首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polychlorinated dibenzothiophenes (PCDTs) could be classified as persistent organic pollutants (POPs) in the environment and are particularly interesting due to their structural resemblance to highly toxic dioxins. We show here some basic environmental properties such as n-octanol water (KOW), n-octanol/air (KOA) and air/water (KAW) partition coefficients as well as Henry’s law constants (KH) for all 135 congeners of chlorodibenzothiophene. Predictions were made by regression of principal components (PCR) and with aid of a set of standard chemicals, for which physical–chemical properties are well featured. Computed KOW, KOA, KAW and KH values for mono-CDTs ranged, respectively, between 4.66 and 4.71, 7.48 and 7.55, −2.84 and −2.82, 3.56 and 3.74; for di-CDTs between 5.02 and 5.28, 8.03 and 8.29, −3.01 and −2.95, 2.42 and 2.75; for tri-CDTs between 5.53 and 5.70, 8.65 and 8.87, −3.2 and −3.11, 1.58 and 1.92; for tetra-CDTs between 5.95 and 6.13, 9.27 and 9.50, −3.39 and −3.27, 1.02 and 1.33; for penta-CDTs between 6.38 and 6.51, 9.88 and 10.05, −3.54 and −3.45, 0.72 and 0.88; for hexa-CDTs between 6.83 and 6.97, 10.54 and 10.66, −3.72 and −3.64, 0.47 and 0.56; for hepta-CDTs between 7.28 and 7.35, 11.12 and 11.20, −3.81 and −3.87, 0.33 and 0.38; for octa-CDT 7.74, 11.78, −4.04 and 0.23. An estimated value of the three types of partition coefficient and Henry’s law constants suggest that polychlorinated dibenzothiophenes are lipophilic and semi-volatile persistent organic pollutants. Their mobility in the environment seems to be very similar to that of some well-known POPs such as polychlorinated dibenzofurans, -dibenzo-p-dioxins, and -biphenyls or organochlorine pesticides.  相似文献   

2.
The present work focuses on the fate of two cancerostatic platinum compounds (CPC), cisplatin and carboplatin, as well as of two inorganic platinum compounds, [PtCl4]2− and [PtCl6]2− in biological wastewater treatment. Laboratory experiments modelling adsorption of these compounds onto activated sludge showed promising specific adsorption coefficients KD and KOC and Freundlich adsorption isotherms. However, the adsorption properties of the investigated substances were differing significantly. Adsorption decreased following the order cisplatin > [PtCl6]2− > [PtCl4]2− > carboplatin. Log KD-values were ranging from 2.5 to 4.3 , log KOC from 3.0 to 4.7.

A pilot membrane bioreactor system (MBR) was installed in a hospital in Vienna and fed with wastewater from the oncologic in-patient treatment ward to investigate CPC-adsorption in a sewage treatment plant. During three monitoring periods Pt-concentrations were measured in the influent (3–250 μg l−1 Pt) and the effluent (2–150 μg l−1 Pt) of the treatment plant using ICP-MS. The monitoring periods (duration 30 d) revealed elimination efficiencies between 51% and 63% based on averaged weekly input–output budgets. The derived log KD-values and log KOC-values ranged from 2.4 to 4.8 and from 2.8 to 5.3, respectively. Species analysis using HPLC-ICP-MS proofed that mainly carboplatin was present as intact drug in the influent and – due to low log KD – in the effluent of the MBR.  相似文献   


