首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioavailability is one main factor that influences the extent of biodegradation of hydrocarbons. They are very poorly soluble in water and easily adsorbed to clay or humus fractions, so they pass very slowly to the aqueous phase where they are metabolised by microorganisms. Cyclodextrins are natural compounds that form soluble inclusion complexes with hydrophobic molecules and increase degradation rate of hydrocarbons in vitro. In the perspective of an in situ application, we previously checked that -cyclodextrin does not increase eluviation of hydrocarbons through the soil and consequently does not increase the risk of groundwater pollution. The results of an in situ application of -cyclodextrin for bioremediation of a hydrocarbon polluted site are presented. We stated that the combination of bioaugmentation and enhanced bioavailability due to -cyclodextrin was effective for a full degradation.  相似文献   

2.
The synthetic analogue of a bacterially produced polyester, poly(-hydroxybutyrate) (PHB) was synthesized from racemic -butyrolactone using anin situ trimethyl aluminum-water catalyst. The polymer was fractionated into samples differing in molecular weight and isotactic diad content. The latter was closely related to degree of crystallinity. The biodegradation of these fractions were examined by monitoring mass loss over time in the presence of anAlcaligenes faecalis T1 extracellular bacterial poly(-hydroxybutyrate) depolymerase. The fraction with high isotactic diad tacticity content showed little or no degradation over a 50 hour incubation period, whereas the fraction of intermediate isotactic diad content degraded in a continuous steady fashion at a rate that was less than that for bacterial PHB. The low isotactic diad fraction underwent a rapid initial degradation, followed by no further mass loss. The presence of stereoblocks in the polymer structure of the various fractions was an influence on the degree of susceptibility towards degradation and is related to sample crystallinity.  相似文献   

3.
The biodegradability of poly--hydroxybutyrate and poly--caprolactone in soil compostage before and after irradiation of the polymers for 192, 425, and 600 h in a Weather-Ometer was examined. The biodegradability tests were done in soil compostage at pH 7.0, 9.0, and 11.0 to assess the influence of this parameter on degradation. The rate of degradation was directly proportional to the soil alkalinity. Poly--hydroxybutyrate showed the greatest weight loss and aging in a Weather-Ometer did not significantly increase the biodegradation, except when the polymer was aged for 425 h and buried in soil compostage of pH 11.0.  相似文献   

4.
The legislative framework of waste management in Taiwan has never been efficient, mainly due to unclear definitions and regulations. In 2002, this system was split into two parts by enacting a new law, the Resource Recycling and Re-use Act (RRRA). However, it then became more complicated and recycling effectiveness was impeded. The causes were mainly the unclear definitions, conflicts about the scope, and issues between the RRRA and the Waste Disposal Act (WDA). This article examines the recycling legislation experience in Taiwan, and proposes two modifications for resolving these problems. The first proposal is merging these two acts into one. The second proposed modification maintains a two-system structure but introduces a new subject, discards, into the law. The subject of discards is further categorized as recyclable resources or waste, which correspond to recycling operations and disposal operations, respectively. The new structures, interfaces, prerequisites, properties, and comparisons are also explained.  相似文献   

5.
The biodegradability of poly--hydroxybutyrate (PHB), poly--hydroxybutyrate-co-valerate (PHB-V) and poly--caprolactone (PCL) were examined following thermal aging in an oven for 192, 425 and 600 h. Different temperatures, 100, 120 and 140°C for PHB and PHB-V and 30, 40 and 50oC for PCL were used to assess the influence of this parameter on biodegradation. The biodegradability tests were done in soil compostage at pH 11.0 and involved measuring the residual mass of polymer. Thermal analysis of the polymers was done using a differential scanning calorimeter (DSC). The melting temperature and crystallinity were also determined. Thermal ageing increased the biodegradability only for PHB at 120 and 140oC, and there was no correlation between crystallinity and the biodegradation of the polymers.  相似文献   

6.
The cyclic six, seven, and eight-membered oligosaccharides -, -, and -cyclodextrins (CDs) can serve as hosts for a variety of polymer guests to form crystalline inclusion compounds (ICs), wherein the guest polymers are included in the continuous narrow channels (0.5–1.0 nm in diameter) formed by the host CD stacks. Polymers included as guests in CD-ICs are highly extended and segregated from neighboring chains by the walls of the host CD bracelets. As a consequence, when polymer-CD-ICs are treated with solvents for CDs that are non-solvents for the included polymers or with amylase enzymes, the CDs are removed and the guest polymers are coalesced into bulk samples whose structures, morphologies, and even chain conformations are different from those achieved by consolidation from their randomly coiling, entangled solutions and melts. Often these CD-IC coalesced and consequently reorganized polymer samples exhibit properties that are distinct from their normally processed bulk samples. Here we describe the CD-IC processing of several biodegradable/bioabsorbable homopolymers, copolymers, and blends made from poly (L-lactic acid), poly (-caprolactone), and poly (-hydroxybutyrate)s, with special emphasis placed on their improved and controllable properties. For example, the phase segregation and consequent crystallinities of their normally incompatible homopolymer blends and their block copolymers may be controlled and thus improved. In addition, co-inclusion of small molecule guests, such as drugs or anti-bacterials, in their common CD-ICs, and subsequent coalescence, yields well-mixed blends of these biodegradable/bioabsorbable polymers and the small molecule co-guests, which may lead, for example, to the improved delivery of drugs.  相似文献   

