亚硝酸盐氮积累率(NAR)分别稳定在95%和80%以上,而FA由(2.77±0.07)mg/L增加至(16.35±0.3)mg/L时,NAR由9.42%增加至83.31%,实现了对NOB的抑制.在NH4+-N的去除过程中生物吸附和微生物降解分别占NH4+-N去除量的3.4%和88.1%,悬浮污泥和生物膜中AOB占比分别由27.4%和10.3%增加至41.3%和18.1%,表明悬浮污泥比生物膜更有利实现对于AOB的富集.  相似文献   

16.
为探究锌(Zn)污染对农田土壤氧化亚氮(N2O)排放的影响,分别以猪粪和尿素为肥源进行室内培养实验,对比分析不同含量Zn (0、50、500、1500和5000mg/kg)对N2O排放的影响及其机制,并在培养第52d向所有处理再次添加尿素以探究其长期效应,共培养80d.结果表明:第1次添加肥料阶段,在尿素为肥源处理中不同含量Zn均表现为显著抑制作用(P<0.05),而猪粪为肥源处理中除50mg/kg无显著影响外(P>0.05),其它含量处理均显著促进N2O排放(P<0.05).第2次添加肥料阶段,不同肥源条件下Zn的作用规律一致,即50mg/kg无显著影响(P>0.05),500和1500mg/kg显著提高N2O排放而5000mg/kg处理与之相反(P<0.05).此阶段500、1500和5000mg/kg处理以猪粪和尿素为肥源时其N2O累积排放量与同肥源对照的比值分别为3.49、3.13、0.01和2.53、2.74、0.04,可见同等含量Zn在猪粪为肥源条件下作用更强,500和1500mg/kg Zn的促进机制为Zn提高了土壤中NH4+-N、NO3--N含量以及控制反硝化过程N2O产生和还原功能基因相对丰度的比值(nirS/nosZ),而5000mg/kg Zn抑制了土壤中NH4+-N进一步转化为NO3--N,从而降低了N2O排放.  相似文献   

17.
通过试验模拟不同幅度、不同频率的脉冲式进水流量波动,研究脉冲式流量波动对已稳定运行的厌氧氨氧化UASB反应器性能的冲击影响.结果表明,在脉冲波动幅度小于60mL/min(上升流速1.33cm/min)范围内,厌氧氨氧化UASB反应器表现出良好的适应性和承受力,甚至对于高频率的波动冲击,出水也可达到一级A标准,NH4+-N和NO2--N去除率都基本维持在80%以上,总氮去除率维持在70%以上.而当脉冲的波动幅度为100mL/min(上升流速2.22cm/min)时,则UASB反应器的出水水质波动性大,随着波动频率的增大,反应器的适应时间增长,一直到波动频率为1.5h时,反应器出水NH4+-N和NO2--N浓度难以稳定在5mg/L以下.随着波动幅度由40mL/min增大到60,100mL/min,反应器内污泥中厌氧氨氧化菌的丰度值和厌氧氨氧化菌占全细菌的百分含量均呈现先增多后减少的趋势,在波动幅度为60mL/min时均为最大,可能是由于此时污泥和基质的混合与接触更为高效,氮去除效率高,更有利于厌氧氨氧化菌的生长.  相似文献   

18.
为探究强污泥流失对厌氧氨氧化(anammox)反应器系统脱氮性能、颗粒污泥特性及功能菌群的影响,试验以模拟废水为处理对象构建了上流式厌氧污泥床(UASB)反应器.试验结果表明,损失近一半反应器有效体积的污泥未明显破坏anammox工艺脱氮性能.反应器在4d后总氮(TN)的去除率(RE)达到89.18%污泥EPS含量较高且其PN/PS值(0.12)较低有利于anammox颗粒污泥的形成和集聚.Anammox颗粒污泥粒径>2mm的污泥占到系统总污泥的44.9%,粒径大于0.5mm的污泥占总污泥的84.3%,能够有效持留污泥.厌氧氨氧化菌的优势门为变形菌门(28.03%)、浮霉菌门(15.57%)和绿弯菌门(8.63%),优势属为anammox菌属Candidatus Jettenia(9.63%)和Candidatus Brocadia(3.54%),参与anammox反应的功能基因包括nirS (1.27%)、hzs(1.28%)、hzo(1.29%)、hao(7.04%)和hdh(0.81%),但反硝化菌及其功能基因的存在使得化学计量比Rs (ΔNO2--N/ΔNH4+-N)和Rp (ΔNO3--N/ΔNH4+-N)低于理论值.  相似文献   

19.
考察了在低温条件下(<20℃)废铁屑及其投加方式对厌氧氨氧化反应器脱氮性能和微生物群落的影响.结果表明,当废铁屑投加量为10g/L时,直接(R2)和间接(R3)投加方式均会对厌氧氨氧化反应造成短期抑制,总氮去除率分别降低4.7%和3.4%;30d连续运行后,2组反应器总氮去除率均提升至70%左右;反应器稳定运行阶段,R2的Rs(NO2--N与NH4+-N去除量之比)和Rp(NO3--N生成量与NH4+-N去除量之比)为1.57和0.22, R3的RsRp为1.49和0.23,比R2更接近厌氧氨氧化反应理论值.废铁屑在水中发生腐蚀,降低DO并提高pH值,且R2,R3污泥中铁含量分别为对照组的1.64倍和1.93倍,废铁屑不仅改善了厌氧氨氧菌的生境,还满足了其对铁元素的需求.高通量测序结果显示,在20~50d的运行过程中, R1,R2,R3中优势厌氧氨氧化菌属Candidatus_Kuenenia的相对丰度分别增加-1.05%,0.14%和0.96%,废铁屑的投加促进了厌氧氨氧化菌在低温下的生长,且间接投加促进效果更为显著.  相似文献   

20.
甲烷在自然生态系统碳循环过程中起着重要作用,氮素形态的差异影响了甲烷氧化菌的氧化作用.选取北京市密云水库和北运河两类不同污染类型的水体作为研究区域,采用克隆文库分子生物学的方法,探究氮素形态及其来源的差异对MOB细菌群落特征的影响.结果表明:密云水库与北运河沉积物中氮素形态有显著差异,水库中氮素以NO3--N为主,河流中氮素以NH4+-N为主;氮素形态的差异影响了MOB细菌的系统发育,密云水库沉积物中MOB细菌的高同源性菌群主要来自湖泊生态系统,与NO3--N有较强的响应关系,北运河沉积物中MOB细菌高同源性菌群主要来自污水处理厂废水和活性淤泥,与NH4+-N有较强的响应关系,不同环境中氮素对MOB细菌的影响主要依赖于氮素的主要存在形态及其主要来源.北运河等重污染河流中MOB细菌群落的联系更紧密更趋于模块化,对环境变化的敏感程度更高,微生物更脆弱,更容易受到水质变化以及人类活动的干扰.北运河沉积物中NH4+-N对MOB细菌氧化速率的抑制性强于密云水库沉积物中NO3--N对甲烷氧化的抑制作用.重污染的城市河流中高浓度的NH4+-N通过抑制甲烷氧化速率和促进产甲烷产生速率的双重作用影响了河流沉积物中甲烷的产生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号