3.
4.
The temporal variability and bioaccumulation dynamics of C12–25 n-alkanes, isoprenoids and unresolved aliphatic hydrocarbons (UCM) were studied in a detritivorous fish (Sábalo: Prochilodus lineatus) collected from 1999 to 2005 in the sewage impacted Buenos Aires coastal area. Fish muscles contain huge amounts of n-C12–25 (165 ± 93, 70 ± 48 or 280 ± 134 μg g−1, dry, fresh and lipid weight, respectively) and UCM (931 ± 560, 399 ± 288 and 1567 ± 802 μg g−1) reflecting the chronic bioaccumulation of fossil fuels from sewage particulates. On a temporal basis, lipid normalized aliphatic concentrations peaked by the end of 2001–2002 during the rainiest period over the last four decades (1750 vs. 1083 ± 4.6 mm in 1999, 2004 and 2005), reflecting an enhanced exposition due to massive anthropogenic fluxes from Metropolitan Buenos Aires in wet years. The hydrocarbon composition in fish muscles is enriched in n-C15–17 and isoprenoids relative to a fresh crude oil and settling particulates, with fresher signatures during the 2001–2002 maxima. Fish/settling material bioaccumulation factors (BAFs: 0.4–6.4 dry weight or 0.07–0.94 lipid-organic carbon) plotted against Kow showed a parabolic pattern maximizing at n-C14–18 and isoprenoids. The optimal bioaccumulation window corresponds to highly hydrophobic (log Kow: 7.2–9.9), intermediate-size C14–18 n-alkanes and C15–20 isoprenoids (MW: 198–282; length: 17.9 to 25.4 Å) with melting points ranging from −19.8 to 28 °C. The uptake efficiency is inversely correlated to melting points and increased from 75% for n-C25 to above 90% for n-C14–15 and isoprenoids.  相似文献   

5.
EC50s for cadmium, copper, lead and zinc were determined for juvenile production of Folsomia candida at pH6.0, 5.0 and 4.5 in a standard laboratory test system. In contrast to most previous studies where metal toxicity was increased at low pHs, in our experiments there was no clear relationship between soil acidity and EC50-reproduction in this species. The EC50-reproduction values (μg g−1) for cadmium and zinc were similar at all three pHs (pH6.0: Cd 590, Zn 900; pH5.0: Cd 780, Zn 600; pH4.5: Cd 480, Zn 590). In contaminated field sites adjacent to primary zinc smelters, zinc is invariably present in soils at concentrations of at least 50 times that of cadmium Thus deleterious effects of mixtures of these metals on populations of Collembola in such sites can be attributed to zinc rather than cadmium.  相似文献   

6.
Vettery W 《Chemosphere》2002,46(9-10):1477-1483
Environmental appearance of Q1, a natural heptachloro compound with the molecular formula C9H3Cl7N2, was studied in samples from different sites all over the world. Q1 was expected to have a bipyrrole backbone, similar to other compounds ascribed to natural sources. A method for isolation of Q1 was developed by combination of adsorption chromatography on silica and normal phase HPLC with an amino phase. UV-detection of Q1 supports the aromatic character of the compound.

The high levels detected in samples of marine mammals and birds suggested that Q1 is both a persistent and a bioaccumulative contaminant. This was underscored by calculated log KOW in the range of other lipophilic organohalogens. In accordance with earlier studies, highest Q1 concentrations were found in the Southern Hemisphere, but with a highly selective GC/ECNI-MS-SIM method, detection of Q1 was also achieved in many samples from the Northern Hemisphere. In addition to marine mammals and birds, Q1 was also detected in fish from the Mediterranean Sea and the Antarctic. Traces were also detected in SRM 1588 certified cod liver oil, but Q1 was not detected in fish from Hong Kong and Lake Baikal.  相似文献   


7.
Hu XL  Peng JF  Liu JF  Jiang GB  Jönsson JA 《Chemosphere》2006,65(11):1935-1941
The effect of some environmentally relevant factors including salinity, pH, and humic acids on the availability of bisphenol A (BPA) was evaluated by using the negligible-depletion solid-phase microextraction (nd-SPME) biomimetic method. With the variation of salinity (0–500 mM NaCl) and pH (5.0–8.5) of aqueous solutions, the partition coefficients of BPA between the nd-SPME fiber and the aqueous solution varied in the range of log D = 3.55–3.86, which indicates that the salinity and pH can influence the availability of BPA. By using Acros humic acid as model dissolved organic matter (DOM), it was also demonstrated that the environmental factors such as salinity and pH could affect the partitioning of BPA between DOM and aqueous solutions. The determined partition coefficients of BPA between dissolved organic carbon (DOC) and aqueous solutions were in the range of log DDOC = 4.03–5.60 for Acros humic acid solutions with 1–50 mg l−1 DOC. The influence of salinity and pH on log DDOC was more significant at low concentration (0–5 mg l−1) of DOC.  相似文献   