7.
A new method for evaluating biodegradability of starch-based and certain other polymer blends uses the pre- and postexposure stable carbon isotope composition of material coupled with weight loss data to determine which components have degraded. The naturally occurring stable isotope of carbon.13C, is enriched in corn starch (13C, approx. –11) compared to petroleum-derived synthetic polymers (13C, approx. –32). Results on starch-synthetic polymer blends indicate that the 13C signatures of these blends are near-linear mixtures of their component 13C. Values of a 13C for starch-synthetic polymer blends exposed to biologically active laboratory soil and artificial seawater conditions are depleted in13C compared to unexposed samples, suggesting loss of the starch component. Combined with weight loss data for the exposed samples, the 13C values are statistically consistent with models requiring loss of the soluble component glycerin, followed by loss of starch, then petrochemical polymer, or simultaneous loss of starch and petrochemical polymer. Replicate 13C analyses of starch-synthetic polymer blends increase the statistical power of this relatively inexpensive, accessible technique to discriminate between degrading components.  相似文献   

8.
The apparent biodegradability and biocompatibility of the microbially produced polyester, poly(-hydroxybutyrate) (PHB), has been the focus of much research by a number of authors with regard to its potential for use in packaging and medical implantation devices. PHB has recently been produced by gel-spinning into a novel form, with one possible application being as a wound scaffolding device, designed to support and protect a wound against further damage while promoting healing by encouraging cellular growth on and within the device from the wound surface. This new nonwoven form combines a large volume with a low mass, has an appearance similar to that of cotton wool, and has been called wool because of this similarity. The hydrolytic degradation of this wool was investigated in an accelerated model of pH 10.6 and temperature 70°C. It was determined that the PHB wool gradually collapsed during degradation. The surface area-to-volume ratio was concluded to be a primary influencing factor. Degradation was characterized by a reduction in the glass transition temperatures and melting points and a fusion enthalpy peak of maximum crystallinity, (88%), which coincided with the point of matrix collapse.  相似文献   

9.
Two types of enzymatic reactions are given here as examples of synthetic problems encountered in industry. In the first case, commercially available -D-galactosidase from Escherichia coli was used as a catalyst to transfer galactose from -lactose to oligosaccharides. A preference for galactosyl transfer to the 3- or 4-position of the sugar moiety of the oligosaccharide was observed for the products. As expected, only the -anomer was produced. A wide variety of sugars, including disaccharides, trisaccharides, cellotetraose, and maltodextrins, has been shown to act as acceptors, yielding oligosaccharides. In the second example, -galactomannan that had been previously treated to contain cationic groups (cationic guar gum) was subjected to treatment with a series of inexpensive commercial enzymes such as lipases, protease, and cellulases. Some enzyme preparations showed significant changes in the viscosities of 1% cationic guar solution. For example, lipases from Aspergillus niger and Aspergillus saitoi and protease XIII from Rhizopus niveus produced a substantial viscosity reduction (0–20% of original viscosity). These examples demonstrate the utility of low-cost enzymes in manipulating polymer structures.  相似文献   

10.
In the present project, twenty materials (e.g., polyhydroxybutyrate-hydroxyvalerate, polycaprolactone, cellulose acetate, polyacticacid, polyethylene), representing varied biodegradability levels were studied. An aerobic respirometric test, based on the CEN Draft, was setup. The biodegradability of each plastic film was evaluated by measuring the percentage of carbon converted into CO2 during 35 days. The values of the CO2 production were plotted versus days as a cumulative function. In order to reduce its number of points, the cumulative curve was modeled using a sigmoïd function (Hill sigmoïd). This model was compared to one found in the literature. A i 2 test showed that the biodegradation curve was more accurately fitted with the model than the previous one. Three kinetic parameters were determined by this Hill model: one represents the maximal percentage of carbon converted into CO2, the second the half-life time in days of the degrading part of the material and the third one the curve radius.In addition, the following analyses were carried out on each sample: elemental analysis, thickness, hydrophobicity and surface free energy measurements. In order to compress the information and to keep only relevant pieces, these parameters were submitted to a Principal Component Analysis. PCA found linear combinations of variables that describe major trends in the data. The two principal components which separate groups of materials were closely related to a chemical and a physical axis respectively. Materials showing a high biodegradability were related to high oxygen (and nitrogen) contents and low hydrophobicity: Material thickness did not influence the likeliness to biodegradability described by the maximum biodegradation rate. Finally, this study established the correlation between the biodegradation and the structure of biopolymers.  相似文献   