8.
9.
The recognition of pharmaceuticals as significant environmental contaminants has only been a recent phenomenon. Therefore there is a paucity of data relating to the fate and effects of pharmaceuticals once they enter an aquatic receiving system. The amount of work that needs to be done in terms of risk assessment for pharmaceuticals required by regulatory agencies is substantial. This paper has determined the environmental partitioning coefficient (Kd) of 13 diverse human pharmaceuticals in three model systems of differing combinations of solid phases and solutions. The Kd values were then compared with distribution values of the pharmaceuticals in the human body determined from pharmacological studies. This was done to assess the functional relationship between Kd and distribution values in the human body (VD). Kd values ranged from 3 to 2450 L kg−1. Regression coefficients ranged from r2 = 0.62–0.72, indicating that VD values are a useful indicator for the Kd values of the tested pharmaceuticals within the batch sorption systems. The relationship between Kd and VD should therefore be further explored to determine whether this relationship can be applied to a broader range of pharmaceuticals in more diverse environmental systems. Exploiting available human pharmacological data in such a way would be of great benefit in prioritising human pharmaceuticals as environmental contaminants in the risk assessment process.  相似文献   

10.
W. Thumm  R. Brü  ggemann  D. Freitag  A. Kettrup 《Chemosphere》1992,24(12):1835-1843
EC50 values of different nitroparaffins were determined by a photobacterium phosphoreum toxicity test. Octanol/water partition coefficients were determined by a reversed phase HPLC method. From these experimental data quantitative structure activity relationships were deduced which point to a dependence of toxicity on a “form factor” that includes the number of methyl and methylene groups in a molecule. The hypothesis will be formulated that the specific effects depend on the number of methylgroups and an equation for specific effects is given.  相似文献   

11.
Fluorescence excitation–emission matrices (EEM) of aqueous solutions of Laurentian soil fulvic acid (LFA) at three concentrations (50, 75 and 100 mg/l) were obtained at two pH values (pH = 4.0 and 6.0) and as function of the Cu(II) ion concentration. The presence of Cu(II) ion provokes quenching of the intrinsic LFA fluorescence due to complex formation. Multivariate curve resolution (MCR-ALS) was used to successfully decompose single EEM into excitation and emission spectra for the detected components. Moreover, multidimensional (up to six dimensions) data matrices were generated by adding EEM collected as function of the LFA and Cu(II) concentrations and pH. MCR-ALS was able to resolve the excitation and emission spectra from these multidimensional data matrices given further information about the spectral variation profiles induced by the experimental factors. Conditional stability constants (log KLFACu) were calculated from the quenching profiles observed as function of the Cu(II) concentration, as well as, their trends as function of pH and LFA concentration were obtained – average (and standard deviation) of log KLFACu = 4.6 ± 0.2. This EEM/MCR-ALS methodology constitutes a new tool for the study of natural organic matter under varying experimental conditions that characterize natural environmental systems.  相似文献   