11.
Dissolved organic carbon (DOC) fractions and different low molecular weight organic acids (LMWOAs) were determined in soil solutions from two lime or ash treated Norway spruce sites in the south of Sweden. At Hasslöv, 3.45 t ha-1 or 8.75 t ha-1 dolomite were applied 15 years before sampling. Horröd was treated with 4.28 t ha-1 ash and 3.25 t ha-1 dolomite and sampled four years later. Propionate (7–268 M) and malonate (2–34 M) were the LMWOAsfound in the highest concentrations at Hasslöv. Two other LMWOAs dominated at Horröd, namely citrate (18–64 M)and fumarate (5–31 M). The differences in concentration of most of the determined LMWOAs at Hasslöv were significantly increased due to treatment. The LMWOAs comprised between 1.1–6.3% of the DOC at Hasslöv and 4.5–17.6% at Horröd. At Hasslöv normally 3–10% of the total acidity (TA) was due to LMWOAs and the average specific buffer capacity was 74 ± 22 mmol mol-1C.The total DOC concentration in the mor layer solution was 16 mM for the dolomite treated plots compared to 10 mM at the untreated plot. A major part of the increase in DOC at the treated plots apparently had a hydrophobic character and was of high molecular weight corresponding to 3–10 kDa. The concentration of DOC < 1 kDa in the control and treated plots was similar.  相似文献   

12.
Epoxy resin and polyetheretherketone (PEEK) resin were decomposed into their monomers such as phenol, cresols, and their analogues by thermal treatment in sub- and supercritical water in a 10-ml tubing bomb reactor. The addition of basic compounds such as Na2CO3 was effective in promoting the decomposition reaction of the resins. In the reaction of epoxy resin, the yield of identified products reached 10% for the reaction at 703K over 1h. In the reaction of PEEK resin, the total yield of phenol and dibenzofuran reached 88% for the reaction at 703K over 3h. Chemical participation of water in the decomposition reaction was confirmed by the reaction of dinaphthylether.  相似文献   

13.
Six types of plastics and plastic blends, the latter composed at least partially of biodegradable material, were exposed to aerobically treated wastewater (activated sludge) to ascertain their biodegradability. In one study, duplicate samples of 6% starch in polypropylene, 12% starch in linear low-density polyethylene, 30% polycaprolactone in linear low-density polyethylene, and poly(-hydroxybutyrate-co-hydroxyvalerate) (PHB/V), a microbially produced polyester, were exposed to activated sludge for 5 months, and changes in mass, molecular weight average, and tensile properties were measured. None of the blended material showed any sign of degradation. PHB/V, however, showed a considerable loss of mass and a significant loss of tensile strength. In a second study, PHB/V degraded rapidly, but another type of microbial polymer which forms a thermoplastic elastomer, poly(-hydroxyoctanoate), did not degrade. These results illustrate the potential for disposal and degradation of PHB/V in municipal wastewater.  相似文献   

14.
A two-stage process for the chemical recycling of plastics is proposed. In this process, which consists of two reactors, plastics are converted into hydrogen and carbon. In the first reactor, plastic chips are thermally decomposed into hydrocarbons. In the second reactor, the hydrocarbons formed in the first reactor are catalytically decomposed into carbon and hydrogen. In this study, in order to obtain basic data for the second reactor, propene was catalytically decomposed in a laboratory-scale spouted-bed reactor (600mm high, 21.6mm internal diameter, made of SUS304). The effect of the type of spouting medium used on the decomposition behavior of propene was investigated using four types of spouting medium (nickel-plated -alumina, palladium-plated -alumina, nickel-impregnated -alumina, and -alumina). The nickel-impregnated -alumina gave the best propene conversion and hydrogen yield.  相似文献   

15.
Poly (-caprolactone) (PCL), poly (-valerolactone) (PVL), poly (-caprolactone-co--valerolactone) [P(CL-co-VL)], and poly (-caprolactone-co-ethylene oxide-co--caprolactone) (PCL-PEO-PCL) were synthesized by ring-opening and diol-initiated polymerization of -caprolactone and -valerolactone. The degradation of the samples by chemical hydrolysis and in a soil burial test was evaluated. It was found that PCL, PVL, and P(CL-co-VL) degrade mainly enzymatically. The rate of degradation depends on their molecular weight, chemical structure, composition, and morphology. PCL-PEO-PCL block copolymers exhibit a repelling effect to the microorganisms in the soil, which depends on the molecular weight and relative amount of PEO block in the copolymer.  相似文献   

16.
Pollution-related lead (Pb) andmercury (Hg) in mor layers of Southern Swedenmight have effects on soil biology, although inthe literature effect concentrations have beenidentified at much higher levels. Considerablesmall-scale spatial variability in heavy metalcontents and microbial respiration in mor layersof forest sites was used to calculatecorrelations that could reveal toxic effects.Negative correlations were always strongest atsites with high loads of Pb or Hg, which was considered to indicate metal toxicity. The highload sites were found in Southwestern Sweden,locally at a motorway and at a chlorine-alkalifactory. Other factors of possible influence,such as other pollutants, age of organic materialor climatic differences, would affect high andlow load sites alike. Negative correlations withrespiration were found for Pb at sites with 74 g g-1 of mean Pb content in Of-layer and for Hg at 0.25 g g-1.  相似文献   

17.
Biodegradable hydrogels prepared by -irradiation from microbial poly(amino acid)s are reviewed. pH-sensitive hydrogels were prepared by means of -irradiation of poly(-glutamic acid) (PGA) produced byBacillus subtilis IFO3335 and poly(-lysine) (PL) produced byStreptomyces albulus in aqueous solutions. The preparation conditions, swelling equilibria, hydrolytic degradation, and enzymatic degradation of these hydrogels were studied. A hydrogel with a wide variety of swelling behaviors has been produced by -irradiation from a mixture solution of PGA and PL.Paper presented at the 4th International Workshop on Biodegradable Plastics and Polymers, October 11–14, 1995, Durham, New Hampshire, USA.  相似文献   

18.
The catalytic degradation of polyolefin using H-gallosilicates was examined using a bench-scale reactor (0.8kg/h) with semicontinuous feeding and the following plastics: (1) low-density polyethylene (LDPE) pellets; (2) linear low-density polyethylene (L-LDPE) pellets; (3) high-density polyethylene (HDPE) pellets; (4) polypropylene (PP) pellets; (5) polyolefin obtained from pulverized industrial waste plastics. The yields of liquid compounds from these materials, which were aromatics in most cases, ranged from 55wt% to 68wt%. With an increase in the ratio of total reactant to catalyst, the liquid yield remained the same. Yields of benzene, toluene, and xylenes (BTXs) decreased rapidly to below 50wt% at a ratio of more than 30. Differences in this ratio for BTXs were always small and were independent of the material. Only about half of the gas product was propane with a fresh catalyst. When the experiments were repeated, propylene, isobutane, and isobutene were found to increase.  相似文献   

19.
The extracellular poly(-hydroxybutyrate) (PHB) depolymerase of Aspergillus fumigatus Pdf1 was purified by a new, simple, one-step affinity chromatography method using the substrate PHB. The purified enzyme was glycosylated, with the molecular mass of 40 KD, and exhibited a novel self-aggregation behavior by means of hydrophobic interaction that was resolved by Triton X-100 (TX-100) pretreatment of enzyme and also TX-100 incorporation in the native gel. The apparent K m value of purified enzyme for PHB was 119 g/mL and 3-hydroxybutyrate was detected as the main endproduct of PHB hydrolysis. The depolymerase was insensitive to phenylmethyl sulfonyl fluoride (PMSF), sodium azide, ethylenediaminetetraacetic acid (EDTA), and para-chloromercuric benzoic acid (PCMB), but was inactivated by dithioerythritol (DTT) and showed specificity for short chain-length poly(-hydroxyalkanoates) (PHAs) such as PHB, poly(hydroxyvalerate) (PHV), and copolymers of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV). Medium-chain-length PHA failed to get hydrolyzed. The enzyme, however, exhibited strong cross reactivity with the Comamonas sp. PHB depolymerase antibodies, but not with PHV depolymerase antibodies of Pseudomonas lemoignei. Southern hybridization and dot blot analysis of A. fumigatus Pdf1 genomic DNA with alkaline phosphatase labeled probes of P. lemoignei PHB and PHV depolymerase genes revealed no homology, although the enzyme hydrolyzed both PHB and PHV.  相似文献   

20.
Transmitted light measurements performed with a UV-visible spectrophotometer were used to characterize how starch affects the position of boundaries on the phase diagram for dilute aqueous solutions of levan (a branched polymer of fructose). Data were collected in the range 15 to 70°C; the minimum concentrations required for separation of a nematic phase and the minimum concentration required for a fully nematic solution were identified within this range. While hard interactions (repulsion between rod-like molecular segments) dictate the formation of a liquid crystalline phase at and above ambient temperature in the absence of starch, soft interactions become more significant as solutions are cooled toward ambient when starch is present. Small amounts of starch might be used as a filler to modify the mechanical properties (while retaining the process-related benefits) of levan films cast from liquid crystalline solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号