12.
Liu H  Yu H  Giesy JP  Sun Y  Wang X 《Chemosphere》2007,66(11):2159-2165
HC Orange No. 1 (HCO1; 2-nitro-4′-hydroxydiphenylamine) (CAS No. 54381-08-7) is used as a color additive in hair dyes and can be released into aquatic environments in wastewater. In this paper, the effects of HCO1 on aquatic organisms were studied using a battery of toxicological tests. These included measuring immobilization of Daphnia magna, inhibition of zebrafish embryo development, and acute lethality in zebrafish and goldfish, which are different species belonging to different trophic levels. HCO1 was toxic to all of the organisms studied. In our experiments, HCO1 remarkably restrained the mobility of D. magna, which may cause subsequent death. The EC50 value for restrained the mobility of D. magna at 48 h was 1.54 mg HCO1 l−1. In addition, HCO1 showed toxicity in zebrafish and goldfish, where LC50values at 96 h were 4.04 and 5.37 mg l−1, respectively. The results also indicated that HCO1 remarkably retarded the development of zebrafish embryos, which may cause embryo abnormality and even lethality. The most sensitive toxicological endpoint in the development of the embryos was failure to hatch, which had an EC50 of 0.19 mg HCO1 l−1. These results indicated that HCO1 is a potential teratogen to zebrafish embryos. In addition, as HCO1 concentrations increased, the outcomes of each of these toxicity tests changed in a concentration-dependent manner. Together, the results revealed that HCO1 appears to be toxic to multiple different species of aquatic organisms. The EC50 (LC50) values contain sufficient discriminatory power for risk assessment of HCO1 in aquatic environments. Based on the present results, more efficient risk assessment procedures for HCO1 will be designed in the future, integrating more flexible testing methods into the testing schemes that employ only the necessary tools for each case.  相似文献   

13.
Study of sorption kinetics of some ionic liquids on different soil types   总被引:1,自引:0,他引:1  
In the present contribution sorption kinetics experiments under static conditions were utilized in three selected ionic liquids cations (1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium chlorides) study with five type of soil, differing in total organic carbon (TOC) content. The experimental results indicate the sorption capacity growth with increase in TOC content and hydrophobicity of ionic liquid cation. The obtained kinetic sorption parameters as well as distribution coefficients (Kd) were used to estimate the sorption properties of the soil types towards the ionic liquids in question. The Gibbs free energy values indicate that ionic liquid cations sorption on soils could be generally considered as a physical adsorption with exothermic effect. But the values of −dG for studied cations sorption on soil with very high of TOC content in soil (45%) may testify to nature of chemical adsorption. Sorption of the analyzed compounds occurs probably by means of hydrogen bonds, electrostatic and π  π interaction with the organic matter and the clay minerals of the soils.  相似文献   

14.
Environmental safety data are presented for [S,S]-Ethylene Diamine Disuccinate ([S,S]EDDS), a new, biodegradable, strong transition metal chelator. An environmental risk assessment for its use in detergent applications, which takes into account the chelating properties of [S,S]-EDDS, is proposed.

A property of [S,S]-EDDS that distinguishes it from other strong transition metal chelators is its, “ready” and transparent (no recalcitrant metabolites) biodegradation profile. Because its sorption to activated sludge solids is low ( Kp of 40 1/kg), removal of [S,S]EDDS during sewage treatment, which is greater than 96% as determined by the Continuous Activated Sludge test , is mainly ascribed to biodegradation. At projected use volumes in detergent applications [S,S] - EDDS predicted steady-state concentration in rivers leaving the mixing zone will be below 5 pg/I due to rapid biodegradation. [S,S]-EDDS exhibits low toxicity to fish and Daphnia ( both EC50s> 1000 mg/l). By contrast, due to limitation of the algal test for chelators apparent toxicity was observed (EC50 = 0.290 mg/l, NOEC - No observable Effect Concentration = 0.125 mg/l). Schowanek et al. [1] demonstrated that this is not toxicity sensu stricto but a chelation effect of trace metals in the test medium and of resulting essential nutrients limitation. This requires specific attention when the results of algal toxicity are to be extrapolated to a field situation to perform realistic risk assessment. Metal speciation calculations, using MINEQL+, show that at the predicted environmental concentrations of [S,S] - EDDS (1–5 μg/l), such a chelation effect would be insignificant. These calculations allow to estimate the NOEC for chelation effects in the field to be in the range of 0.250-0.500 mg/l, depending on the background water chemistry. These values are well above the laboratory NOEC.

An environmental risk assessment was performed using the EUSES (1.0) program. EUSES is currently the EU recommended tool for conducting risk assessments (TGD 1995). It was applied to estimate the river water and soil concentrations from production, formulation and private use life stages. The estimated PEC/PNEC ratio in all relevant environmental compartments is smaller than 1, indicating “no immediate concern” at the anticipated usage level.  相似文献   


15.
A new Aeromonas bioassay is described to assess the potential harmful effects of the glyphosate-based herbicide, Roundup®, in the Albufera lake, a protected area near Valencia. Viability markers as membrane integrity, culturability and β-galactosidase production of Aeromonas caviae were studied to determine the influence of the herbicide in the bacterial cells. Data from the multifactor analysis of variance test showed no significant differences (P > 0.05) between A. caviae counts of viability markers at the studied concentrations (0, 50 and 100 mg l−1 of glyphosate).

The effects of Roundup® on microbial biota present in the lake were assessed by measuring the number of indigenous mesophilic Aeromonas in presence of different amounts of the herbicide at 0, 50 and 100 mg l−1 of glyphosate. In samples containing 50 and 100 mg l−1 of glyphosate a significant (P < 0.05) increase in Aeromonas spp. counts and accompanying flora was observed.

The acute toxicity of Roundup® and of Roundup® diluted with Albufera lake water to Microtox® luminescent bacterium (Vibrio fischeri) also was determined. The EC50 values obtained were 36.4 mg l−1 and 64.0 mg l−1 of glyphosate respectively. The acidity (pH 4.5) of the herbicide formulation was the responsible of the observed toxicity.  相似文献   


16.
Spliid NH  Helweg A  Heinrichson K 《Chemosphere》2006,65(11):2223-2232
Filling and cleaning of pesticide sprayers presents a potential risk of pollution of soil and water. Three different solutions for handling sprayers have been suggested: Filling and cleaning in the field, filling and cleaning on hard surfaces with collection of the waste water, and filling and cleaning on a biobed, which is an excavation lined with clay and filled with a mixture of chopped straw, sphagnum and soil with turf on top, and with increased sorption capacity and microbial activity for degradation of the pesticides. In the present study the degradation and leaching of 21 pesticides (5 g of each) was followed in an established full-scale model biobed. Percolate was collected and analysed for pesticide residues, and the biobed material was sampled at three different depths and analysed by liquid chromatography double mass spectrometry (LC-MSMS). During the total study period of 563 days, no traces of 10 out of 21 applied pesticides were detected in the percolate (detection limits between 0.02 and 0.9 μg l−1) and three pesticides were only detected once and at concentrations below 2 μg l−1. During the first 198 days before second application, 14% of the applied herbicide bentazone was detected in the leachate with maximum and mean concentrations of 445 and 172 μg l−1, respectively. About 2% of the initial mecoprop and fluazifop dose was detected in the percolate, with mean concentrations of 23 μg l−1, while MCPA and dimethoate had mean concentrations of 3.5 and 4.7 μg l−1, respectively. Leachate concentrations for the remaining pesticides were generally below the detection limit (0.02–0.9 μg l−1, below 1% of applied). Sorption studies of five pesticides showed that compounds with a low Kd value appeared in the leachate. After 169 days, all pesticides in the biobed profile were degraded to a level below 50% of the calculated initial dose. Pesticides with Koc values above 100 were primarily found in the uppermost 10 cm and degraded slowest due to the low bioavailability. The 11 most degradable pesticides were all degraded such that less than 3% remained in the biobed after 169 days.

Following second pesticide application of the biobed, leachate was sampled 215 and 365 days after the treatment. This showed the same pesticides to be leached out and at concentrations comparable to those of the first treatment. The same pesticides as after the first treatment were retained in the biobed.  相似文献   


17.
This article describes the photolytic degradation of malachite green (MG), a cationic triphenylmethane dye used worldwide as a fungicide and antiseptic in the aquaculture industry. Photolysis experiments were performed by direct exposure of a solution of MG in water to natural sunlight. The main transformation products (TPs) generated during the process were identified by liquid chromatography time-of-flight mass spectrometry (LC–TOF-MS) and gas chromatography mass spectrometry (GC–MS). The 28 TPs identified with this strategy indicate that MG undergoes three main reactions, N-demethylation, hydroxylation and cleavage of the conjugated structure forming benzophenone derivatives. These processes involve hydroxyl radical attack on the phenyl ring, the N,N-dimethylamine group and the central carbon atom. The Vibrio fischeri acute toxicity test showed that the solution remains toxic after MG has completely disappeared. This toxicity could be assigned, at least in part, to the formation of 4-(dimethylamine)benzophenone, which has an EC50,30 min of 0.061 mg l−1, and is considered “very toxic to aquatic organisms” by current EU legislation.  相似文献   

18.
A series of aromatic heterocyclic and hydrocarbon compounds were tested for toxicity and biotransformation potential against two contrasting lux-marked whole-cell microbial biosensors. Toxicity was determined by inhibition of light output of a Pseudomonas fluorescens construct that expresses lux constitutively. Biotransformation was tested by increase in light output of P. fluorescens HK44 (pUTK21), which expresses lux when in the presence of a metabolic intermediate (salicylate). The data were then modelled against physical/chemical properties of the compounds tested to see if quantitative structure–activity relationships (QSARs) could be derived. Toxicity was found to be accurately predicted by log Kow (R2=0.95, Q2=0.88), with the basic (pyridine-ring containing) heterocycles modelled separately. The biotransformation data were best modelled using lowest unoccupied molecular orbital (LUMO) energies (R2=0.90, Q2=0.87).  相似文献   

19.
Tahir SS  Rauf N 《Chemosphere》2006,63(11):1842-1848
The ability of bentonite to remove malachite green from aqueous solutions has been studied for different adsorbate concentrations by varying the amount of adsorbent, temperature, pH and shaking time. Maximum adsorption of the dye, i.e. >90% has been achieved in aqueous solutions using 0.05 g of bentonite at a pH of 9. Thermodynamic parameters such as Δ, Δ and Δ were calculated from the slope and intercept of the linear plots of ln KD against 1/T. Analysis of adsorption results obtained at 298, 308, 318 and 328 K showed that the adsorption pattern on bentonite seems to follow the Langmuir, Freundlih and D–R isotherms. The temperature increase reduces adsorption capacity by bentonite, due to the enhancement of the desorption step in the mechanism. The numerical values of sorption free energy (Ea) of 1.00–1.12 kJ mol−1 indicated physical adsorption. The kinetic data indicated an intraparticle diffusion process with sorption being first order. The rate constant k was 0.526 min−1. The concentration of malachite green oxalate was measured before and after adsorption by using UV–Vis spectrophotometer.  相似文献   

20.
Zhu R  Sun L 《Chemosphere》2005,59(11):1583-1593
Methane fluxes were measured from three exposed tundra sites and four snowpack sites on the Fildes Peninsula in the maritime Antarctic in the summertime of 2002. The average fluxes at two normal tundra sites were −15.3 μg m−2 h−1 and −14.3 μg m−2 h−1, respectively. The fluxes from tundra site with fresh penguin dropping addition showed positive values with the average of 36.1 μg m−2 h−1, suggesting that the deposition of fresh droppings greatly enhanced CH4 emissions from the poor Antarctic tundra during penguin breeding periods. The summertime variation in CH4 flux was correlated with surface ground temperature and the precipitation. The correlation between the flux and PT0, which is the product of the precipitation and surface ground temperature, was quite strong. The diurnal cycle of CH4 flux from the tundra soils was not obtained due to local fluky weather conditions. The fluxes through four snowpack sites were also obtained by the vertical CH4 concentration gradient and their average fluxes were −46.5 μg m−2 h−1, −28.2 μg m−2 h−1, −46.4 μg m−2 h−1 and −17.9 μg m−2 h−1, respectively, indicating that tundra soils under snowpack also consume atmospheric CH4 in the maritime Antarctic; therefore these fluxes could constitute an important part of the annual CH4 budget for Antarctic tundra ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号